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Estimation of location and criterion of tails*) 

by 

Jana Jureckova 

ABSTRACT 

Let x 1 , ••• ,xn be a sample from a population with the density f(x-0) 

such that f is synnnetric and positive. It is proved that the tails of distri­

bution of a translation-equivariant estimator of e tend to Oat most n times 

faster than the tails of basic distribution. The sample mean is shown being 

good in this sense for exponentially-tailed distributions while it becomes 

poor if there is a contaminacy by a heavy-tailed distribution. The rates of 

convergence of the tails of robust estimators are shown to be bounded away 

from the lower as well as from the upper bound. 

KEY WORDS & PHRASES: tails of a distributions, sample mean, L-estimator, 

trimmed L-estimator, M-estimator, median, Hodges­

Lehmann's estimator. 

*) This report will be submitted for publication elsewhere. 
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1. INTRODUCTION 

Let x 1 , ... ,Xn be a sequence of independent random variables identically 

distributed according to an absolutely continuous distribution function 

F(x-8) with the density f(x-8) such that f(-x) = f(x) > 0, x E R1 ; otherwise 

f is unspecified. The problem is that of estimating 8 as a center of sym­

metry of an unknown symmetric absolutely continuous distribution. For each 

fixed n let Tn = Tn(x 1 , ... ,Xn) be an estimator of 8 based on x 1 , ... ,Xn. 

Different measures of performance of T have been suggested and investi­n 
gated. Besides the classical mean-square-error approach, the probability 

( 1. 1) 

of the absolute error not exceeding a fixed number a> 0 has been con­

sidered by several authors. If the sequence {T} is consistent for 8, then 
n 

the inaccuracy ( 1. 1) tends to 0 as n ➔ 00 • BAHADUR [ 1], [ 2] proposed the limit 

( 1. 2) lim{ -¾ ln P 8 ( I Tn -8 I > a) } = e 
n➔oo 

for a fixed a> 0 as a measure of performance of T, if the limit exists. 
n 

BAHADUR [2] and FU [4] gave an upper bound fore for consistent sequences 

of estimators. SIEVERS [6] evaluated the limits e and their upper bounds for 

several estimators and several distribution shapes. From this point of view 

he found the sample median less efficient than the sample mean not only for 

normal but also for logistic distribution. We observed a similar feature 

even in the case of double-exponential distribution unless the values of a 

were small. 

We shall consider estimators based on a finite sample x 1 , ... ,Xn. One 

intuitively expects from a good estimator T that the inaccuracy (1.1) will 
n 

tend to Oas fast as possible i.e. that the distribution of T will have 
n 

the least possible tails. The tails of an estimator cannot be made arbitrar-

ily small; for instance, if the sample comes from the Cauchy distribution 

one cannot find an estimator with exponentially decreasing tails. 

We shall prove that the tails of a translation-equivariant estimator 

could decrease to Oat most n times faster than the tails of the basic 



2 

distribution and that, on the other hand, there are estimators which behave 

from this point of view in the same way as one single observation (Theorem 

2.1). Moreover, we shall show that both extreme cases may happen for the 
-

sample mean X; X attains the upper bound if the basic distribution has 
n n 

r -
exponentially decreasing tails of the type exp[-ba ], b > 0, r ~ 1 and X 

n 
attains only the lower bound if the basic distribution is heavy-tailed with 

-m 
the tails of the type b.a , b > 0, m > 0. 

Estimating the centre of symmetry of an unknown symmetric distribution, 

we want to find an estimator which has small tails for as large family of 

distributions as possible. An exponentially-tailed distribution, being con­

taminated by a heavy-tailed distribution, becomes heavy-tailed; it implies 

that the sample mean X is not too good for such families of distributions. 
n 

On the other hand, X remains good for such cases as a mixture of two normal 
n 

distributions, for the normal distributions contaminated by the double-

exponential distribution, etc. 

If we trim-off some extreme observations, then the rate of convergence 

of the tails of any resulting L-estimator attains neither the upper nor the 

lower bound (Theorem 3.1). The situation is similar for the estimators based 

on the ranks, e.g. for Hodges-Lehmann's estimator (Theorem 3.3). The tails 
n+l 

of the sample median decrease exactly - 2- times faster (for n odd) than the 

tails of the basic distribution, for both exponentially-tailed as well as 

for heavy-tailed distributions. The same holds for the Huber M-estimator 

generated by a bounded monotone odd function w (Theorem 3.2). 

2.· BEHAVIOUR OF THE SAMPLE MEAN 

Let us consider the model satisfying the following assumption: 

ASSUMPTION A. x1 , .•. ,Xn are random variables identically distributed accord­

ing to the distribution function F(x-8) with the density f(x-8) such that 
1 1 

f(-x) = f(x) > 0, x ER; 8 ER is the parameter to be estimated. 

All estimators we consider are translation-equivariant, i.e. they sat­

isfy the condition 

( 2. 1) T (x1+c, ... ,x +c) = T (x1 , •.. ,x )+c 
n n n n 
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1 
for any c ER. If T is translation-equivariant then P8 (1T -8I > a) = 

n 1 n 
P0 (1Tnl > a) for any 8 ER and the inaccuracy (1.1) does not depend on 8. 

The following theorem gives upper and lower bounds for the rate of con­

vergence of the tails of a translation-equivariant estimator. 

THEOREM 2.1. Let T = T (x1 , ... ,x) be a translation-equivariant estimator 
n n n 

of 8 such that 

X (1) > 0 => T (X1 , ••• ,X ) > 0 
n n 

(2.2) 
x(n) < 0 => T (X 1, ... ,X) < 0 

n n 

wh (1) < (2 ) < < (n) th d t . . d. ere X - X - .•. - X are e or er s at1st1cs correspon 1ng to 

x 1 , ••• ,xn. Then, under the Assumption A, it holds 

(2.3) 

where 

(2. 4) 

1 ~ lim B(a,T) ~ lim B(a,T) ~ n 
-- n n a~ a~ 

B(a;T) 
n 

and P0 is the probability distribution corresponding to F. 

PROOF. We have 

which implies the second inequality in (2.3). Similarly, 
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and this implies the first inequality in (2.3). D 

In the subsequent text, we shall investigate which estimators attains 

the upper bound in (2.3), which estimators are so poor that they attain the 

lower bound only and generally, what is the position of some well-known 

estimators from this point of view. We shall first consider the sample mean 
-X. The next theorem shows that the X attains the upper bound if the basic 

n n 
distribution has exponentially decreasing tails while it is a poor estimator 

for a heavy-tailed basic distribution. 

THEOREM 2.2. Let xn = ¼ E~=l xi be the sample mean, let x 1 , ... ,xn satisfy 

the Assumption A. 

(i) If 

(2.5) 

then 

(2. 6) 

(ii) If 

( 2. 7) 

then 

(2. 8) 

lim -ln(1-F(x)) = 1 
a~ b.ar 

lim B(a;X) = n. 
n 

a➔oo 

-ln (1-F (a)) 
lim m.lna = 1, 
a~ 

lim B(a;X) = 1. 
n a~ 

for some b > 0, r ~ 1 

m > 0 

PROOF. The part (i) was proved by the author in [SJ. Considering the part 

(ii) , we have 

+ P0 (x 1<a, ... ,Xn<a, Xn<-(2n-1)a) = 

n-1 = 2(F(a)) [1-F((2n-1)a)] 



so that 

lim B(a;X) 
n a--)-00 

-ln[l-F( (2n-l)a) J 
$ lim m.ln[(2n-l)a] = l. 

a--)-00 
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D 

The part (i) concerns not only the normal (r = 2) but also the logistic 

and double-exponential distributions (r = 1); the part (ii) covers Cauchy 

distributions (m = 1) and t-distribution with m degrees of freedom (m inte­

ger m > 1). Theorem 2.2 says that X is a good estimator for the case (i) 
n 

while it is a poor estimator for the case (ii). Now, what is the situation 
-of X if Fis a mixture of two distributions, one from each group? 

n 
The following lemma shows that if a distribution is contaminated by a 

heavy-tailed distribution then the resulting distribution is heavy-tailed. 

It means that the sample mean X is a poor estimator in such case. 
n 

LEMMA 2.1. Let F(x) = (1-E)G(x) + EH(x) where G and Hare absolutely con­

tinuous distribution functions with the respective densities g and h such 
1 

that g(-x) = g(x) > o, h(-x) = h(x) > 0, x ER; 0 $ E < 1. If it holds 

(2. 9) 

and 

(2.10) 

then 

(2.11) 

PROOF. 

lim l-G(x) = O 
1-H(x) X--)-00 

1 . g(x) - 0 
llil h (x) -

x-+oo 

1 . ln(l-F(x)) = 1 
im ln(l-H(x)) · 

X--)-00 

lim 
ln (1-F (x)) 

= lim 
x-+oo ln (1-H (x)) x--)-00 

= lim 
X--)-00 

( 1-H (x)) f (x) = (1-F(x))h(x) 

g(x) 
(1-E)--+ E h(x) 

= 1. □ 1-G(x) 
(1-E) 1-H(x) + E 
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3. BEHAVIOUR OF SOME ROBUST ESTIMATORS 

If it is possible that the distribution of x1 , ••• ,xn is contaminated 

by a heavy-tailed distribution we must look for some more robust estimators 

of location. Let us consider what is the position of three basic types of 

robust estimators; L-estimators, M-estimators and R-estimators. 

We shall show that the rate of convergence of the tails of such esti­

mators is more or less bounded away from the lower as well as from the upper 

bound in (2.3). It means that the estimators are not optimal but, on the 

other hand, they may not be very poor. 

3.1. L-estimators 

THEOREM 3.1. Let T be an L-estimator of the form 
n 

(3.1) T = n 

n 
I 

i=l 
X (i) 

C 
i 

(1) 
where x :,:; ... :,:; x (n) are the order statistics corresponding to x1 , ... ,xn 

and c. ~ 0, i = 1, ... ,n 
i 

n 
and r. 1 c, = 1. Put c0 = c 1 = 0 and assume that 

i= i n+ 
c. = c . 1 = 0 for i = i n-i+ 

n 0,1, ••• ,k where O:,:; k < 2. Then, under the assump-

tion A, it holds 

(3. 2) k+l:,:; lim B(a;T) :,:; lim B(a;T) :,:; n-k. 
-- n n 
a-+co 

PROOF. The theorem was proved by the author in [5]. 

COROLLARY. Let Tn be the sample median corresponding to x1 , ... ,xn. Then, 

under the Assumption A, it holds 

(3.3) .!!. < lim B(a;T) :,:; lim B(a;T) < n + 1 
2 - - n n - 2 

a-+co a-+co 

for n even, and 

(3. 4) 

for n odd. 

n+l 
lim B(a;Tn) = - 2-
a-+co 



3.2 M-estimators 

(3.5) 

M-estimator T is defined as any solution of the equation 
n 

n 

I 
i=1 

1j, (X. - t) = 0 
J. 
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with respect tot; 1j, is an appropriate non-decreasing odd function. We shall 

show that T behaves similarly as the sample median, at least for the distri­
n 

butions with exponentially decreasing and slowly decreasing tails. 

THEOREM 3.2. Let T be an M-estimator corresponding to the nondecreasing 
n 

odd function ij, such that ij,(x) = ij,(k) for x ~ k, k > 0. Suppose that the 

common distribution of x1, ••• ,x satisfies the Assumption A and either of . n 
the following conditions: 

(3.6) lim 
-ln P0 (!x1 1>a) 

1; b > 0, r > 0 = 
b.a 

r a~ 

(3. 7) lim 
-ln P0 ( lx1 I >a) 

1' m > 0. m.lna = 
a~ 

Then T satisfies (3.3) and (3.4). 
n 

PROOF. 
n 

(a) Suppose that n is even and denotes= 2. Then 

thus 

P0 ( I Tn I > a) = P (T > a) + P (T < -a) 
0 n O n 

lim B(a;T) 
n a~ 

n n 
~ po ( l ij, (X.-a) >·0) + po ( l ij, (X.+a) < 0) 

i=1 1 i=1 1 

~ 2( n 1 ) (F(a+k))s-l(1-F(a+k))s+l; 
s-

~ (s+l) r:- ln(1-F(a+k)) = + 1 
a: ln(1-F(a)) s • 



Analogously, 

so that 

lim B(a;T) ~slim 
n 

a--t= a~ 

1 

J 
s s-1 n-1 s 

t (1-t) dt ~ 4( ) (1-F(a-k)) 
s 

F(a-k) 

(1-F (a-k)) 
(1-F (a)) 

= s. 

(b) The proof for n odd is analogous. D 

3.3. R-estimators 
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We shall consider in details only the Hodges-Lehmann's estimator which 

has the form 

( 3. 8) T 
n 

X,+X. 
1. J 

2 

Other R-estimators could be investigated by the same method but it provides 

only the numerical values of the lower and upper bounds for the rate of con­

vergence of the tails; we do not yet have an analytical formula expressing 

the bounds through the score-generating function of the underlying signed­

rank test. 

THEOREM 3.3. Let T be the Hodges-Lehmann's estimator (3.8). Then, under 
n 

the Assumption A, it holds 

(3.9) k + 1 
n 

~ lim B (a; T ) ~ lim B (a; T ) ~ n - k 
-- n n n 
a-+«> a~ 

where k is the largest integer not exceeding O. 2n. 
n 

PROOF. We shall first prove a simple lemma. 

LEMMA 3.1. Let y 1 , ... ,yn be integers satisfying lyil = i, i = 1, .•. ,n. If 



n 
at least 0.8n of those numbers are negative, then Ii=l yi < 0. 

PROOF OF LEMMA 3.1. If 0.8n is an integer, then 

n 

I 
i=l 

y. s 
l 

0.8n n 
I i + I 2 

i = -0.14n - 0.3n < O; 
i=l i=0.8n+1 

n 
I. 1 y, is still less in the case that 0.8n is not an integer. D 

1= l 

1 + 
PROOF OF THEOREM 3.3. For any t ER, let R (lx.-tl) be the rank of lx.-tl 

l l 

among lx1-tl , ... ,Ix-ti. T is an inversion of Wilcoxon signed rank test, 
1 * **n n 

i.e. T = -2 (T + T ) where 
n n n 

(3. 10) 

Then 

thus 

Similarly, 

so that 

* sup{t: T = 
n 

** inf{t: T = 
n 

n 

I sign(X.-t)R+(lx.-tl) >O} 
l l 

i=l 
n 

. + I ) < 0}. sign(X.-t)R ( x.-t 
i=l 

l l 

n 
s 2P0 { I 

i=l 

. + sign(X.-a)R (lx.-al) ;:o:Q} 
l l 

s 2P (X (n-kn) ;co: a) 
0 

n-1 ( 1-F (a)) kn+l 
s 2 ( k ) k +1 ' 

n n 

lim B ( a; T ) ;co: k + 1. 
n n 

a-+co 

n 
\ . + P0 (1T I >a) ;:o:2p0 ( l sign(X.-a)R (lx.-al) >O) 

n i=l i i 

k 
;co: 2(;) (F(a)) n(l-F(a))n-kn 

n 

lim B (a; T ) s n - k • 
a-+oo 

n n □ 
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