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ABSTRACT 

An inequality due to Chernoff is generalized. 
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I. INTRODUCTION 

Let X be a standard normal random variable and let G : lR -+ lR be a 

function which is absolutely continuous with respect to Lebesgue measure 

with Radon-Nikodym derivative g. In CHERNOFF (1980,1981) the elegant in

equality 

(1 • 1) var G(X) ~ E g2 (X) 

has been presented. For an arbitrary random variable X we shall derive the 

generalization (2.7) of (I.I). Although this derivation has not been re

stricted to the normal case, it seems to be somewhat simpler than the one 

given in CHERNOFF (1981). The main idea in the proof of (2.7), namely the 

use of the Cauchy-Schwarz inequality, is also contained in CACOULLOS (1981), 

which restricts attention to the case h = I, a= c = 0 in Theorem 2.1, and 

·in CHEN (1980), which considers the multivariate normal case. 

2. THE RESULT AND SOME EXAMPLES 

For our formulation of Chernoff's inequality we need the convention 

that the variance of a random variable is infinite iff the second moment of 

that random variable is infinite. Furthermore, for a~ b we'll denote an 

integral over (a,b] by J! or - J:. 
THEOREM 2. I. Let µ be a a-finite measUPe on (R ,B) and let X be a random 

variable with density f with respect toµ. Sis the smallest interval con

taining the support of f and h : S -+ lR is a nonnegative measUPable function 

suah that for all a,b ES 

b 

(2.1) f hdµ I<~ 
a 

and 

X 

(2.2) Ef I I hdJ.1 I < ~

a 



Now there exist c ES and a E [0,1] such that 

(2.3) 

holds for 

(2. 4) 

Ef H(X) = 0 

X 

H(x) = f hdµ + ah(c)µ({c}), 

C 

XE S. 

2 

Let g S ➔ 1R be a measurable function satisfying (2. 1) and for some d ES 

and e E JR de fine 

(2.5) G(x) 

If 

X I gdµ + e, 

d 

X E S • 

(2.6) µ({x ES I g(x) + O, f(x)h(x) 

then the inequality 

O}) = 0, 

(2. 7) < g (x) { 
2 

varf G(X) - Ef f(x)h(x) I Hfdµ} 
Sn [X,oo) 

~s valid~ with equality iff the variance is infinite or g is a multiple of 

h µ - almost everywhere on S. 

The proof of this theorem will be presented in section 3. In Table 2. l 

the upperbound B from (2.7) is given for some choices off and H withµ 

Lebesgue measure. Note that (I.I) can be obtained from (2.7) by choosing 

h(x) = I, x E JR (cf. examples 1 and 6 of Table 2.1). 
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name f H B 

2 _1 -Ix2cr-2 2 g2(X) I normal (21rcr ) 2 e 2 X cr Ef 

2 exponential -Ax 
X > 0 2 1 Ax 4>..-2Er g2(X) Ae , (x- -)e 2 

A l. 

3 Laplace l),_ -A lxl 
2 e X e ½Alxl 4A-2E g2(X) 

f 

4 logistic 2A(eAX+ e-Ax)-2 Ax -Ax A-2 E g2(X) e - e f 

[crar(a)J-I a-I X 

l<x) 5 gamma X ecr,x>O x - acr cr Ef X 

6 a-I _1 I~ I a+I 2cra+I 
EflXI l-ag2(X) - c(a,<1) !xi e 2 cr X a+I 

Table 2.1. The value of the upperbound B of (2.7) for some choices off 

and H withµ Lebesgue measure. 

Forµ counting measure on the integers a few examples of (2,7) are 

given in Table 2.2. We only note the folllowing. If X has a discrete dis

tribution with mean v then H(x) = x- v, x E 'll , is realized by the choices 

h(x) = I, c = [v] + I and a= [v] + I- v, where [v] denotes the integer part 

of v (cf. ( 2. 3) and ( 2 • 4) ) • 

name f H B 

I Poisson e-\\x(x!)-1 x- A 2 
EfXg (X) 

2 binomial (n) px(I _ p) n-x x- np (I - p)Efx/(x) 
X 

3 negative binomial ( x- I ) k ( I _ ) x-k k .-1 
Ef (X-k) ,/ (X) k-1 p p x- - p p 

Table 2.2. The value of the upperbound B of (2.7) for some choices off 

and H withµ counting measure on the integers. 



3. PROOF 

If h vanishes µ-almost everywhere on S then (2.3) and (2.4) are ful

filled for all c ES and a E [0,1]. Therefore, for the proof of (2.3) we 

assume without loss of generality that h does not have this property. In 

view of (2. 1) and (2. 2) we can define 1j, : S -+ lR by 

X 

lj,(a) = Ef I hdµ. 

a 

4 

Since his nonnegative 1j, is nonincreasing on S. Because lj,{a) is finite, 

Fubini's theorem yields 

(3. 1) lj,{a) = I r f(x)dµ(x)h(y)dµ(y) 

Sn(-00.a] Sn(-00,y) 

+ I I f(x)dµ(x)h(y)dµ(y). 

Sn (a, 00 ) Sn[y ,00) 

Let a0 = inf S. If a0 ES we obtain the nonnegativity of 1j,{a0) from (3.1). 

If a0 i S, then we see by the dominated and the monotone convergence theorem 

that 

lim lj,{a) 
a+ao 

= I I f(x)du(x)h(y)dµ(y) > O. 

S Sn[y, 00 ) 

In both cases there exists a c0 ES with 1j,{c0) ~ O. Analogously we see that 

there exists a c 1 ES with 1j,{c 1) SO. If there is a c E [c0,c 1] with 

lj,{c) = O, then (2.3) and (2.4) are valid with a= O. If not, there exists 

a c E (c0,c 1] such that Os lj,{c-) < 00 and - 00 < ~(c) < 0 and hence also an 

a E (0,1] such that 

(3.2) alj, (c-) + (1-a)lj,(c) = O. 

In view of (2.4) equality (3.2) is the same one as (2.3). 

By the Cauchy-Schwarz inequality, Fubini's theorem and (2.3) we obtain 

for g satisfying (2.5) and (2.6) 
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X 

f 
g J, g(c) 1 2 

varfG(X) ~ Ei ! h 2 dµ + a. h 2 (c)µ({c})J 
h2 h 2 (c) 

C 

X 
g2 2 

~ Ef[ f dµ + a. g (c) µ({c})]H(X) h h(c) 
C 

X 2 

f f 
g (y) dµ(y)H(x)f(x)dµ(x) h(y) 

s C 

r 

f 
2 

= 
J 

H(x)f(x)dµ(x) g (y) dµ(y) h(y) 
Sn(-00 ,c] Sn(-oo,y) 

f I 
2 

+ H(x)f(x)dµ(x) g (y) dµ(y) h(y) 
Sn(c, 00 ) Sn[y,oo) 

f 
2 

I = 
g (y) H(x)f(x)dµ(x) f(y)dµ(y), f(y)h(y) 

s Sn[:y ,oo) 

which implies (2.7) and thereby the theorem. 0 
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