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Abstract

We establish the first hardness results for the problem of computing the value of one-round games
played by a verifier and a team of provers who can share quantumentanglement. In particular, we show
that it is NP-hard to approximate within an inverse polynomial the value of a one-round game with (i)
quantum verifier and two entangled provers or (ii) classicalverifier and three entangled provers. Previ-
ously it was not even known if computing the value exactly is NP-hard. We also describe a mathematical
conjecture, which, if true, would imply hardness of approximation to within a constant.

We start our proof by describing two ways to modify classicalmulti-prover games to make them
resistant to entangled provers. We then show that a strategyfor the modified game that uses entanglement
can be “rounded” to one that does not. The results then followfrom classical inapproximability bounds.
Our work implies that, unless P= NP, the values of entangled-prover games cannot be computedby
semidefinite programs that are polynomial in the size of the verifier’s system, a method that has been
successful for more restricted quantum games.
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1 Introduction

Multi-prover games have played a tremendous role in theoretical computer science over the last two decades.
In this setting, several provers, who are not allowed to communicate with each other during the game,
exchange messages with a verifier according to a prescribed protocol and try to convince him to accept.
Thevalueof a game is the maximum probability with which the provers can achieve this, averaged over all
the verifier’s questions and possibly over the shared randomness of the provers. The Cook-Levin Theorem
implies that it is NP-complete to compute the value of such a game, where the input is an explicit description
of the game, i.e., a set of possible questions, possible answers, a distribution on questions and acceptance
predicates for the verifier. A lot of research effort went into determining how hard it is toapproximate
the value of such games, culminating in the celebrated PCP Theorem [ALM+98, AS98], which shows
that the value of a two-prover one-round game with a constantnumber of possible answers is NP-hard to
approximate to within some constant. This result has had wide-ranging applications, most notably in the
field of hardness of approximation, where it is the basis of many optimal results.

When considering multi-prover games in the quantum world, the laws of quantum mechanics allow
for a fascinating new effect: namely, the provers can share an arbitraryentangledstate, on which they
may perform any local measurements they like to help them answer the verifier’s questions. The fact that
entanglement can cause non-classical correlations is a familiar idea in quantum physics, introduced in a
seminal 1964 paper by Bell [Bel64]. Most importantly, thereis no physical way to prevent provers from
sharing entanglement or to limit how much they have. Comparethis to the restriction that the provers cannot
communicate during the game, which can be enforced physically by separating the provers in space so that
there is no time for a message to travel from one to the other. It is thus a natural and important question
to ask how shared entanglement between the provers influences the value of the game, as entanglement can
allow for new strategies of the provers. Notice that entanglement can potentially either make it easier or
harder to approximate the value of a game, and it is a wide openquestion which of these two effects actually
takes place. For example, no algorithm—of any complexity atall—is known to approximate the value of an
arbitrary entangled-prover game. One of the most importantquestions in this field, which we answer in this
paper, has been to determine if it is hard or easy to compute the value of entangled-prover games.

Two recent results give evidence that entangled-prover games might actually be computationally much
easierthan their classical counterparts. First, Cleve et al. [CHTW04] showed that in the case of a particular
class of two-prover one-round games, XOR-games, the value when provers are entangled can be computed
(to exponential precision) in polynomial time. In contrast, Håstad [Hås01] showed that for these games
withoutentanglement it is NP-hard to approximate the value to within some constant. To prove their result,
Cleve et al. show that the maximization problem of the two provers can be written as a semidefinite program
(SDP) of polynomial size. It is well known that there are polynomial time algorithms to find the optimum of
such SDPs up to exponential precision, and hence there is a polynomial time algorithm to compute the value
of this game. More precisely, Cleve et al. show that there is an SDP relaxation for the value of the game
with the property that its solution can be translated back into a protocol of the provers. This is possible using
an inner-product preserving embedding of vectors into two-outcome observables due to Tsirelson [Tsi87],
which works in the particular case of XOR-games. It has been amajor open question whether this result
generalizes beyond XOR-games.

In a second recent result giving evidence that entangled-prover games are easy, Kempe, Regev and
Toner [KRT07] show that even for the class ofuniquegames (which contains the class of XOR-games), an
SDP-relaxation of the game gives a good approximation to itsvalue. Hence, for unique games there is a
polynomial time algorithm toapproximatethe value of the game to within a constant.

An SDP-relaxation is not specific to XOR-games or unique games and can be written for all entangled
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two-prover games.1 If the SDP is tight (as in the case of XOR-games) or close to tight (as in the case of
unique games) there is a polynomial time algorithm to compute or approximate the value of the game. It
was speculated that perhaps SDPs can compute or at least approximate well the value of an entangled game
for more general games. The semidefinite programming approach has been widely successful whenever
quantum communication is involved: for example Kitaev and Watrous [KW00] have shown that SDPs can
exactly compute the value ofsingle-prover quantum games, Gutoski and Watrous proved that the value of
quantum refereed games is as hard to compute as the value of classical refereed games again via semidefinite
programming [GW07], and Kitaev showed that the cheating probability for quantum coin-flipping protocols
[Kit] can be computed by SDPs. Moreover, Navascues et al. [NPA07] recently gave a hierarchy of SDP
relaxations to approximate the value of an entangled two-prover game; yet no bounds on the quality of
approximation have been proved and these SDPs are in generalnot of polynomial size.

The major open question is thus to determine if it is easy or hard to compute or even to approximate the
value of general entangled-prover games. In particular, would it be possible that the value of such games
could be computed or approximated by an SDP?

Our results. In this paper we resolve the open question above by showing for the first time that it is NP-
hard to compute the value of entangled multi-prover games inthe quantum world. We need to distinguish
between two types of entangled games: on one hand one can still restrict the (possibly entangled) provers
to classical communication; we call such gamesclassical entangled games. On the other hand one can also
allow the provers to communicatequantummessages with aquantum verifier; we call these gamesquantum
entangled games. In both cases the hardness of computing the value of the gamewith entangled provers
was previously not known,2 and we show NP-hardness in two cases: for two-prover one-round quantum
entangled games(in the first part of the paper) and for three-prover one-round classical entangled games(in
the second part). Then we proceed to show that evenapproximatingthe value of these two types of games is
NP-hard, thus giving the first hardness of approximation results.3 Our main result can be stated as follows:

Theorem 1. There exists a polynomialp such that it isNP-hard to decide, for an explicitly given

1. two prover one-round quantum entangled gameG or

2. three prover one-round classical entangled gameG,

whether its value is1 or 1 − 1/p(|G|).4

This theorem implies that no polynomial-time algorithm cancompute the value of an entangled game
to within polynomial precision. Given the importance of SDPs in results on entangled games, the following
immediate corollary is of interest:

Corollary 2. The success probability of classical entangled3-prover or quantum entangled2-prover games
cannot be computed by SDPs of polynomial size, unlessP = NP.

The results above leave open the case oftwo-prover one-roundclassicalentangled games. In the third
part of this paper we give a hardness result for this type of game which is stated precisely in Section 5 in the
setting ofsuccinctgames and interactive proofs; here we just give a brief overview. This third result has a

1In particular it will also be a relaxation for the value of theclassical game (which is not tight in this case, unless P= NP).
2Kobayashi and Matsumoto [KM03] showed that when the communication and the verifier are quantum, but the provers do

not share any entanglement, then the resulting games behavelike classical games without entanglement, i.e., it is NP-hard to
approximate their value to within a constant.

3Obviously the hardness of computation result is implied by the hardness of approximation result. We include it nonetheless in
Sec. 3.1 for the quantum entangled games to illustrate the main ideas.

4See Section 2 for a precise definition of the size|G| of G.
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slightly different flavor: we scale up to games with exponential number of questions and answers, but given
succinctly (i.e. the game is given by a description of the circuit of the verifier of size polynomial inlog |Q|,
the length of the questions). For these games we show that to approximate the value to within an inverse
polynomial (inlog |Q|) is at least as hard as to approximate to within a constant thevalue of classicalsingle-
provermulti-roundgames with polynomial rounds. Note that this is a better approximation than in the first
two results of our paper (where the approximation was an inverse polynomial in|Q|), but our hardness in
this case is weaker than in the previous two results. In particular, combining this with an adapted version of
Shamir’s result [Sha92] that IP= PSPACE, our result implies PSPACE⊆ MIP∗(2, 1)1,1−poly−1 . Again,
no such result was previously known for these games.

All three results turn out to have something in common—in theanalysis of all three of them we show
that by enforcing certain tests we obtain sets of projectors(which characterize the strategy of the provers)
which pairwise“almost commute”. From this condition we need to derive a classical strategy for the original
classical game, and we do this in a similar fashion in all three cases.

Proof ideas and new techniques.

Reduction: We prove our NP-hardness results by a reduction from the hardness of approximation
result for classical (non-entangled) games, as implied by the PCP Theorem, which we state in the language
of games:

Theorem (PCP Theorem [ALM+98, AS98]). There is a constants < 1 such that it isNP-hard to decide,
given a two-prover one-round game with a constant number of answers, whether its value is1 or ≤ s.

We start with an instance of such a classical two-prover one-round game and modify it to a two-prover
one-round quantum entangled game (or a three-prover classical entangled game, in the second part of this
paper) with the property that the value of the new entangled game is at least as big as the value of the original
game. In other words, if the value of the original game is1, the value of the new game is still1. To show that
it is NP-hard tocomputethe value of the entangled game we need to show that if the value of the original
game is belows then the value of the new entangled game issmaller than1. In particular, it suffices to
show that if the value of the new entangled game is1, then the value of the original game is also1. To show
this, we use a successful strategy of the entangled provers to construct a strategy in the original game that
achieves a large value (seeRoundingbelow).

Because we only need to show this when the new value isexactly1 our task is fairly easy once we
have established how to modify the game. It requires substantially more work to prove the hardness of
approximation result. We perform the same reduction as in the exact case, but now we need to show that if
the value of the original game is at mosts, then the value of the new entangled game is bounded away from
1 by an inverse polynomial. Equivalently, we have to show thatif the value of the new entangled game is
above1 − ε for some inverse polynomially smallε, then the value of the original classical game islarger
thans.

Modify the game to “immunize” against entanglement: An essential novel technique in our paper
is the design of the new games used in our reduction. We designthe new games in a way that limits the
cheating power of entangled provers. To this end—and this isa crucial difference to previous attempts to
upper bound the value of entangled games—we add an extra testto the game. This new test, which can
be added generically toany two-prover one-round game, significantly limits the use of entanglement by the
provers beyond its quality as shared randomness. We hope that this technique of “immunizing” a game
against entanglement can be extracted to serve a wider purpose in other contexts where we want to limit the
power of entanglement, possibly with cryptographic applications.

In hindsight the fact that we need to modify the games comes asno surprise. Several classical games
have been analyzed in the past to show that without modification of the game, entanglement drastically
increases their value. One striking example is given by the Magic Square game [Ara02]: Two classical
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players can win this game with probability at most17/18. However, when given entanglement, the players
can winperfectly, i.e., they have a strategy that wins with probability1.

Our next novel element is the actual design of the new test. The difficulty is to show that entangle-
ment does not help the provers to coordinate their replies toincrease the success probability. In the case of
quantum games (in the first part of this paper) our idea is to astutely usequantummessages andquantum
tests, and in particular a version of the SWAP-test, to enforce (approximately) that the provers do not en-
tangle the message register with the entangled state they share. This allows us to get conditions that involve
the provers’ operators (describing their strategies) on two differentquestions. For this it is crucial that the
messages are quantum; we do not see any way to achieve this result for classical messages.

When we analyze classical entangled games (in the second part of our paper) we design a different test:
we modify the game by introducing athird player. We use the extra player to introduce a consistency test
that forces two of the provers to give thesameanswer. As a result, to pass this test, the two original players
can only use an entangled state of a specific form; it must be (approximately)extendable, i.e., it must be the
density matrix of a symmetric tripartite state. There are prior results pointing to the potential usefulness of
a third player to limit the cheating power of entanglement. For example, two entangled provers can cheat in
the Odd Cycle game of Ref. [CHTW04], but if we add a third prover, then entangled provers can perform
no better than classical ones [Ton06]. Moreover, after the completion of this work we have learned from
A. Yao [Yao] about a way to add a third player to the Magic Square game such that as a result the winning
probability of entangled provers is≈ 0.94.

For our third result on two-prover classical entangled games, our reduction has the same spirit and similar
analysis as in the previous two cases: here we start with asingle-prover multi-round game and modify it
to a one-round game by introducing a second prover to preventthe first prover to entangle the answers of
subsequent rounds. Our modification here mimics a construction of [CCL94] used to prove that PSPACE
has (non-entangled) two-prover one-round systems.5

Rounding: The extra quantum test (resp., the extra player) allows us toextract a mathematical condition
on the operations of the entangled players. More precisely it turns out that the projectors corresponding to
the various questions of the verifier pairwise “almost commute” in some sense or “almost do not disturb”
the entangled state. This means that the provers’ actions are “almost classical”, in the sense that they allow
us to take any strategy in the entangled game and convert it back to a strategy in the original classical game.
We call this conversionroundingfrom a quantum solution to a classical solution, in analogy to the rounding
schemes used to convert a solution to an SDP relaxation to a solution of the game. To explain the idea of
our new rounding scheme, assume that the provers, when receiving a question from the verifier, perform a
projective measurement on their share of the entangled state depending on the question, and answer with
the outcome they get (it will turn out that this is essentially what the provers can do, even when the game
involves quantum communication). In theexactcase, when the value of the entangled quantum game is1,
the measurements corresponding to different questionscommuteexactly. Hence, there is a common basis in
which the projectors corresponding to different answers are all diagonal for all questions. In other words,
for each question, the projectors simply define a partition of the basis vectors. The probability that the
provers give a certain pair of answers just corresponds to the size of the overlap of the supports of the two
corresponding projectors, i.e., to the number of basis vectors that are contained in both of them. We can now
construct a classical strategy for the original game, wherethe provers use shared randomness to sample a
basis vector, check which projector/partition contains it, and output the corresponding answer. This classical
strategy achieves exactly the same probability distribution on the answers, and hence the same value of the
game.

Matters complicate in the case where the value of the entangled game is1 − ε. Now, the provers’ mea-

5In fact, we show that the [CCL94] construction still remainssound even with entangled provers, albeit with a weaker soundness
than in the classical case.
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surements corresponding to different questions “almost commute”. To exploit this property in a rounding
scheme, imagine the following pre-processing step to eliminate entanglement from the strategy: Before the
game starts, the provers apply in sequence all possible measurements, corresponding to all possible ques-
tions, on a share of the entangled state, and write down a listof all the answers they obtain.6 Then, during the
game, when they receive a question from the verifier, they respond with the corresponding answer in their
list. Because the measurements almost commute, the answer to any one particular question in this sequen-
tial measurement scheme are similarly distributed to the scenario in the entangled game, where the prover
only performs the one measurement corresponding to that question. This can be seen by “commuting” the
corresponding projectors through the list of projectors inthe measurement, where each time we commute
two operators we loose anε in precision. As a result, also the success probability of this new unentangled
strategy is similar to the one in the entangled game, or at least not too low.

A new mathematical challenge:As mentioned above, our tests enforce an almost-commuting condition
on the operators of the provers. If they would commute exactly, they would be diagonal in a common basis,
which means that the strategy is essentially classical and does not use entanglement. If one could conclude
that the operators arenearly diagonalin some basis, one could again extract a classical strategy as in the
exact case. Hence we reduce provingconstanthardness of approximation to the question whether one can
approximate our operators by commuting ones. This touches upon a deep question in operator algebra:Do
almost commuting matrices nearly commute?Herealmost commutingmeans that the commutator is small
in some norm, and nearly commuting means that the matrices can be approximated by matrices that are
diagonal in some common basis. This famous question was asked for two Hermitianmatrices by Halmos
back in 1976 [Hal76].7 It was shown subsequently [Voi83],8 using methods from algebraic topology, that
this conjecture is false for twounitary matrices. Then, Halmos’ conjecture was disproved in the case of
three Hermitian matrices. Finally Halmos’ conjecture was proved [Lin97] by a “long tortuous argument”
[DS01] using von Neumann algebras, almost20 years after the conjecture had been publicized. In our case
we reduce proving hardness of approximation of the value of an entangled game to the conjecture for a set
of pairwise almost commutingprojectors, where the norm is the Frobenius norm‖A‖2

2 = Tr(A†A) (see
Sec. 3.1):

Conjecture. LetW1, . . . ,Wn bed-dimensional projectors such that for someε ≥ 0 for all i, j ∈ {1, . . . , n}
1
d‖WiWj − WjWi‖2

2 ≤ ε. Then there exists aδ ≥ 0, and pairwise commuting projectors̃W1, . . . W̃n such
that 1

d‖Wi − W̃i‖2
2 ≤ δ for all i ∈ {1, . . . , n}.

Our proof shows that the conjecture with a constantδ implies hardness of approximation of the value of
entangled games to within aconstant, i.e., best possible. For two, three or a constant number of projectors
the conjecture is easy to prove for a constantδ. We do not know if it is true in general.

Related work. A subset of the authors has obtained weaker results on harness of approximation of the
value of entangled two-proverquantumgames, posted to the arXiv earlier [KV06]; the present paperin-
cludes and supersedes these results. Since this paper had been made public, our techniques have already
been applied by [IKP+07] to show similar results forbinary three-player one-round classical entangled
games. [IKP+07] also give a new upper-bound for the value of these games; or, as often called in this
context, they gave a new tripartite Tsirelson-inequality.After the completion of this work Cleve, Gavinsky
and Jain [CGJ07] use a connection to private information retrieval schemes to show that succinctly given
binary entangled classical games can not be approximated inpolynomial time. Their result does not apply

6Obviously, the provers do not really need any entanglement to do this: all they have to do is sample from the joint distribution
that corresponds to the distribution of all the answers in this sequence of measurements.

7For the operator norm.
8For a simpler, elegant proof see [EL89].
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for explicitly given games, as it is based on an exponential expansion of the message length. It uses very
different techniques, and is not comparable to ours.

Structure: The structure of this paper is as follows: In Section 2 we introduce the necessary definitions
and notations we use. In Section 3 we prove our results on the NP-hardness of quantum entangled two-
prover games. To flash out the ideas, we first prove hardness ofcomputingthe value of such games, before
showing hardness of approximation. In Section 4 we show NP-hardness of approximation for the value
of three-prover classical entangled games, and in Section 5we give our hardness results for two-prover
classical entangled games. We discuss our results and open questions in Section 6.

2 Preliminaries

We assume basic knowledge of quantum computation [NC00].

Games. In this paper we study multi-prover games, or cooperative games with imperfect information
(henceforthgames). We will only deal with one-round games played byN cooperative provers against a
verifier. For an integerK, denote{1, . . . ,K} by [K].

Definition 3. LetQ andA be integers. A gameG = G(N,π, V ) is given by a set̄Q = {qi1...iN }(i1...iN )∈[Q]

of questions and̄A = {ai1...iN}(i1...iN )∈[A] of answers, together with a distributionπ : [Q]N → [0, 1], and
a functionV : [A]N × [Q]N → {0, 1}.9 The value of the game is10

ω(G) = sup
W1,...,WN

∑

i1,...,iN∈[Q]N

π(i1, . . . , iN )
∑

j1,...,jN∈[Ā]N

Pr(aj1···jN
)V (aj1···jN

|i1 · · · iN ), (1)

where theWi are the prover’s strategies, and the probabilityPr(aj1···jN
) = Pr(W1(i1, r) · · ·WN (iN , r) =

aj1···jN
) is taken over the randomness of the provers.

The gameG is played as follows: The verifier samplesi1, . . . , iN from [Q]N according toπ, and
prepares a questionqi1···iN ∈ Q̄. He sends thek-th part of the question to proverk for 1 ≤ k ≤ N and
receives the answeraj1···jN

∈ Ā from the provers. The provers win the game ifV (aj1···jN
|i1 · · · iN ) = 1;

otherwise the verifier wins. Thevalueof a game is the maximum winning probability of the provers. The
provers can agree on a strategy before the game starts, but are not permitted to communicate after receiving
questions.

We distinguish three different kinds of games, based on the classical or quantum nature of the verifier,
the provers, and the question and answer sets. A gameG will be called

• classicalif the verifier, the prover, and the question and answer sets are classical. In this caseqi1···iN =
(q1, . . . , qN ) andai1···iN = (a1, . . . , aN ) areN -tuples, i.e., the verifier simply sendsqk to thek-th
prover and receivesak from him. We identifyQ̄ with [Q]N , Ā with [A]N , ik with qk, andjk with ak

and often writeQ for [Q] andA for [A]. The strategiesWi are simply functionsWi : Q × R → A
whereR is some arbitrary domain (“shared randomness”). In fact we can assume the strategies to be
deterministic: there is always somer ∈ R that maximizes the winning probability and we can fix it in
advance.

• classical entangledif the verifier, and the question and answer sets are classical, but the provers
are quantum, and are allowed to share an a priori entangled state |Ψ〉 of arbitrary dimension. This

9We writeV (·, ·) asV (·|·) to clarify the role of the inputs.
10We use a supremum because the optimal strategies might not befinite in the case of entangled provers.
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increases the set of possible strategies to quantum operations performed on the prover’s share of the
entangled state. By standard purification techniques (see,e.g, [CHTW04]) one can assume that each
prover performs a projective measurementWq = {W a

q }a∈A with outcomes inA (i.e.,
∑

a∈A W a
q =

Id and(W a
q )† = W a

q = (W a
q )2), where we adopt the same notational identifications as for classical

games. We will use a superscript∗ to indicate entangled-prover games. The valueω∗(G) of such a
game is given by Eq. (1) where the probabilityPr(a1 ldots, aN ) = 〈Ψ|(W1)

a1
q1

⊗ · · · ⊗ (WN )aN
qN

|Ψ〉.

• quantum entangledif both the verifier and the provers are quantum, and they exchange quantum
messages. We usually denote such a game byGq. In that caseqi1···iN ∈ Q̄ is a joint density matrix
and the verifier sends itsk-th part to thek-th prover for1 ≤ k ≤ N using a quantum channel,
possibly keeping a part in his own private register. After receiving as answer anN -register quantum
stateaj1···jN

∈ Ā, where thek-th prover sends thek-th register, the verifier performs a quantum
operationV ′ (which might depend on the questions in[Q]N ) on the answer and his private space,
followed by a measurement{Πacc,Πrej} of his first qubit. By purification we can assume that the
kth prover performs a unitary transformationUk on the message register and his part of the entangled
state|Ψ〉 and then sends the message register back to the verifier. The value of an entangled-prover
quantum game,ω∗

q , is given by Eq. (1) where

∑

j1,...,jN

Pr(aj1···jN
)V (aj1···jN

|i1 . . . iN ) = Tr(ΠaccV
′(U1 ⊗ · · · ⊗ UN )(qi1···iN ⊗ |Ψ〉〈Ψ|)).

Input size. A game is described byQ,A, π andV , and hence our complexity parameter, the size of the
input, is polynomial inQ andA.11 We will always assume that the description of the distribution π is
of polynomial size inQ. In the case of quantum games we also have to take into accountthe size of a
description of the questionqi1...iN , and the verification procedureV ′, and the dimension of the answer
aj1...jN

: we always assume that the dimensions ofqi1...iN andaj1...jN
are polynomial inQ andA and hence

there is a (classical) description ofqi1...iN and ofV ′ (which can be assumed to be a unitary of polynomial
dimension) of polynomial size inQ,A.12

Symmetric games. For convenience we will work with symmetric distributionsπ. The next lemma shows
why this poses no restriction (we only need the case of2 provers).

Lemma 4. For every gameG = G(2, π, V ) there is a gameG′ = G(2, π′, V ′) of the same value and twice
as many questions, such thatπ′ andV ′ are symmetric under permutation of variables. Moreover there is an
optimal symmetric strategy forG′.

Proof. The verifierV ′ in gameG′ samplesq, q′ from π. He adds an extra bit register to the questions and
with probability1/2 he sends(q, 1) to prover1 and(q′, 2) to prover2, otherwise he swaps the two questions.
In the second case he swaps the received answers and in both cases applies the predicateV . For the lower
bound observe that ifS1, S2 is a strategy forG, then the strategy forG′ where each prover appliesSi if his
second message bit isi fares as well asS1, S2 (and is symmetric). For the upper bound note that from any
strategySA, SB for G′ we can construct a strategy forG that fares at least as well, by choosing the better
of eitherSA(·, 1), SB(·, 2) or SB(·, 1), SA(·, 2). Moreover,V ′ is obviously symmetric under permutation of
question-answer pairs.

In the case where the provers are allowed to share entanglement, we can assume that ifπ andV have some
symmetry, it is mirrored in the optimal prover’s strategies:

11Here we always assume thatN is a constant.
12In fact all games we consider also have a circuit of sizepoly log Q to prepareqi1...iN

from i1, . . . , iN .
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Lemma 5. LetG = G(N,π, V ) be a (classical or quantum) entangled-prover game, such that π(i1, . . . , iN )
is symmetric ini1, . . . , ik andV is symmetric under simultaneous permutation of the registers 1 . . . k of the
questionsqi1···iN and of the answersai1···iN for k ≤ N . Then given any strategyP1, . . . , PN with entan-
gled state|Ψ〉 that wins with probabilityp, there exists a strategyP ′

1, . . . , P
′
N with entangled state|Ψ′〉 and

winning probabilityp such thatP ′
1 = . . . = P ′

k and |Ψ′〉 is symmetric with respect to the provers1, . . . , k.

Proof. Let Sk be the set of permutations of{1, . . . , k} and assume, by appropriately padding with extra
qubits, that the firstk registers of|Ψ〉 have the same dimension. Define strategiesP ′

1, . . . , P
′
N as follows:

the provers share the entangled state|Ψ′〉 =
∑

σ∈Sk
|σ(1)〉 . . . |σ(k)〉 ⊗ |Ψσ〉, where the register containing

|σ(i)〉 is given to proveri and|Ψσ〉 is obtained from|Ψ〉 by swapping the firstk registers according toσ. For
i ≤ k proveri measures the register containing|σ(i)〉 and appliesPσ(i). For i > k, P ′

i = Pi. By symmetry
of π andV this new strategy achieves the same winning probabilityp, and|Ψ′〉 has the required symmetry
properties.

3 Hardness of two-prover entangled quantum games

In this section we prove Theorem 1 for the case of two-prover quantum entangled games. To better quantify
the dependence on the input size, we restate it as a separate result:

Theorem 6. There is a constantsq > 0 such that it isNP-hard to decide, given an two-prover quantum
entangled game, whether its value is1 or less than1 − ε for ε =

sq

|Q|4 .

As mentioned in the introduction, we will prove this by a reduction from the PCP Theorem. However,
to more clearly and cleanly expose the ideas in this proof, wewill first prove the simpler statement about
NP-hardness ofcomputingthe value.

3.1 NP-hardness of computing the value of entangled quantumgames

Theorem 7. It is NP-hard to decide, given an two-prover quantum entangled game, whether its value is1.

We first describe how to modify a two-prover classical gameGc(2, π, V ) with questionsQ and answers
A to a two-proverquantumgame of equal or higher value. We assume that the distribution π(q, q′) is
symmetric (as per Lemma 4, at the expense of doubling the number of questions) and also that there is a
non-zero probability for each question to be asked (otherwise we remove it fromQ without affecting the
value of the game).

The modified quantum game. In the constructed quantum gameGq the verifier sends quantum registers
|q, 0〉A and|q′, 0〉B to proversA andB. We call the first part of this register thequestion registerand the
second part theanswer register. The answer register is initially in some designated state|0〉 and the provers
are expected to write the answersa ∈ A to the questionq ∈ Q into this register and then send both registers
back. The verifier performs one of two tests, with equal probability:

Classical Test:The verifier samples(q, q′) according to the distributionπ(q, q′), and sends|q, 0〉 to prover
A and|q′, 0〉 to proverB. Upon receiving these registers from the provers, he measures them and accepts
if the results of the measurement of the question registers is q, q′ and the results of the measurement of the
answer registersa, a′ would win the gameGc.

Quantum Test: The verifier samples(q, q′) according to the distributionπ(q)π(q′), whereπ(q) is the
marginal ofπ(q, q′) and prepares the state

1√
2

(

|0〉|q, 0〉A|q′, 0〉B + |1〉|q′, 0〉A|q, 0〉B
)

. (2)
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He keeps the first qubit and sends question and answer registers to proversA andB. Upon receiving these
registers from the provers, he performs a controlled-SWAP on registersA andB conditioned on the first
qubit being|1〉 (he swaps both the question and the answer register). Then hemeasures his qubit in the
basis{|+〉, |−〉}13 and the question registers. He accepts iff the results of themeasurement of the question
registers isq, q′ and the outcome of the measurement of the first qubit is “+”.

Remarks:Note that the valueω∗
q (Gq) of the constructed gameGq is obviously at least the value of

Gc: If the entangled quantum provers, controlled on the question, simply write the answer that the classical
unentangled provers would have given into the answer register, they always pass the quantum test, and hence
ω∗

q(Gq) ≥ ω(Gc)/2 + 1/2 ≥ ω(Gc).
Moreover the description of the quantum game has essentially the same size as the description of the

classical game, i.e. the complexity parameter is the same inboth cases. The dimension of question and
answer registers is|Q| and |A| and the SWAP test only requires extra space that is no more than linear in
the number of qubits swapped.

Note that it is only the SWAP-test that is genuinely quantum,and allows us to show that the provers
cannot entangle too much the questions they receive with theentangled state they share, by relating their
actions on two different messages. This test has been used invarious settings in the past. In its most simple
form it was used in [BCWdW01] to give a protocol for quantum fingerprinting. However, the test that we
perform here is a little more sophisticated, since it implements only apartial SWAP on the two message
registers, which might be entangled with the prover’s private spaces and entanglement, on which the verifier
in unable to perform the swapping. This partial swap has beenused in [KW00] to show parallelization for
QIP, and in [KMY03] to prove the inclusion QMA(3) ⊂QMA(2), where the2 and3 refer to the number of
Merlins.

A last remark concerns the two different probability distributions used in the two tests. We really need
to change the distribution in the quantum test, because it gives us a commutation condition forall operators
of the provers, corresponding to all different questions. Otherwise, we would only obtain it for pairs of
questionsq, q′ corresponding to a non-zeroπ(q, q′), which is not sufficient to round to a classical strategy.

Existence of a good classical strategy.We now show that if the value of the quantum game is1, then
there is a strategy for the classical game that wins with probability 1.

Lemma 8. If ω∗
q(Gq) = 1 thenω(Gc) = 1.

This implies that if the value of the classical game was less than1, then the value of the quantum game
is less than1. Since it is NP-hard to distinguish whether the value of the classical game is1 or not, it follows
that it is NP-hard to decide whether the value of the quantum game is1.

Proof of Lemma 8:Consider a maximizing strategy, which in particular passesthe quantum test with cer-
tainty.14 Note that if it were not for the controlled-SWAP the game would be essentially an entangled
classicalgame, because question and answer registers are prepared ina classical state and are immediately
measured when received by the verifier. We first show that the strategy of the provers is indeed essentially a
classical entangled strategy.

Claim 9. There is a shared bipartite state|Ψ〉AB and for each questionq ∈ Q a set of projectors{W a
q }a∈A

acting on each prover’s half of|Ψ〉 with
∑

a∈A W a
q = Id such that each provers’ transformation can be

13Or, equivalently, he performs a Hadamard transform and measures his qubit in the standard basis.
14Strictly speaking it could be that such a strategy exists only in the limit of infinite entanglement, so we would have to usea

strategy that achieves success probability arbitrarily close to1. Since in this part we only give the ideas of the rigorous proof in
Section 3.2, we ignore this issue.
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written as|q〉|0〉|Ψ〉 → |q〉∑

a |a〉W a
q |Ψ〉 and the probability that the verifier measuresa, a′ in the answer

registers given he sampledq, q′ in the classical test is

pq(a, a′|q, q′) = ‖W a
q ⊗ W a′

q′ |Ψ〉AB‖2.

Proof. At the beginning of the protocol the provers share some entangled state|Ψ′〉 (including their private
workspace). From Lemma 5 we can assume that the strategies inthe quantum game are symmetric, i.e.,
thatA andB apply the same unitary transformationU . Since the provers pass the quantum test perfectly
it means that they do not change the question register. Henceit is easy to see thatU is block-diagonal and
can be written asU =

∑

q |q〉〈q| ⊗ Uq whereUq acts on the answer register and half of|Ψ′〉. Define the

operatorsW̃ a
q = 〈a|Uq|0〉, where|0〉 and|a〉 only act on the answer register, not on|Ψ′〉, i.e. Uq|0〉|Ψ′〉 =

∑

a |a〉W̃ a
q |Ψ′〉. Then it follows that

∑

a(W̃
a
q )†W̃ a

q = Id , meaning thatW̃ a
q are superoperators acting on a

part of |Ψ′〉. By standard arguments we can now enlarge the system to a state |Ψ〉 such that we can replace
theW̃ a

q by projectorsW a
q which give exactly the same outcome probabilities.

We now derive the crucial condition that allows us to define a good classical strategy.

Claim 10.
∀q, q′, a, a′ W a

q ⊗ W a′

q′ |Ψ〉 = W a′

q′ ⊗ W a
q |Ψ〉.

Proof. After the controlled-SWAP and the measurement of the question registers asq, q′, the remaining
state of the entire system can be described as

1√
2

∑

a,a′

|a〉|a′〉
(

|0〉(W a
q ⊗ W a′

q′ )|Ψ〉 + |1〉(W a′

q′ ⊗ W a
q )|Ψ〉

)

=
1

2

∑

a,a′

|a〉|a′〉
(

|+〉(W a
q ⊗ W a′

q′ + W a′

q′ ⊗ W a
q )|Ψ〉 + |−〉(W a

q ⊗ W a′

q′ − W a′

q′ ⊗ W a
q )|Ψ〉

)

and hence the probability to measure “−” in the extra qubit is1
4

∑

a,a′ ‖(W a
q ⊗ W a′

q′ − W a′

q′ ⊗ W a
q )|Ψ〉‖2

which must be0 since the provers pass the quantum test with certainty.

Rounding: This property of the projectors can be expressed in a different fashion. Assume for simplicity
that the shared state is maximally entangled, i.e.,|Ψ〉 = 1√

d

∑d
i=1 |i〉A|i〉B , and that all projectors are real.

Then for any such projectorsW,W ′ we have‖W ⊗ W ′|Ψ〉‖2 = 1
d‖WW ′‖2

F , where‖A‖2
F = Tr(A†A)

is the Frobenius norm. The condition in Claim 10 can be rewritten as1
d‖W a

q W a′

q′ − W a′

q′ W
a
q ‖F = 0, i.e.

the two projectorscommute. Hence, in some basis{|ei〉}d
i=1, all W a

q are diagonal matrices with only1
and0 on the diagonal. In other words, each projector simply defines apartition of the basis vectors, and
p(aa′|qq′) = 1

d‖W a
q W a′

q′ ‖2
F just measures the relativeoverlapof the two partitions. With this in mind we

can easily design a classical randomized strategy forGc with the same success probability. The provers
sample a shared random numberi ∈ {1, . . . , d}. When receiving questionq they answer witha such that
the basis vector|ei〉 is in the support ofW a

q .
This proof can be generalized to an arbitrary shared state|Ψ〉 and general projectors. We will not give

the full details (in any case Thm. 7 follows from Thm. 6), but the way to prove this is to define a diagonal
real positive matrixD with the Schmidt-coefficients of|Ψ〉 in the diagonal. Then‖W ⊗ W ′|Ψ〉‖2 =
‖WDW ′T‖2

F , where the elements on the diagonal ofD can be thought of as weights, and the condition in
Claim 10 becomes‖W a

q D(W a′

q′ )
T − W a′

q′ D(W a
q )T ‖F = 0. Moreover, following the same ideas as used

in Claim 14 to show Eq. (3b), we obtain‖W a
q D − D(W a

q )T ‖F = 0. Together these conditions imply

W a
q W a′

q′ D = W a′

q′ W
a
q D, i.e. the two projectors commute over the space whereD is non-zero. The classical

strategy is now a weighted version of the strategy outlined in the case of a maximally entangled shared
state.
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3.2 NP-hardness of approximating the value of entangled quantum games

With the intuitions obtained so far we can now tackle the harder case of hardness of approximation. First a
quick overview. We modify the game in exactly the same way as before. To prove Theorem 6 we now need
to show, fors from the PCP Theorem:

Lemma 11. If ω∗
q(Gq) > 1 − ε thenω(Gc) > s.

This implies that if the value of the classical game was less thans, then the value of the quantum game is
less than1− ε. Since, from the PCP Theorem it is NP-hard to distinguish whether the value of the classical
game is1 or less thans, it follows that it is NP-hard to decide whether the value of the entangled quantum
game is1 or below1 − ε.

To prove Lemma 11, we first show that the strategies of the provers are essentially projective measure-
ments (Claim 12). We then extract the “almost commuting” conditions on the operators of the provers
(Claim 14), which allow us to give a good strategy for the original game.

Proof of Lemma 11.Consider a maximizing strategy.15 It must pass each of the two tests with probability
at least1 − 2ε. Again it is (approximately) true that the strategy of the provers is essentially an entangled
classicalstrategy.

Claim 12. There is a shared bipartite state|Ψ〉AB and for each questionq ∈ Q a set of projectors{W a
q }a∈A

acting on each prover’s half of|Ψ〉 with
∑

a∈A W a
q = Id such that if we replace each prover’s transforma-

tion by |q〉|0〉|Ψ〉 → |q〉∑

a |a〉W a
q |Ψ〉 then the probability to pass each of the tests is at least1 − 6ε and

the probability distribution on the answers in the classical test is given by

pq(aa′|qq′) = ‖W a
q ⊗ W a′

q′ |Ψ〉‖2.

Proof. As in the proof of Claim 9 the provers apply the same unitary transformationU , which now is not
exactly block-diagonal, but in general can be written asU =

∑

q,q̃∈Q |q̃〉〈q| ⊗ Uqq̃. Because the verifier in
both the classical and the quantum test measuresq, q′ in the answer register with probability at least1− 2ε,
this implies that

E(q,q′)





∑

q̃ 6=q

∑

q̃′ 6=q′

‖Uqq̃ ⊗ Uq̃′q′ |0〉A|0〉B |Ψ′〉AB‖2



 ≤ 2ε,

for both when(q, q′) is sampled according toπ(q, q′) (from the classical test) or according toπ(q)π(q′)
(from the quantum test), where we have used symmetry of|Ψ′〉 for ‖ 1√

2
(|0〉Uqq̃ ⊗ Uq̃′q′ + |1〉Uq̃′q′ ⊗

Uqq̃)|0〉A|0〉B |Ψ′〉AB‖2 = ‖Uqq̃ ⊗ Uq̃′q′ |0〉A|0〉B |Ψ′〉AB‖2.
We approximateU by a block-diagonal unitary operatorOU as follows: extend each prover’s private

space by registersA′ andB′ of dimension|Q|+1, initialized to|0〉A′ and|0〉B′ and letOU =
∑

q |q〉〈q|⊗Tq,
where the unitary matrixTq acts on half of the entangled state and the answer register (together shortened
as|·〉) andA′ as

Tq|·〉|0〉A′ = Uqq|·〉|0〉A′ +
∑

q̃ 6=q

Uqq̃|·〉|q̃〉A′

and is extended to a unitary matrix on the other states|q〉A′ . Observe that

15Since it could be that the value of the game is only achieved inthe limit of infinite entanglement we in fact consider a strategy
with finite entanglement that has success probability1−ε− δ for some arbitrarily smallδ. We will not write thisδ in what follows,
but the proof goes through for small enoughδ, for instanceδ = O(ε).
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E(q,q′)

[

‖
(

OU ⊗ OU − (U ⊗ Id A′) ⊗ (U ⊗ Id B′)
)

|q, 0〉A|q′, 0〉B |Ψ′〉|0〉A′ |0〉B′‖2
]

= E(q,q′)



2
∑

(q̃,q̃′)6=(q,q′)

‖Uqq̃ ⊗ Uq′ q̃′ |0〉A|0〉B |Ψ′〉‖2



 ≤ 4ε,

again for both when(q, q′) is sampled according toπ(q, q′) or according toπ(q)π(q′). This means that
for purposes of analysis we can replace Alice and Bob’s transformation U by OU , thereby replacing the
transformationU⊗U on the message registers and|Ψ〉 by the transformationOU⊗OU on the message space
and |Ψ̃〉 = |Ψ′〉|0〉A′ |0〉B′ , at the expense of an error4ε in statistical distance on the answer probabilities
of the classical test and the outcome probabilities in the quantum test. SinceOU is block-diagonal, the
remainder of this claim follows exactly as in the proof of Claim 9.

The SWAP-test now allows us to establish a set of inequalities which capture the “almost commuting”
property of the operators. In what follows we will repeatedly use the following easy to verify fact.

Fact 13. Let W 1, . . . ,W k be projectors such that
∑

i W
i = Id . Then

∑

i ‖W i|Ψ〉‖2 = ‖|Ψ〉‖2 for any
vector|Ψ〉.
Claim 14.

|Q|
∑

i,j=1

π(qi)π(qj)
∑

ai,a′
j

‖(W ai
qi

⊗ W
a′

j
qj − W

a′
j

qj ⊗ W ai
qi

)|Ψ〉‖2 ≤ 24ε, (3a)

|Q|
∑

i=1

π(qi)
∑

ai

‖(W ai
qi

⊗ Id − Id ⊗W ai
qi

)|Ψ〉‖2 ≤ 9 · 24 · ε. (3b)

Proof. As in the proof of Claim 10, the left-hand side of (3a) is four times the probability to measure the
first qubit in “−” in the quantum test. For (3b), using Fact 13, for any fixedqj the following holds

‖(W ai
qi

⊗ Id − Id ⊗W ai
qi

)|Ψ〉‖2 =
∑

a′
j
,a′′

j

‖(W a′
j

qj W ai
qi

⊗ W
a′′

j
qj − W

a′
j

qj ⊗ W
a′′

j
qj W ai

qi
)|Ψ〉‖2

≤
∑

a′
j ,a′′

j

(

‖(W a′
j

qj W ai
qi

⊗ W
a′′

j
qj − W

a′
j

qj W
a′′

j
qj ⊗ W ai

qi
)|Ψ〉‖

+ ‖(W a′
j

qj W
a′′

j
qj ⊗ W ai

qi
− W ai

qi
⊗ W

a′′
j

qj W
a′

j
qj )|Ψ〉‖

+ ‖(W ai
qi

⊗ W
a′′

j
qj W

a′
j

qj − W
a′

j
qj ⊗ W

a′′
j

qj W ai
qi

)|Ψ〉‖
)2

.

We can bound the square of the sum of the three norms by3 times the sum of the norms squared, and
summing overai, averaging overqi, qj, and usingW a

q W a′

q = δa,a′W a
q for the second norm and Fact 13 for

the two others, we get three terms that are each bounded using(3a), concluding the proof of (3b).

Rounding to a classical strategy: Order the questions inQ such thatπ(q1) ≥ π(q2) ≥ . . . ≥ π(qn).
Define a joint distribution on answersa1, . . . , an as

D(a1, . . . , an) = ‖(W an
qn

· · ·W a1

q1
⊗ Id )|Ψ〉‖2.

Fact 13 shows thatD is a probability distribution,
∑

a1,...,an
D(a1, . . . , an) = 1.
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We can interpret the distributionD as follows: Before the game starts, the provers produce a joint list
of answersa1, . . . , an as follows: They take the first part of|Ψ〉 and perform the projective measurement
corresponding to questionq1. They obtain an outcomea1, which they record. They then take the post-
measurement state and perform on it the measurement corresponding to questionq2, and so on, each time
using the post-measurement state of one measurement as the input state of the next measurement. The
probability that the provers record answersa1, . . . , an is preciselyD(a1, . . . , an).

Obviously neither quantum states nor measurements are needed to implement this constructed classical
strategy. Before the game starts, the provers simply computeD for all inputs and sample fromD using their
shared randomness. When presented with questionsqi, qj they give the answerai, aj, ignoring all other
answers in their sample. Hence the probability to answerai, aj in this case is given by the marginal ofD
with respect toai andaj , which we denote bypclass(aiaj |qiqj).

Lemma 15. The (weighted) statistical distance betweenpclass andpq is

∆(pclass, pq) =
∑

q,q′

π(q, q′)
∑

a,a′

|pclass(a, a′|q, q′) − pq(a, a′|q, q′)| ≤ 70 · |Q| · ε1/4.

Let us first show how this proves Lemma 11. Since the quantum strategy of the provers passes the
classical test with probability at least1 − 6ε, this means that the classical strategy wins the original game
with probability at least1−6ε−∆(pclass, pq) (where∆ is the dominating term), which we want to be larger
thans. This is achieved forε =

sq

|Q|4 for a sufficiently small constantsq.

Proof of Lemma 15.Let qi, qj be two questions. For convenience, let us introduce the notation
∑

a
to

denote summing overa1, . . . , an and
∑

a¬i,j
to denote summing over alla1, . . . , an exceptai andaj. Then

the probability of answering(ai, aj) to (qi, qj) is pclass(aiaj|qiqj) =
∑

a¬i,j
‖(W an

qn
· · ·W a1

q1
⊗ Id )|Ψ〉‖2 in

the classical strategy, andpq(ai, aj |qi, qj) = ‖W ai
qi

⊗W
aj
qj |Ψ〉‖2 in the quantum strategy. We wish to bound

∑

ai,aj

∣

∣pclass(aiaj|qiqj)− pq(ai, aj |qi, qj)
∣

∣ =
∑

ai,aj

∣

∣

∑

a¬i,j

‖(W an
qn

· · ·W a1

q1
⊗ Id )|Ψ〉‖2 −‖W ai

qi
⊗W

aj
qj |Ψ〉‖2

∣

∣.

We now use a hybrid argument to go from the classical to the quantum probability. The point is to eliminate
the excessW a

q in pclass with the help of Fact 13, which allows to eliminate a sum overa that involves aW a
q

on theleft side of all other operators in‖ · ‖2. To get all unwantedW a
q to be on the left, we move matrices

from one register to the other whenever they are on theright, closest to|Ψ〉, at the expense of some error
which we can bound using Eqs.(3). More precisely we use the triangle inequality for matricesA,W,B,W ′

∣

∣‖(AW ⊗ BW ′)|Ψ〉‖ − ‖(AW ′ ⊗ BW )|Ψ〉‖
∣

∣ ≤ ‖(A ⊗ B)[W ⊗ W ′ − W ′ ⊗ W ]|Ψ〉‖, (4)

whereA andB will be sequences ofW a
q andW or W ′ are either one of theW a

q or the identity.
To describe the sequence along which we move the matrices around, let us use the shorthand notation

Wk for W ak
qk

. At each step we will interchange eitherWk ⊗ Id ↔ Id ⊗Wk or Wi ⊗ Wk ↔ Wk ⊗ Wi

whenever they are on the right. Ifi > j we proceed according to the sequence

Wn · · ·W1 ⊗ Id → Wn · · ·W2 ⊗ W1 → Wn · · ·W3 ⊗ W1W2 → · · · → Wn · · ·Wi+1Wi ⊗ W1 · · ·Wi−1

→ Wn · · ·Wi+1Wi−1 ⊗ W1 · · ·Wi−2Wi → Wn · · ·Wi+1Wi−1Wi ⊗ W1 · · ·Wi−2

→ Wn · · ·Wi+1Wi−1Wi−2 ⊗ W1 · · ·Wi−3Wi → · · · → Wn · · ·Wi+1Wi−1 · · ·Wj+1Wi ⊗ W1 · · ·Wj.

Note that the last term in the sequence, when summed overa¬i,j, equalspq(aiaj|qiqj) because of Fact 13,
i.e.

∑

a¬i,j
‖Wn · · ·Wj+1Wi ⊗ W1 · · ·Wj|Ψ〉‖2 = ‖Wi ⊗ Wj |Ψ〉‖2 = pq(aiaj|qiqj). Now we can write a

13



telescopic sum according to this sequence as
∑

ai,aj

|pclass(aiaj |qiqj) − pq(aiaj |qiqj)| =
∑

ai,aj

∣

∣

∣

∑

a¬i,j

‖Wn · · ·W1 ⊗ Id |Ψ〉‖2 −
∑

a¬i,j

‖Wn · · ·W2 ⊗ W1|Ψ〉‖2

+
∑

a¬i,j

‖Wn · · ·W2 ⊗ W1|Ψ〉‖2 −
∑

a¬i,j

‖Wn · · ·W3 ⊗ W1W2|Ψ〉‖2 + · · ·
∣

∣

∣

≤
∑

a

∣

∣‖Wn · · ·W1 ⊗ Id |Ψ〉‖2 − ‖Wn · · ·W2 ⊗ W1|Ψ〉‖2
∣

∣ +
∑

a

∣

∣ · · ·
∣

∣ + · · · ,

where we used the triangle inequality. Using|a2 − b2| = |a − b| · |a + b|, and the triangle inequality as in
(4), the first term is bounded by
∑

a

‖Wn · · ·W2[W1 ⊗ Id − Id ⊗W1]|Ψ〉‖ · (‖Wn · · ·W1 ⊗ Id |Ψ〉‖ + ‖Wn · · ·W2 ⊗ W1|Ψ〉‖)

≤
√

∑

a

‖Wn · · ·W2[W1 ⊗ Id − Id ⊗W1]|Ψ〉‖2

√

∑

a

(‖Wn · · ·W1 ⊗ Id |Ψ〉‖ + ‖Wn · · ·W2 ⊗ W1|Ψ〉‖)2,

where we used Cauchy-Schwarz for the inequality. We obtain similar expressions for all other terms. We
can bound the second square root by

√
2 + 2 = 2, using(a + b)2 ≤ 2a2 + 2b2 and Fact 13. Assembling all

the terms, and using Fact 13 to eliminate all the matrices to the left of the square brackets, we obtain

∑

ai,aj

|pclass(aiaj |qiqj) − pq(aiaj|qiqj)| ≤ 2
i−1
∑

i′=1

√

∑

ai′

‖[Wi′ ⊗ Id − Id ⊗Wi′ ]|Ψ〉‖2

+ 2(|i − j| + 1)

√

∑

ai

‖[Id ⊗Wi − Wi ⊗ Id ]|Ψ〉‖2

+ 2

i−1
∑

i′=j+1

√

∑

ai,ai′

‖[Wi ⊗ Wi′ − Wi′ ⊗ Wi]|Ψ〉‖2. (5)

For j > i we obtain exactly the same sequence and the same bounds in Eq.(5) with i andj interchanged.
The only difference is that now the last term in the sequence,when summed overa¬i,j gives‖Wj⊗Wi|Ψ〉‖2,
so we need to use symmetry of|Ψ〉 to conclude that this equals to‖Wi ⊗Wj|Ψ〉‖2. Fori = j we follow the
sequence untilWn · · ·Wi+1Wi ⊗W1 · · ·Wi−1 and then useWi = W 2

i to continue asWn · · ·Wi+1WiWi ⊗
W1 · · ·Wi−1 → Wn · · ·Wi ⊗ W1 · · ·Wi−1Wi, so we just get the first term in Eq. (5), but summed untili.

Now ∆(pclass, pq) is bounded by the average over(qi, qj) picked according to the distributionπ of the
sum of the three terms appearing in (5). We show how to bound each of them. For the first term

2

|Q|
∑

i,j=1

π(qi, qj)

i
∑

i′=1

√

∑

ai′

‖(W ai′
qi′

⊗ Id − Id ⊗W
ai′
qi′

)|Ψ〉‖2

= 2

|Q|
∑

i=1

π(qi)

i
∑

i′=1

√

∑

ai′

‖(W ai′

qi′
⊗ Id − Id ⊗W

ai′

qi′
)|Ψ〉‖2

≤ 2

|Q|
∑

i=1

|Q|
∑

i′=1

π(qi′)

√

∑

ai′

‖(W ai′
qi′

⊗ Id − Id ⊗W
ai′
qi′

)|Ψ〉‖2

≤ 2|Q|
(

|Q|
∑

i′=1

π(qi′)
∑

ai′

‖(W ai′
qi′

⊗ Id − Id ⊗W
ai′
qi′

)|Ψ〉‖2
)1/2 ≤ 2|Q|

√
9 · 24ε,
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where the first equality uses the fact that the inner sum does not depend onj, the second inequality uses
π(qi) ≤ π(qi′), the third inequality uses the fact that the square of the expectation is not greater than the
expectation of the square, and the last inequality uses Eq. (3b). The second term can be bounded in a similar
fashion

2

|Q|
∑

i,j=1

π(qi, qj)(|i − j| + 1)

√

∑

ai

‖(Id ⊗W ai
qi − W ai

qi ⊗ Id )|Ψ〉‖2

≤ 2|Q|
|Q|
∑

i=1

π(qi)

√

∑

ai

‖(Id ⊗W ai
qi − W ai

qi ⊗ Id )|Ψ〉‖2 ≤ 2|Q|
√

9 · 24ε.

Finally the last term, using again that the inner sum does notdepend onj, that the square of the expectation
is bounded by the expectation of the square and Cauchy-Schwarz for the sum overi′, can be bounded by

2

|Q|
∑

i=1

π(qi)

i−1
∑

i′=1

√

∑

ai,ai′

‖(W ai
qi ⊗ W

ai′
qi′

− W
ai′
qi′

⊗ W ai
qi )|Ψ〉‖2

≤ 2
(

|Q|
∑

i=1

π(qi)
(

i−1
∑

i′=1

√

∑

ai,ai′

‖(W ai
qi ⊗ W

ai′
qi′

− W
ai′
qi′

⊗ W ai
qi )|Ψ〉‖2

)2)1/2

≤ 2
√

|Q|
(

|Q|
∑

i=1

π(qi)
i−1
∑

i′=1

∑

ai,ai′

‖(W ai
qi

⊗ W
ai′
qi′

− W
ai′
qi′

⊗ W ai
qi

)|Ψ〉‖2
)1/2

. (6)

We decompose the sum inside the square root in the last line of(6) into two parts withπ(qi) ≥ 1/h and
π(qi) < 1/h (with h to be determined later). Ifπ(qi) ≥ 1/h, thenπ(qi′) ≥ 1/h for i′ ≤ i so1 ≤ hπ(qi′).
Therefore, using (3a), the term in parenthesis in (6) is bounded by

∑

i:π(qi)≥1/h

i−1
∑

i′=1

hπ(qi′)π(qi)
∑

ai,ai′

‖(W ai
qi

⊗ W
ai′
qi′

− W
ai′
qi′

⊗ W ai
qi

)|Ψ〉‖2

+
1

h

∑

i:π(qi)≤1/h

i−1
∑

i′=1

∑

ai,ai′

‖(W ai
qi

⊗ W
ai′
qi′

− W
ai′
qi′

⊗ W ai
qi

)|Ψ〉‖2 ≤ 24hε + 4|Q|2/h,

where we have bounded the first part using (3a) and the second part, using triangle inequality and Fact 13

∑

ai,ai′

‖(W ai
qi

⊗ W
ai′
qi′

− W
ai′
qi′

⊗ W ai
qi

)|Ψ〉‖2 ≤
∑

ai,ai′

(‖(W ai
qi

⊗ W
ai′
qi′

)|Ψ〉‖ + ‖(W ai′
qi′

⊗ W ai
qi

)|Ψ〉‖)2 ≤ 4.

The optimalh is |Q|/
√

6ε, which gives a bound of4 · 241/4|Q|ε1/4 for the third (dominant) term in
∆(pclass, pq) (after taking the square root). Hence∆(pclass, pq) ≤ 70|Q|ε1/4.

4 Hardness of three-prover entangled classical games

In this section we prove Theorem 1 for three-prover entangled classical games, which we now state as:

Theorem 16. There is a constants3 > 0 such that it isNP-hard to decide, given an entangled three-prover
classical game with a constant number of answers, whether its value is1 or less than1 − ε for ε = s3

|Q|2 .
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As in the case of quantum games, we will prove this by a reduction from the PCP Theorem. This time,
however, we will essentially preserve the number of answersin the modified game.

We begin by describing how to modify any two-prover classical gameG(2, π, V ) (which is assumed to
be symmetric per Lemma 4) to a three-prover classical gameG′ of equal or higher value.

The modified three-prover game. In the constructed gameG′ the verifier chooses one of the provers
uniformly at random. Rename the chosen prover Alice and callthe other provers Bob and Cleve. The
verifier samples questionsq andq′ according toπ(q, q′). He sends questionq to Alice, and questionq′ to
both Bob and Cleve. He receives answersa, a′, anda′′, respectively, and accepts iff the following are both
true:

Classical Test:The answers of Alice and Bob would win the gameG, i.e.,V (aa′|qq′) = 1.

Consistency:Bob and Cleve give the same answer, i.e.,a′ = a′′.

Remarks:Note that unlike the quantum case, the verifier performs bothtests at the same time. The
consistency test plays the role of the SWAP test, limiting the advantage gained by sharing entanglement.

Again it is clear that the value of the constructed game is at least as large as the value of the original game
G: if the provers reply according to an optimal classical strategy (which can be assumed to be symmetric per
Lemma 4) they always pass the consistency-test. Also, it is clear in this case that the size of the description
of the constructed game is linearly related to the size of thedescription of the original game, hence we have
the same complexity parameter.

To prove Theorem 16, we need to show the following.

Lemma 17. If ω∗(G′) > 1 − ε thenω(G) > s.

Proof. Consider a quantum strategy forG′ that succeeds with probability1 − ε.16 Since the gameG′ is
symmetric, we can assume that this strategy is symmetric, per Lemma 5. Suppose that the provers share
a symmetric state|Ψ〉 ∈ H⊗3. Let ρAB = trH3

|Ψ〉〈Ψ| be the reduced density matrix of|Ψ〉〈Ψ| on Alice
and Bob. When asked questionqi, each prover measures their part of|Ψ〉. Following standard arguments
(extending the private space of the provers) we can assume that this measurement is projective. LetW ai

qi
be

the projector corresponding to questionqi and answerai. This defines the quantum strategy forG′; it passes
the classical test with probability

π1 =
∑

aa′qq′

π(q, q′)V (aa′|qq′)pq(aa′|qq′),

where

pq(aa′|qq′) = tr
(

W a
q ⊗ W a′

q′ ρ
AB

)

= 〈Ψ|W a
q ⊗ W a′

q′ ⊗ Id |Ψ〉. (7)

It passes the consistency test with probabilityπ2 =
∑

q π(q)π2(q), whereπ(q) is the marginal ofπ(q, q′)
and

π2(q) =
∑

a

tr
(

W a
q ⊗ W a

q ρAB)

=
∑

a

〈Ψ|W a
q ⊗ W a

q ⊗ Id |Ψ〉, (8)

where we made use of the symmetry. Note thatπ1, π2 ≥ 1 − ε.
Eqs. (7) and (8) clarify the role of the third prover, Cleve. His main purpose isnot to allow the two tests

to be performed at the same time: Indeed, it is possible to modify the protocol so that the verifier chooses two

16Again, as in Section 3.2, we in fact consider a strategy with finite entanglement that has success probability1− ε− δ for some
δ = O(ε), which we will not write.
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of the provers at random (say Alice and Bob) and only sends questions to them, not interacting with the third
prover at all.17 Cleve’s presence would not be important if the provers were executing a classical strategy,
but it can (and does) make a difference if their strategy requires entanglement. Indeed, if there were only two
provers, then they could share any stateρAB, whereas here we require thatρAB beextendable, i.e., it must be
the reduced density matrix of a symmetric tripartite state.To give a concrete example, it is not possible for
ρAB to be the maximally entangled state|Ψ−〉〈Ψ−|. This is termedmonogamy of entanglement[Wer89].

Rounding to a classical strategy: We construct a classical strategy forG from the quantum strategy for
G′ in a similar fashion as in the case of quantum games, with

D(a1, . . . , an, a′1, . . . , a
′
n) = ‖W an

qn
· · ·W a1

q1
⊗ W a′

n
qn

· · ·W a′
1

q1 ⊗ Id |Ψ〉‖2. (9)

whereq1, . . . , qn is an ordering of the questions inQ such thatπ(q1) ≥ π(q2) ≥ . . . ≥ π(qn).18 As before,
we definepclass(ai, a

′
j |qi, qj) to be the marginal ofD onai, a

′
j . The structure of our proof that this strategy

is a good one is very similar to the quantum case. The details,however, are a little different.

Lemma 18. The (weighted) statistical distance betweenpclass andpq is

∆(pclass, pq) =
∑

q,q′

π(q, q′)
∑

a,a′

|pclass(a, a′|q, q′) − pq(a, a′|q, q′)| ≤ 12|Q|
√

ε.

We first show how this Lemma proves Lemma 17. Since the strategy in the entangled game passes
the classical test with probability at least1 − ε, the classical strategy succeeds in the original game with
probability at least1 − ε − ∆ ≥ 1 − ε − 12|Q|√ε. For ε = s3

|Q|2 for sufficiently small constants3, this
probability is larger thans.

This Lemma is the corresponding version of Lemma 15. Why is ittrue? Rather than showing that the
order of measurements is not important as we did in the quantum case (although it will turn out in hindsight
that this is true), we show that each measurement does not disturb ρAB very much. The key observation is
as follows. Assume the provers pass the consistency test with high probability. If a particular measurement
result occurs with certainty, the quantum state cannot be changed by the measurement. We use this fact
in the following way: suppose Cleve were to perform the measurement corresponding to questionq and
assume he obtains an outcomea. Then, if Bob is asked questionq, he must also give answera with high
probability. So his measurement does not change the quantumstate much. But, since quantum theory is
no-signalling, it cannot matter who measured first. It follows that Bob’s measurement does not changeρAB

much. Note that only the bipartite stateρAB is approximately unchanged—Bob’s measurement can change
the tri-parite state|Ψ〉〈Ψ| considerably. We then use a hybrid argument to show that performing all the
measurements one after the other also leavesρAB approximately unchanged. This part of the proof mirrors
the proof of Lemma 15.

Proof of Lemma 18.Let Wq be the superoperator corresponding to the projective measurementq, i.e.,
Wq(σ) :=

∑

a W a
q σ(W a

q )† is the post-measurement state after performing{W a
q } on stateσ.

To quantify how much a measurement changes a state we use Winter’s gentle measurement lemma.

Lemma 19(Lemma I.4 [Win99]). Letρ be a state andX be a positive matrix withX ≤ Id and0 ≤ TrρX.
Then,

∥

∥

∥ρ −
√

Xρ
√

X
∥

∥

∥

1
≤ 3

√

1 − TrXρ.

17With probabilityp, he sends them different questions and performs the classical test; with probability1− p, he sends the same
question and performs the consistency test—this modification does not materially change our conclusions, but it does weaken the
bounds in Theorem 16.

18Note thatD differs slightly from Sec. 3.2. Here each prover gets a separate list of answers. This form is more convenient here.
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The following simple corollary quantifies how much the measurementWq ⊗ Id changesρAB :

Claim 20. The trace distance betweenWq ⊗ Id (ρAB) andρAB is bounded by

‖Wq ⊗ Id (ρAB) − ρAB‖1 ≤ 6
√

1 − π2(q).

Proof. UsingWq ⊗ Id (ρAB) = trH3
(Wq ⊗ Id ⊗ Id (|Ψ〉〈Ψ|)) andρAB = trH3

(Id ⊗ Id ⊗Wq(|Ψ〉〈Ψ|)),
by monotonicity of the trace distance under partial trace,

‖Wq ⊗ Id (ρAB) − ρAB‖1 ≤ ‖Wq ⊗ Id ⊗ Id (|Ψ〉〈Ψ|) − Id ⊗ Id ⊗Wq(|Ψ〉〈Ψ|)‖1

≤ ‖Wq ⊗ Id ⊗ Id (|Ψ〉〈Ψ|) −
∑

a

W a
q ⊗ Id ⊗W a

q |Ψ〉〈Ψ|W a
q ⊗ Id ⊗W a

q ‖1

+ ‖
∑

a

W a
q ⊗ Id ⊗W a

q |Ψ〉〈Ψ|W a
q ⊗ Id ⊗W a

q − Id ⊗ Id ⊗Wq(|Ψ〉〈Ψ|)‖1

≤ 2‖
∑

a

W a
q ⊗ Id ⊗W a

q |Ψ〉〈Ψ|W a
q ⊗ Id ⊗W a

q − Id ⊗ Id ⊗Wq(|Ψ〉〈Ψ|)‖1

≤ 6
√

1 − π2(q),

by the triangle inequality, symmetry, and then takingρ =
⊕

a W a
q ⊗ Id ⊗ Id |Ψ〉〈Ψ|W a

q ⊗ Id ⊗ Id and
X =

⊕

a Id ⊗ Id ⊗W a
q in Lemma 19.

For1 ≤ i, j ≤ n, let

ρAB(i, j) := (Wqi−1
◦ · · · ◦ Wq1

) ⊗ (Wqj−1
◦ · · · ◦ Wq1

)ρAB

Then

pclass(aia
′
j|qiq

′
j) = tr

(

(W ai
qi

⊗ W
a′

j

q′j
)ρ(i, j)

)

Hence if we can bound‖ρ(i, j)−ρ‖1, then we can bound
∑

ai,a′
j
|pclass(aia

′
j |qiq

′
j)−pq(aia

′
j |qiq

′
j)|, since the

trace distance between two states is an upper bound on the variation distance of the probability distribution
resulting from making any measurement on those two states.

The following technique was introduced by Ambainis, Nayak,Ta-Shma, and U. Vazirani [ANTV02]
and has been used extensively by Aaronson [Aar05, Aar06].

Claim 21. The trace distance betweenρAB(i, j) andρAB is bounded by

‖ρAB(i, j) − ρAB‖1 ≤ 6

i−1
∑

i′=1

√

1 − π2(qi′) + 6

j−1
∑

j′=1

√

1 − π2(qj′).

Proof. Proof by induction. The claim is clearly true for(i, j) = (1, 1). Given it is true for a particular value
of (i, j), we show it is also true for(i + 1, j). In view of the symmetry, this is sufficient to establish the
claim. We have

‖ρAB(i + 1, j) − ρAB‖1 ≤ ‖ρAB(i + 1, j) −Wqi
⊗ Id (ρAB)‖1 + ‖Wqi

⊗ Id (ρAB) − ρAB‖1

≤ ‖Wqi
⊗ Id

(

ρAB(i, j) − ρAB)

‖1 + 6
√

1 − π2(qi)

≤ ‖ρAB(i, j) − ρAB‖1 + 6
√

1 − π2(qi),

where we used the triangle inequality, Claim 20, and monotonicity of the trace distance.
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Putting everything together, it follows that

∆(pclass, pq) ≤
n

∑

i,j=1

π(qi, q
′
j)‖ρAB(i, j) − ρAB‖1

≤ 6

n
∑

i,j=1

π(qi, q
′
j)





i−1
∑

i′=1

√

1 − π2(qi′) +

j−1
∑

j′=1

√

1 − π2(qj′)





≤ 12
n

∑

i=1

i−1
∑

i′=1

π(qi)
√

1 − π2(qi′)

≤ 12|Q|
n

∑

i′=1

π(qi′)
√

1 − π2(qi′)

≤ 12|Q|
√

1 − π2 ≤ 12|Q|
√

ǫ,

sinceπ2 =
∑

q π(q)π2(q) ≥ 1 − ε and
√

1 − x is concave.

5 Hardness for two-prover classical entangled games

In this section we prove our main theorem for two-prover entangled classical games. It shows that it is
PSPACE-hard to decide, given a succinct entangled two-prover classical game, whether its value is1 or
less than1− ε for ε = 1

poly(|x|) . To state the result, we need some further definitions to clarify the notion of
succinctly given games and state the connection between PSPACE and multi-round single-prover games.

Definition 22. A languageL is in MIP∗
c,s(N, 1) if, for all x ∈ L, there is a polynomial time (in|x|) mapping

fromx to classical one-round gamesGx(N,πx, Vx), such that it is possible to sample fromπx in polynomial
time and compute the predicateVx in polynomial time and

• Completeness: for allx ∈ L, the entangled valueω∗(Gx) ≥ c, and

• Soundness: for allx 6∈ L, the entangled valueω∗(Gx) ≤ s.

Note that in this scenario the game is givensuccinctly: it is given by a description ofV (as a polynomial
time circuit, for instance, which implies that|Q|, |A| = 2poly(|x|)) and a polynomial size description ofπ,
which can be sampled in polynomial time. Hence the complexity parameter here is|x|, and|Q| and|A| are
exponential.

We also require the notion of single-prover games with multiple rounds. We modify Definition 3 to
account for games with multiple rounds. Here we will only considernon-adaptivegames: the probability
distribution on questions inQ for each roundk does not depend on the answers received in previous rounds,
which is sufficient for PSPACE (see Theorem 23). However, we allow for the possibility that the questions
asked in each round depend on the questions asked in previousrounds.19 In other words a one-playerr-round
gameG(1, πr , Vr) is given by a joint distributionπ : Qr → [0, 1], and a predicateVr : Ar × Qr → {0, 1}
(i.e. the verifier accepts or rejects as a function of all the answers received in all rounds). The strategy is
now a set ofr functionsWk, where thekth function can depend on the previous questions and answers. The
class IP(r) is given by Definition 22 when the game is a single-prover multi-round game withr rounds. We
omit reference tor and write IP when the number of rounds is polynomial in|x|.

19Note that this is equivalent to having a joint distribution on the questions, where we obtain the distribution on theith question
as the corresponding marginal.
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Theorem 23. [Sha92] There is a constantsIP ≥ 0 such thatPSPACE= IP1,sIP
. Moreover there are

“public-coin non-adaptive”IP-protocols forPSPACE, i.e. such that in each round the distribution on the
questions is independent of the answers of the prover and of other rounds [GS89, She92].

With these notions in place we can state our main result for two-prover classical entangled games.

Theorem 24. PSPACE⊆ MIP∗(2, 1)1,1−ε for ε = 1
poly(|x|) , where|x| is the input size.

We note that if a parallel repetition theorem could be established for classical two-prover entangled
games, then the containment in Theorem 24 could be improved to PSPACE⊆ MIP∗(2, 1)1,s with con-
stant or even exponentially smalls. This is a particularly interesting direction to pursue, inlight of the
perfect parallel repetition theorem for entangled XOR games of Cleve et al. [CSUU07] (which uses the
SDP-description on the value of these games).

To prove Theorem 24 we use the PSPACE-characterization in Theorem 23 and show the following.

Lemma 25. There is a constants2 ≥ 0 such that for every succinctly given single-proverr-round non-
adaptive gameG(1, πr , Vr), of valueω(G) with questionsQ and answersA, there is a two-prover one-
round classical gameGc(2, π, V ) with questionsQr and answersAr with entangled valueω∗(Gc) ≥ ω(G)
such that ifω∗(Gc) > 1 − ε thenω(G) > sIP for ε = s2

r2 . Moreover, a succinct description ofGc can
be computed from a description ofG in polynomial time, and samplingπ and computingV can be done in
polynomial time.

Lemma 25 shows IP(r)1,sIP
⊆ MIP(2, 1)∗

1,1− s2

r2

, and combined with Theorem 23 gives Theorem 24.

The rest of this section is dedicated to the proof of Lemma 25.It follows the main traits of the proofs
of the previous two hardness results. Our construction of the two-prover one-round game uses a protocol
of [CCL94] used to prove that PSPACE has two-prover one-round systems. We show that this protocol
remains sound even against entangled provers, albeit with larger soundness. To prove this we again use the
consistency test with the extra prover to extract almost commuting conditions on the operators of the provers.
This allows us to round in a similar fashion from a good strategy for the entangled game to a strategy for the
single prover game which succeeds with relatively large probability.

The modified two-prover game. In the constructed gameGc, the verifier samples a series of questions
q1, . . . , qr according to the distributionπr(q1, . . . , qr). He picks ak uniformly at random in{1, . . . , r}, and
sends questionsq1, q2, . . . , qr to Alice andq1, q2, . . . , qk to Bob. He receives answersa = a1, . . . , ar from
Alice anda′ = a′1, . . . , a

′
k from Bob. He accepts if and only if the following are both true:

Classical TestThe answers Alice gives would win the gameG: V (a1 . . . an|q1 . . . qn) = 1.

Consistency TestFor all i in {1, . . . , k}, ai = a′i.

Remark:It is again obvious that the value of the new game is lower bounded by the value of the original
game: If both provers reply according to an optimal classical strategy, then they will always give consistent
answers, so their acceptance probability is exactlyω(G).

It is also easy to see that the constructed game has the same complexity as the original game. The new
verifier essentially implements the original verifier and the consistency test, which can be described in linear
time in Ar. The sampling procedure also has the same complexity as sampling from the originalπr. And
obviously it is possible to compute the new game from the original game in polynomial time.

To prove Lemma 25 we need to show the following.

Lemma 26. If ω∗(Gc) > 1 − ε thenω(G) > sIP .
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Proof. Consider a quantum strategy forG′ that succeeds with probability1 − ε.20 For any sequence of
questionsq1, . . . , qr we defineqk to be the sequenceq1, . . . , qk. Similarly, for any sequencea = a1, . . . , ar

of possible answers we will denote its prefixa1, . . . , ak by ak. Note that when we writeak andal for some
1 ≤ k, l ≤ r we refer to substrings of thesamestringa = a1, . . . , ar, whereas we will writeak anda

′
l if we

refer todifferentstringsa anda′.
Let |Ψ〉 be the entangled state shared by Alice and Bob and define a corresponding density matrix

ρ = |Ψ〉〈Ψ|. Let W̃qr = {W̃ ar
qr

} andWqr = {W a
′
k

qk
} be the measurements that they perform when asked

questionsqr resp.qk giving answersar resp.a′
k. As in Sec. 4 we can assume that these measurements are

projective.
The provers pass the consistency test with probabilityπ2 = 1

r

∑r
k=1 π2(k), where

π2(k) = Eqr

[

∑

ar

Tr
(

W̃ ar
qr

⊗ W ak
qk

ρ
)

]

is the probability that the two provers give consistent answers when the verifier has pickedk as the separation
point. Conditioned on the fact that they gave consistent answers, they succeed in the classical test with
probabilityπ1 = 1

r

∑r
k=1 π1(k) where

π1(k) = Eqr

[

∑

ar

pq(ar|qr, k)V (ar|qr)

]

andpq(ar|qr, k) = Tr
(

W̃ ar
qr

⊗ W ak
qk

ρ
)

is the probability that Alice answersar and Bob answers consis-

tently, given that the verifier picked indexk.

Rounding to a classical strategy: Given a strategy for the constructed entangled-prover gameGc, we
define a strategy for the classical prover of the original gameG in the following way. In roundk, given the
questions to the prover so far areqk and the prover gave answersak−1, he answersak to questionqk with
probability

pclass(ak|qk,ak−1) =
Tr

(

Id ⊗W ak
qk

W
ak−1
qk−1

· · ·W a1
q1

ρ
)

Tr
(

Id ⊗W
ak−1

qk−1
· · ·W a1

q1
ρ
)

(recall that allak,ak−1, . . . ,a1 refer to substrings of the same string). Note that
∑

ak
pclass(ak|qk,ak−1)

could be less than1 (we will see from its operational definition that it is alwaysbounded by1). To complete
it to a probability distribution we add a special symbol “abort” that the prover can send in any round making
him lose the game.21

This probability distribution has the following interpretation. For any operatorA, denoteA(ρ) = AρA†.
In the first round the prover in the classical game receives a questionq1, and applies the measurementWq1

on Bob’s part ofρ, answeringa1 with probability Tr
(

Id ⊗W a1
q1

ρ
)

= pclass(a1|q1). He is then left with

the state
Id ⊗W

a1
q1

(ρ)

Tr(Id ⊗W
a1
q1

ρ)
. Upon receiving a questionq2 in the second round, he measures this state withWq2

,

answeringa2 with probability
Tr(Id ⊗W

a2
q2

W
a1
q1

ρ)
Tr(Id ⊗W

a1
q1

ρ)
= pclass(a2|q2,a1) if as a result of his measurement he

obtains a sequencea2 = a1a2 consistent with thea1 he had measured in the first round, and an abort

20Again, as in Section 3.2, we in fact consider a strategy with finite entanglement that has success probability1− ε− δ for some
δ = O(ε), which we will not write.

21Technically speaking the extra symbol makes it a different game. We could also have the prover send a random answer
whenever sampling from the complement of the distribution.This can at most increase the prover’s winning probability,so both
games have winning probability bounded byω.
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symbol in case the sequence he measures has ana′1 6= a1. The resulting state in case of non-abortion is
Id ⊗W

a2
q2

W
a1
q1

(ρ)

pclass(a2|q2,a1)Tr(Id ⊗W
a1
q1

ρ)
=

Id ⊗W
a2
q2

W
a1
q1

(ρ)

Tr(Id ⊗W
a2
q2

W
a1
q1

ρ)
. The prover proceeds similarly at the subsequent rounds.

In other words the prover sequentially performs all the measurementsWqk
, and answers according to the

resulting distribution, aborting in case the answers he measures in roundk contradict the answers that he
has already given in previous rounds.

What is the probability that a fixed sequence of answersar is given by the prover? We have that
pclass(ar|qr) = pclass(ar|qr,ar−1) · · · · · pclass(a2|q2, a1) · pclass(a1|q1). Because of cancellation, we
obtain

pclass(ar|qr) = Tr
(

Id ⊗W ar
qr

· · ·W a1

q1
ρ
)

.

We will show that this classical strategy is a good one by relating pclass(ar|qr) to pq(ar|qr, r) as per
the following lemma.

Lemma 27. The (weighted) statistical distance betweenpclass andpq is

∆(pclass, pq) = Eqr

[

∑

ar

∣

∣

∣pclass(ar|qr) − pq(ar|qr, r)
∣

∣

∣

]

≤ 7 r
√

ε.

This lemma is the analogue of Lemmas 15 and 18, and its proof isvery similar. Before proceeding to
its proof, we first show how it implies Lemma 26. For the total acceptance probability of the entangled
provers we have1 − ε ≤ 1/r

∑r
k=1 min(π1(k), π2(k)) because for any indexk that is picked by the

verifier, we require the provers to succeed in both the Classical Test and the Consistency Test. This implies
that π1(r) ≥ 1 − rε, so Bob’s answers can be used to give correct answers to the Classical Test with
probability at least1 − rε, and by Lemma 27 this implies that the Classical Test has success probability at
least1 − rε − 7r

√
ε. For ε = s2

r2 for a sufficiently small constants2 this is more thansIP , which implies
Lemma 26.

Proof of Lemma 27.As in the case of three-prover classical entangled games, the fact that Alice’s and Bob’s
answers must be consistent means that Alice’s answers can beused to predict Bob’s, so Bob cannot use his
share of the entanglement too much if they are to succeed in the Consistency Test. This means that the action
of Bob’s operatorsW on the entangled stateρ is close to the identity, at least when the first prover applies
the corresponding̃W on his share ofρ. The following Claim makes this explicit and will be used to relate
the classical and quantum strategies.

Claim 28. Let the projectorṼ ak
qr =

∑

ak+1,...,ar
W̃ ar

qr
. The following hold for everyk ∈ {1, . . . , r}:

Eqr

[

∑

ak

∥

∥

∥Id ⊗W ak
qk

(ρ) − Ṽ ak
qr

⊗ W ak
qk

(ρ)
∥

∥

∥

1

]

≤ 3
√

1 − π2(k), (10)

Eqr

[

∑

ak

∥

∥

∥
Ṽ ak
qr

⊗ Id (ρ) − Ṽ ak
qr

⊗ W ak
qk

(ρ)
∥

∥

∥

1

]

≤ 3
√

1 − π2(k), (11)

Eqr

[

∑

ak

∥

∥

∥
Ṽ

ak−1

qr ⊗ W ak
qk

(ρ) − Ṽ ak
qr

⊗ W ak
qk

(ρ)
∥

∥

∥

1

]

≤ 1 − π2(k). (12)

Proof. Eqs. (10) and (11) are a direct application of Lemma 19, combined with the definition ofπ2(k). To
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prove Eq. (12), note that sincẽV ak−1

qr ⊗ W ak
qk

(ρ) ≥ Ṽ ak
qr ⊗ W ak

qk
(ρ), we have that

∥

∥

∥Ṽ
ak−1

qr ⊗ W ak
qk

(ρ) − Ṽ ak
qr

⊗ W ak
qk

(ρ)
∥

∥

∥

1
= Tr(Ṽ ak−1

qr ⊗ W ak
qk

(ρ)) − Tr(Ṽ ak
qr

⊗ W ak
qk

(ρ))

=
∑

a′
k
6=ak ,a′

k+1
,...,a′

r

Tr(W̃
ak−1a′

k
...a′

r
qr ⊗ W ak

qk
ρ).

Since
∑

ar,a′
k

Tr(W̃ ar
qr

⊗ W
a
′
k

qk
ρ) = 1,

1 − π2(k) = Eqr





∑

ar,a′
k
6=ak

Tr(W̃ ar
qr

⊗ W
a
′
k

qk
ρ)



 ≥ Eqr





∑

ar ,a′
k
6=ak

Tr(W̃ ar
qr

⊗ W
ak−1,a′

k
qk

ρ)





which concludes the proof.

Observe that for any set of orthogonal projectors{W a} we have that
∑

a ‖W aσ1W
a − W aσ2W

a‖1 ≤
‖σ1 − σ2‖1 for any two matricesσ1, σ2. Using this successively for the sets{W a2

q2
}a2

, ...,{W ar
qr

}ar , from
Eq. (10) withk = 1 we get

Eqr

[

∑

ar

∥

∥

∥Id ⊗W ar
qr

· · ·W a1

q1
(ρ) − Ṽ a1

qr
⊗ W ar

qr
· · ·W a1

q1
(ρ)

∥

∥

∥

1

]

≤ 3
√

1 − π2(1).

Similarly, from Eq. (11),

Eqr

[

∑

ar

∥

∥

∥Ṽ a1

qr
⊗ W ar

qr
· · ·W a1

q1
(ρ) − Ṽ a1

qr
⊗ W ar

qr
· · ·W a2

q2
(ρ)

∥

∥

∥

1

]

≤ 3
√

1 − π2(1)

and from Eq. (12) withk = 2

Eqr

[

∑

ar

∥

∥

∥
Ṽ a1

qr
⊗ W ar

qr
· · ·W a2

q2
(ρ) − Ṽ a2

qr
⊗ W ar

qr
· · ·W a2

q2
(ρ)

∥

∥

∥

1

]

≤ 1 − π2(2)

Repeating these operations for eachk, adding the equations and using triangle inequality finallyyields

Eqr

[

∑

ar

∥

∥

∥Id ⊗W ar
qr

· · ·W a1

q1
(ρ) − Ṽ ar

qr
⊗ W ar

qr
(ρ)

∥

∥

∥

1

]

≤ 6

r
∑

k=1

√

1 − π2(k) +

r
∑

k=2

(1 − π2(k))

≤ 7r
√

1 − π2

using concavity of the function
√

1 − x. SinceṼ ar
qr

= W̃ ar
qr

, the lemma follows because the trace dis-
tance is an upper bound on the variation distance of the probability distribution resulting from making any
measurement on these two states.

6 Conclusions and Open Questions

We have established that it is NP-hard to approximate the value of both two-prover quantum entangled
games and three-prover classical entangled games. These results leave open the case oftwo-prover one-
roundclassicalentangled games. Can our techniques be extended to this case?

The other obvious question is whether we can improve the inapproximability ratio to better than an
inverse polynomial in the number of questions. Are there additional tests that further limit the advantage
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provers can obtain by sharing entanglement? For example, inthe case of classical entangled games, does it
help to add more than three provers? In particular, if there are as many provers as there are questions, then
sharing entanglement does not help, even if the verifier onlytalks to two provers chosen at random.

In very recent work [KKMV07] a subset of the authors obtain parallelization results for the case of
quantum multi-round entangled games, showing that any suchgame withk provers andr rounds can be
parallelized to a3-turn game withk provers at the expense of apoly(r) factor in the value of the game.
Moreover, such a game can be parallelized to2 messages, or1 round, by adding a(k + 1)-st prover. We do
not know whether it is possible to parallelize quantum entangled games from three to two messages without
adding an additional prover.

There are a number of other important questions that our workdoes not address. Can we proveupper
bounds on the hardness of computing the value of entangled games? It is instructive here to compare to
the case where the provers share no-signalling correlations, where there is an efficient linear-programming
algorithm to compute the value of a game [Pre].22 In the quantum case, it is still not known whether the
decision problem corresponding to finding the value of an entangled-prover game is recursive! The issue is
that we are not currently able to prove any bounds on the amount of entanglement required to play a game
optimally, even approximately.
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