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On restrictions on transformational grammars reducing the generative power 

by 

Theo Janssen, Gerard Kok & Lambert Meertens 

ABSTRACT 

Various restrictions on transformational grammars have been investi

gated in order to reduce their generative power from recursively enumerable 

languages to recursive languages. 

It will be shown that any restriction on transformational grammars, 

defining a recursively enumerable subset of the set of all transformation

al grammars, is either too weak (in the sense that there does not exist a 

general decision procedure for all languages generated under such a restric

tion) or too strong (in the sense that there exists a recursive language 

that cannot be generated by any transformational grammar thus restricted). 

In addition, some related problems will be discussed. 

KEY WORDS & PHRASES: tPansforrrr:i.tional gPammaPs, genePative aapacity, 

natuml languages, peaupsive languages, peauPsively 

enumemble languages. 



1. MOTIVATION. 

Chomsky (1965), Ch. I, §6, states that a theory of linguistic str~c

ture should aim at descriptive adequacy. To provide for this aim the theory 

must contain, among others: 

(A) a definition of "generative granmar"; 

(B) a method for determining the structural description of a sen

tence, given a grammar. 

Requirement (A) can be interpreted as the requirement that we have a pro

cedure to decide whether a given text describes a possible generative 

grannnar. Chomsky, however, gives a more liberal formulation: 

(A') the theory must provide for an enumeration G1 , G2 , ••• of possible 

generative grannnars. 

When Chomsky describes how a descriptively adequate theory would attempt 

to account for language learning, it appears that (B) is to be interpreted 

as: 

(B') a method for determining, given a grannnar, whether a given sen

tence can be generated by that grammar, and if so, what struc

tural description is assigned to it. 

Thus (B') implies that: 

(C) the theory provides for a method to decide whether a given sen

tence can be generated by a given grammar. 

This last statement (C) is often formulated as ''na.tuml languages ape 
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recursive". 1 For arguments concerning (C) see, besides CHOMSKY (1965), also 

PETERS & RITCHIE (1973) and PUTNAM (1961). 

Chomsky has introduced transformational grannnars to serve as a model 

for the linguistic structure of natural languages. A formal definition can 

be found in PETERS & RITCHIE (1973); detailed knowledge of the definition, 

however, is not needed for our purposes. PETERS & RITCHIE (1973) have 

proved that the generative power of transformational grammars is of Chomsky 

( • )2 . . . ('). type O reicursively entllllerable • So, in the light of requirement B , it 

appears that the system of transformational grannnars is too powerful since 

not every transformational grammar is a possible grammar for natural lan

guage. Hence, the aim of descriptive adequacy is not fulfilled. Therefore, 

the obvious thing to do is to search for a restriction on TG (the set of 

all transformational granmars) that defines a subset RTG of TG such that 

only recursive languages will be generated. 

In accordance with (A') we require RTG to be recursively enumerable. 

On the other hand, it must be possible to describe every possible natural 

language by a grammar determined by the theory. 

Requirement (B') states that natural languages should be recursive. 

In order to escape the risk of excluding possible natural languages by 

the restriction we suggest: 

(D) for every recursive language there is a grammar in RTG. 

In this situation it is interesting to search for the "ideal" restriction: 

a restriction on TG satisfying requirements (A'), (C) and (D). 

Several proposals have been investigated previously. PETERS & RITCHIE 
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(1971) have investigated restrictions on the base-component of transforma

tional grannnars. Even drastic restrictions do not reduce their generative 

power. The same authors introduce the cycling function of a transformation

al grammar. The generated language is recursive if and only if this func

tion is re'.cursive (i.e. effectively computable). But they define the cy

cling function in a non-effective way; hence, the restriction of having 

a recursiv·e cycling function cannot be checked by an algorithm. In the 

same article they discuss a proposal of PUTNAM (1961) and show that the 

generative. capacity is reduced to that of context-sensitive grammar, thus 

showing this restriction to be too strong. So it appears that the restric

tions investigated are not recursive themselves, or if they are, that they 

either reduce too strongly, or that they do not reduce the generative ca

pacity at all. 

Since we conjectured that this was not due to a lack of good ideas 

but to mathematical necessity, we investigated the matter and succeeded 

in showing that an ideal restriction does not exist. Furthermore the proof 

suggested some interesting new problems, which are also investigated. IThe 

problems under consideration can also be formulated in terms of Recursion 

Theory (the branch of mathematics that studies recursively enumerable sets, 

recursive functions, etc.). It turned out, as could be expected, that these 

problems had already been dealt with in this field. 

In fact, the result mentioned above was proved by DEKKER (1953). Al

though our result is not new, we hold the opinion that it is useful to 

present our proof because, from our point of view, it is an important re

sult which seems not to be known outside the context of Recursion Theory; 

moreover, the proof is not complex. We have formulated it in terms of 



transformational grammars, but it applies analoguously for any formal

language-describing system. For example, although we only deal with gram

mars as generative systems, the results are equally valid for accepting 

systems. 

2. PRELIMINARIES. 

We suppose that all grammars of TG generate languages over the same 

finite alphabet V (e.g., all symbols on all typewriters in the world). So 

we have an enumeration z 1, z 2, ... of all sentences3 over V, arranged on 

length, and for every length in some "alphabetical" order. In case Vis 

infinite, but enumerable, we can prove analoguous results. In that case, 

it suffices to encode all symbols in some finite alphabet (e.g., 0 - 1 

code) and to prove the theorems for the encoded languages. The language 

generated by a grammar G will be denoted by L(G). 

3. RESULTS. 

3.1. The ideal restriction 

THEOREM 1. There exists no subset RTG of TG which satisfies the following 

requirements: 

(A') RTG is recursively enumerable; 

(C) there is a method to decide whether a given sentence aan be 

generated by a given grammar of RTG; 

(D) for ever'/f recursive language there is a grarrmar in RTG. 
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PROOF. Assume that all three requirements are satisfied. 

Let z 1, z 2 , ••• be the enumeration of all sentences over V and let 

G1, G2, ... be an enumeration of the grannnars of RTG. 

Let the language H be defined by: 

z. belongs to H if and only if z. does not belong to L(G.). 
'I, 'I, 'I, 

Because of the requirement (C), there is a decision procedure to test 
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whether z. belongs to L(G.), and, therefore, whether z. belongs to H. So H 
'I, 'I, 'I, 

is recursive. Because of requirement (D), there is a grammar in RTG, say 

Gh, such that H = L(Gh). 

Now we have the following contradiction for zh: 

zh belongs to L(Gh) if and only if zh belongs to H, that is, 

if and only if zh does not belong to L(Gh). 0 

3.2. A ~eaker Testriction 

In the above theorem, (C) implied the existence of a method providing 

for a decision procedure for each language generated by a grammar of RTG. 

As we shall see, the situation changes dramatically if (C) is replaced by 

the weaker requirement: 

(C) none of the languages generated by a grannnar of RTG is non
w 

. 4 recursive. 

In order to explain the difference between (C) and (C ) , consider the 
w 

language L defined as follows: The decimal expansion of n, 3.141592653 ••• , 

may be viewed as an infinite string of digits. L contains exactly all 

strings of seven digits occurring in the decimal expansion of n. Obviously, 

Lis a recursively enumerable language (with enumeration 3141592, 1415926, 

4159265, ••• ) so there exists a transformational grammar G generating L. 
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Since no effective procedure is (yet) known to decide whether, e.g., 

1234567 belongs to L, it is obvious that G could not belong to an RTG 

which has been shown to satisfy (C). However, G might well belong to an 

RTG which has been shown to satisfy (C ): Since all finite languages are 
w 

recursive, a non-recursive language cannot be finite, i.e. it must be in-

finite. But Lis certainly not infinite: there are but 107 strings of seven 

digits, not even considering occurrence in the decimal expansion of~. Con

sequently, L cannot be non-recursive either. 

The consequence of replacing (C) by (C ), is that, surprisingly, the 
w 

construction of an RTG satisfying (A'), (C) and (D) does become possible. 
w 

For Recursion Theory, this case has also been studied by DEKKER (1953). We 

give a slightly sharpened version of this theorem, presented in linguistic 

terminology. Unlike Theorem l, in which TG may be replaced by any formal

language-describing system, this theorem applies only to Chomsky-type-0 

systems such as transformational grammars, Turing machines or 

Van Wijngaarden grammars. Our result is slightly sharper in that it 

exhibits the existence of a recursive restriction, whereas Dekker merely 

shows the existence of a reaursively enwnerable restriction. 

Only a sketch of the proof is given. 

THEOREM 2. There exists a subset RTG of TG which satisfies the following 

requirements: 

(A") RTG is recursive; 

(C) none of the Za.nguages generated by a grammar of RTG is non
w 

recursive; 

(D) for evepY recursive language there is a grammar in RTG. 

ii&t.lOl'MliEK MATHEMATISCH CFN'iR\IM 
A.MSHRDAM 
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SKETCH OF PROOF. PETERS & RITCHIE (1971) have shown constructively that 

a,ny language enumerated by a Turing machine is generated by some transfor

mational grannnar which, as it were, simulates that Turing machine. We may, 

therefore, give a construction in terms of machines. The enumeration 

z 1, z 2, ..• of all sentences over V, introduced in the preliminaries, defines 

an ordering of the sentences over V: z < z < 
1 2 

. An enwnerator is a 

Turing machine which enumerates a sequence y 1, y 2 , ••• of sentences over V; 

it is called ascending if y1 < Yz < •·· • 

LEMMA I. For each recursive language, there exists an ascending enwnerator. 

PROOF. Enumerate "internally" all sentences over Vin ascending order, but 

emit only the sentences belonging to the language and discard all others 

(which can be tested using the decision procedure for that language). D 

LEMMA 2 • An infinite language for which an ascending enwnerotor exists is 

recursive. 

PROOF. In order to decide whether a given sentence y belongs to the lan

guage, enumerate its sentences y 1, y2 , ••• in ascending order until an yi 

is met such that y. ~ s. The sentences belongs to the language if and only 
1,, 

if yi = s. • 

Note that this method does not work for finite languages, since, if at some 

moment only sentences y. :o; s have been enumerated, there is no general way 
1,, 

to tell whether this constitutes the full language or not, so one simply 

has no choice but to wait and see if more is coming. This waiting might con

tinue indefinitely. 
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The following transformation turns an arbitrary enumerator into an 

ascending one: Enumerate the sentences, remembering the sentence last emit

ted. If the next sentence is higher in order, it is emitted; otherwise it 

is discarded. Obviously, this construction transforms already ascending 

enumerators into equivalent ones. 

RTG consists of all grammars that can be obtained as follows: Start 

with an arbitrary enumerator, transform it into an ascending enumerator and 

take the grammar which, according to the construction of Peters and Ritchie 

"simulates 111 this ascending enumerator. 

We will show that RTG, thus defined, satisfies (A"), (C ) and (D). 
w 

as for (A"). Obviously, RI'G is recursively enumerable, since it is possible 

to enumerate all enumerators, to apply the transformation to them and to 

apply to the construction of Peters and Ritchie the result. In fact, it is 

possible to decide by inspection whether a grannnar of TG may be obtained 

in this way, much in the same sense in which it is possible to decide 

whether a given sentence may have been obtained by a transformation which 

replaces all occurrences of "s" in some sentence by "f". 

as for (C ). Let L be a language generated by a grannnar of RTG. Suppose 
w 

that Lis non-recursive. Clearly, L cannot be finite. But Lis enumerated 

by an ascending enumerator, so by Lemma 2, L cannot be infinite either. 

as for (D). For each recursive language, there exists by Lemma I an ascend

ing enumerator for that language, which may be transformed into an equiva

lent one. Consequently, there is a grammar of RTG for that language. D 

3. 3. Restriction to infinite lo.ngua.ges 

The crux of Theorem 2 lies in the proof of (C ) . If we know that the 
w 
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language described by a given grammar is infinite, we have (by Lemma 2) a 

decision procedure. If the language happens to be finite, however, this 

procedure fails, but in that case the language is recursive because all 

finite languages are. Since there is no procedure for deciding whether such 

a language is finite or not, the theorem, although of some theoretical in

terest, is, in the opinion of the authors, of no practical value. 

Since all "interesting" languages are infinite, one might wonder if 

in this theorem it is essential that finite languages play such an elusive 

role. This is indeed the case, as has been shown (in terms of Recursion 

Theory) by VAN EMDE BOAS & VITANYI (1975) ,who proved: 

THEOREM 3. There exists no subset RTG of TG which satisfies the foZZowing 

requirements: 

(A') RTG is reoursiveZy enumerabZe; 

(D.) for every infinite recursive Language, there is a gramma;r, in RTG 
1 

describing that language; 

(E) every language described by a grammar of RTG is infinite. 

PROOF. Assume that all three requirements are satisfied. Let G1, G2 , ••• be 

an enumeration of the grammars of RTG. The following enumerator enumerates 

two sequences of sentences x 1, x 2 , ••• and y 1, y 2 , ··: simultaneously, in 

ascending order: In order to obtain xk, enumerate the sentences of L(Gk), 

until a sentence is met which is higher in order than all previously emit

ted sentences; emit this sentence as xk (such a sentence must occur in the 

enumeration of L(Gk), since L(Gk) is infinite). In order to obtain yk' pro

ceed with the enumeration of L(Gk) until again a sentence is met which is 

higher in order than all previously emitted sentences; this sentence is 
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emitted as yk. 

In this way two infinite languages are obtained: X, consisting of the 

sentences x 1, x 2 , ••. and Y, consisting of y 1, y 2 , By the construction, 

there exists an ascending enumerator for X and for Y, so X and Y are in-

finite recursive languages. Moreover, X and Yare disjoint, i.e., no sen-

tence of X belongs to Y and vice versa. By (D.) there is a grammar in RTG, 
1 

say G, such that X = L(G ). 
X X 

Now we have the following contradiction for y: 
X 

y belongs to L(G) = X, but y also belongs to Y, which is im-
x X X 

possible by the construction of X and Y. D 

4. LINGUISTIC CONSEQUENCES. 

In the light of the foregoing theorems we see two possibilities for 

descriptive linguistics: 

l. To describe language in a system which is essentially more powerful than 

is necessary for the description of all recursive languages. Transforma

tional grannnars are an example of such a system; there are more such 

systems, all with equal power: every general-purpose programming lan

guage is one. The justification of the choice for TG as descriptive 

mechanism can then only be its convenience as a tool. 

2. To postulate a constructive restriction which excludes not only non

recursive but also some recursive languages (i.e., a restriction like 

context-free or context-sensitive); such a restriction should be based 

on a new hypothesis concerning the character of natural languages. 
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NOTES 

1. A language L is called recursive if there exists an effective procedure 

to decide whether a given sentence belongs to Lor not. 

2. A language Lis called recursively enumerable if there exists an effec

tive procedure for enumerating the sentences of L. 

3. In the literature also the terms words or strings are used with the 

same meaning. 

4. This formulation is preferred to Eaah language generated by a grammar 

of RTG i:s recursive, since this would be interpreted by constructivists 

as being equivalent to (C) rather than to (C ) • 
w 




