
Secure Equality Testing Protocols in the Two-Party Setting
Majid Nateghizad

Cyber Security Group, Department of Intelligent Systems

Delft University of Technology, The Netherlands

m.nateghizad@tudelft.nl

Thijs Veugen
∗

Unit ICT, TNO

The Netherlands

thijs.veugen@tno.nl

Zekeriya Erkin

Cyber Security Group, Department of Intelligent Systems

Delft University of Technology, The Netherlands

z.erkin@tudelft.nl

Reginald L. Lagendijk

Cyber Security Group, Department of Intelligent Systems

Delft University of Technology, The Netherlands

r.l.lagendijk@tudelft.nl

ABSTRACT
Protocols for securely testing the equality of two encrypted in-

tegers are common building blocks for a number of proposals in

the literature that aim for privacy preservation. Being used repeat-

edly in many cryptographic protocols, designing efficient equality

testing protocols is important in terms of computation and commu-

nication overhead. In this work, we consider a scenario with two

parties where party A has two integers encrypted using an addi-

tively homomorphic scheme and party B has the decryption key.

Party A would like to obtain an encrypted bit that shows whether

the integers are equal or not but nothing more. We propose three

secure equality testing protocols, which are more efficient in terms

of communication, computation or both compared to the exist-

ing work. To support our claims, we present experimental results,

which show that our protocols achieve up to 99% computation-wise

improvement compared to the state-of-the-art protocols in a fair

experimental set-up.

CCS CONCEPTS
• Theory of computation → Cryptographic protocols;

KEYWORDS
Processing encrypted data, equality test, homomorphic encryption,

privacy, efficiency.

ACM Reference Format:
Majid Nateghizad, Thijs Veugen, Zekeriya Erkin, and Reginald L. Lagendijk.

2018. Secure Equality Testing Protocols in the Two-Party Setting. In ARES
2018: International Conference on Availability, Reliability and Security, August
27–30, 2018, Hamburg, Germany. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3230833.3230866

∗
He also works in Department of Cryptology, Centum Wiskunde & Informatica, The

Netherlands

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6448-5/18/08. . . $15.00

https://doi.org/10.1145/3230833.3230866

1 INTRODUCTION
Processing encrypted data has been addressed in several fields, e.g.

biometric data matching [26], recommender systems [15], data min-

ing [32] and data aggregation [19], as it enables collaborating with

an untrustworthy service provider to process privacy-sensitive data.

The main idea is to provide only the encrypted version of the data to

the service provider and invoke interactive cryptographic protocols

with the decryption key owner to perform the desired algorithm.

While being very secure regarding protecting the privacy-sensitive

data without hampering the service, processing encrypted data

introduces a significant amount of computational and communi-

cation overhead compared to performing the same algorithm with

unencrypted data. In the literature, it is suggested to design custom-

tailored cryptographic protocols, rather than applying generic so-

lutions, to improve the efficiency of the privacy-preserving version

of the algorithm. Building blocks with encrypted data for those

algorithms like comparison, division, and equality checks [21] need

to be designed with high efficiency. The main reason is that these

core operations are repeated in large quantities in conventional

data processing algorithms. For example, finding similar users in a

system with millions of users to a particular one based on his or her

taste for movies [15] requires comparison of similarity scores linear

in the number of users in the system. Testing the equality of two

encrypted integers is one of the widely-used operations, e.g. for

searching in encrypted databases. Other applications for equality

testing protocols also include, but are not limited to, secure pattern

matching [13], secure linear algebra [7], and encryption switching

protocols [4].

Yang et al. [31] introduced the first public key encryption that

supports testing equality (PKwET). Their work allows checking

whether two ciphertexts encrypted under the same or different keys

are encryptions of the same value. Tong[28] introduced a protocol

to enable equality testing for authorized users. Later works tried

to improve the performance or functionality of PKwET [14, 18, 30].

However, existing PKwET proposals leak the result of the equality

test to the service provider, which is usually a semi-trusted remote

computation server.

Secure multi-party computation (MPC) is another approach to

design algorithms for secure equality checking. In such protocols,

two or more parties jointly compute an agreed function of their

secret inputs. Many works have been introduced to show that any

function can be computed securely using MPC [3, 5, 6]. Nishide and

Ohta proposed a probabilistic constant-round equality test protocol

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301653021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3230833.3230866
https://doi.org/10.1145/3230833.3230866
https://doi.org/10.1145/3230833.3230866

ARES 2018, August 27–30, 2018, Hamburg, Germany Majid Nateghizad, Thijs Veugen, Zekeriya Erkin, and Reginald L. Lagendijk

[23], where the Jacobi symbol is used to test quadratic residuosity

of a value. Although the proposed protocol, (NO07), is efficient

regarding computation, the result of the protocol is probabilistic:

with a probability of 50%, the protocol returns a correct answer.

The protocol is suggested to be executed φ times to minimize the

error probability to 2
−φ

. As it is necessary to pick large values for φ
to reduce the false positive rate, the protocol becomes computation

and communication wise demanding.

Schoenmakers and Tuyls [27] has presented a method (ST06) to

check the equality of two encrypted integers by using a protocol

based on bit-decomposition. However, this protocol is expensive

regarding the number of communication rounds. In [21], Lipmaa

and Toft have introduced an equality test protocol (LT13) on top of

an arithmetic black box [11]. The protocol uses Lagrange interpola-

tion similar to [8]. A multiplicative masking is used in [8], a similar

idea from [1], since its realization is easier than additive masking.

However, multiplicative masking is not computationally efficient

in a two-party setting because the size of the exponent can be very

large. However, it is important to note that LT13 is more efficient

when there are more than two parties in the setting. The works

[27] and [21] are both secure against active adversaries.

There are also efficient secure equality testing protocols based

on Garbled circuits (GC) [16, 17]. In [17], Kolesnikov et al. propose

an efficient construction that enables XOR to be evaluated for free.

Then, in [16], evaluation of MPC protocols (VAT09) using free XOR

technique has improved the computational efficiency of garbled

circuits up to 50%. However, computational efficiency was achieved

at the cost of significant communication and pre-computation over-

head. Moreover, using GC results in additional computation and

communication overhead for converting encryptions to garbled

circuit inputs as explained in [16].

In this paper, our aim is to check whether two encrypted values

under an additively homomorphic encryption scheme such as Pail-

lier [24] are equal or not. More precisely, party A has the encryption

of two ℓ-bit integers, [a] and [b], where [·] denotes the encryption,

and party B has the decryption key. Neither party is allowed to

learn the outcome bit ϑ . The bit ϑ is one, exactly when a = b, and
zero otherwise, similar to the other existing works [21, 23, 27]. We

assume 0 ≤ a,b < 2
ℓ
.

We propose three secure equality testing protocols, namely EQT-

1, EQT-2 and EQT-3. As it is shown in Figure 1, there is a trade-off

between computation and communication cost. For the sake of

clarity, we present a summary of our protocols:

• EQT-1 is based on a coin toss where the results determines

either performing a secure Hamming distance computation

for the two inputs or invoking a secure joint function [10].

The resulting protocol has the least communication overhead

among all other proposals. While it is computationally more

expensive than our other two proposal, it is computationally

97% more efficient than the state-of-the-art and requires 24%

less communication overhead.

• EQT-2 relies on computing the Hamming distance and the

secure comparison protocol [22]. The protocol has a bal-

anced computational and communication overhead. EQT-2

is computationally 38% more efficient than EQT-1 with 25%

more communication overhead.

Time (ms)

Communication
(KB)

Figure 1: A summary of secure equality testing protocols’
performance for 20-bit inputs. Dashed bar denotes that the
value is very large and does not fit in the graph.

• EQT-3 is using Lagrange interpolation that has the best over-
all computational performance and 99% more efficient than

the state-of-the-art. EQT-3 is computation-wise over 30%

more efficient than EQT-2, but it has 43% more communica-

tion overhead compared to EQT-2.

2 PRELIMINARIES
The symbols and their description are listed in Table 1.

2.1 Security Setting
We consider the semi-honest security model [12], where both par-

ties are assumed to be honest in following the protocol description,

while they are curious to obtain more information than they are

entitled to. In this setting, it is assumed that A and B do not collude.

2.2 Homomorphic Encryption
We use two additively homomorphic and semantically secure en-

cryption schemes, namely Paillier [25] and DGK [10]. In an addi-

tively homomorphic encryption scheme, multiplying two cipher-

texts Epk (m1) and Epk (m2) results in a ciphertext, whose decryp-

tion is the sumof two plaintextsm1 andm2:Dsk (Epk (m1)·Epk (m2)) =
(m1 +m2) mod n, where n is the encryption system modulus. Con-

sequently, exponentiation of any ciphertext with a public integer

Page 2 of 10

Secure Equality Testing Protocols in the Two-Party Setting ARES 2018, August 27–30, 2018, Hamburg, Germany

Table 1: List of symbols

Symbol Description Symbol Description

a,b input messages δ comparison result

ℓ input bit size n crypto modulus

⊕ exclusive or κ security parameter

r ,ρ,s,w randoms φ error controller [23]

[.] Paillier cipher J.K DGK cipher

A,B stack holders xi i th bit of integer x
Zu DGK plaintext

space

d (a,b) Hamming distance of

a and b
p,q,vp ,vq primes t DGK parameter

ϑ equality result sk private key

pk public key Epk encryption

Dsk decryption log ℓ ⌈log
2
ℓ⌉

value k yields the encrypted product of the original plaintext and

the public value: Dsk (Epk (m)k) = (k ·m) mod n.

Paillier. The Paillier encryption [25] for a given messagem ∈ Zn
is defined as Epk (m,r) = д

m · rn mod n2
, where n is the product

of two distinct large prime numbers p and q, ciphertext Epk (m,r) ∈
Z∗n2

, r is a random number from Z∗n , and д is a generator of Z∗n . The

public key is (д,n), and the private key is (p,q). This encryption
scheme is additively homomorphic. The security of Paillier is based

on hardness of computing nth residue classes. For the decryption

operation, we refer readers to [25].

DGK. The DGK cryptosystem [10] is used in this work for two

reasons: 1) it is more efficiency than Paillier in term of computation

and communication since it has much smaller ciphertext size, 2)

it enables checking whether a ciphertext is an encryption of zero

without performing the expensive decryption operation, which can

save computation. Note that DGK decryption is very expensive for

large inputs since it uses a look-up table.

The process of generating the keys is as follows: 1) choose two

distinct t-bit prime numbersvp , vq , 2) construct two distinct prime

numbers p and q, where vp |(p − 1) and vq |(q − 1) such that n = pq
is a k-bit RSA modulus, 3) choose u, the smallest possible prime

number but greater than ℓ + 2, 4) choose a random r that is a 2.5t-
bit integer, and 5) choose д and h such that ord(д) = uvpvq and

ord(h) = vpvq , where ℓ < t < k . The public and the private keys

are pk = (n,д,h,u) and sk = (p,q,vp ,vq), respectively.
In the rest of the paper, we denote the ciphertext of a messagem

by [m] for the Paillier cryptosystem and JmK for the DGK. We also

omit the modular reductions, when describing the computational

steps, for simplicity.

3 OUR PROTOCOLS
3.1 Equality Testing Protocol (EQT)-1
In this protocol, described in Protocol 1, we use the idea that com-

putes either the Hamming distance between two encryptions or

performs a secure comparison based on the idea from the DGK

comparison protocol [10], after a coin toss. The reason for this

coin toss is as follows: calculating the Hamming distance is less

expensive regarding computation and communication overhead.

However, only using Hamming distance for equality check leaks

information. Assume that only the Hamming distance is used for

testing the equality of a and b. Then, party B learns whether a = b
after performing the DGK zero-check, since the Hamming distance

is always zero, precisely when a = b. Party B acquiring this infor-

mation is not desired since we do not want Party A and B to learn

any information. Therefore, we toss a coin and we either compute

the Hamming distance or perform secure comparison, hiding what

is being computed from Party B.

Protocol 1 EQT-1

1: Party A generates a sufficiently large (ℓ + 1 + κ bits) random

value r , computes [x]← [a − b + r], and sends [x] to B.

2: Party B decrypts [x], computes the first ℓ bits xi , 0 ≤ i < ℓ,
encrypts them separately with DGK (for efficiency reason), and

sends JxiK to A.

3: Party A computes Jri ⊕ xiK for 0 ≤ i < ℓ, by distinguishing

ri = 0 and ri = 1. If ri = 0, Jri ⊕ xiK← JxiK, else, Jri ⊕ xiK←
J1K · JxiK−1

.

4: Party A tosses a random coin δA ∈ {0,1}.
5: if δA = 0 then
6: Party A computes Jc0K ←

∏ℓ−1

i=0
Jri ⊕ xiK, and multiplica-

tively blinds it with a large (in case of DGK, the random

number ρ should contain 2t bits) random number ρ.
7: Party A generates ℓ − 1 non-zero random integers ci , 1 ≤

i < ℓ, and encrypts them.

8: else
9: Party A computes JciK← J−1K ·Jri ⊕xiK · (

∏ℓ−1

j=i+1
Jr j ⊕x jK)2,

for 0 ≤ i < ℓ.
10: Party A generates ℓ large (in case of DGK, the random

numbers ρi should be 2t bits) non-zero random numbers

ρi , 0 ≤ i < ℓ, and uses them to multiplicatively blind ci :
JciK← JciKρ i .

11: end if
12: Party A randomly permutes the order of the JciK, 0 ≤ i < ℓ,

and sends them to party B.

13: Party B decrypts (in case of DGK, a DGK zero-check is suffi-

cient) the numbers JciK to find whether one of them is 0. If (at

least) one of them is 0, party B sets δB ← 1, otherwise δB ← 0.

14: Party B encrypts δB , and sends it to A.

15: Party A computes [ϑ], by distinguishing δA = 0 and δA = 1. If

δA = 0, [ϑ]← [δB], else, [ϑ]← [1] · [δB]
−1
.

Correctness. Since 0 ≤ a,b < 2
ℓ
, we have r −2

ℓ < x = a−b+r <
r + 2

ℓ
, so it is sufficient to check whether the first (least significant)

ℓ bits of x and r are equal. We know

∑ℓ−1

i=0
ri ⊕xi ≥ 0, with equality

precisely when a = b. In case δA = 0, we have c0 =
∑ℓ−1

i=0
ri ⊕ xi ,

so the (blinded) numbers ci , 0 ≤ i < ℓ will have exactly one zero,

precisely when a = b, and will all be non-zero, otherwise. Therefore,
if δB = 1, we have δA⊕δB = 1 = (a = b). The case δB = 0 is similar.

If δA = 1, party A computes ci = −1 + ri ⊕ xi + 2

∑ℓ−1

j=i+1
r j ⊕ x j . If

all ri ⊕ xi = 0, then all ci = −1, and δB = 0. Otherwise, precisely

Page 3 of 10

ARES 2018, August 27–30, 2018, Hamburg, Germany Majid Nateghizad, Thijs Veugen, Zekeriya Erkin, and Reginald L. Lagendijk

one of the ci will be zero [9], and δB = 1. Therefore, in both cases

(a = b) ← δA ⊕ δB .

Optimization. Although the decryption of [x] and the multiplica-

tive blindings dominate the computational complexity, the number

of multiplications for computing the JciK can be reduced further.

Instead of computing ci ← −1 + ri ⊕ xi + 2

∑ℓ−1

j=i+1
r j ⊕ x j , we

can use the optimization introduced in [22]. Parties can compute

ci ← −1 + ri + xi +

∑ℓ−1

j=i+1
2
j (r j − x j) = (−1 + ri +

∑ℓ−1

j=i+1
2
jr j) +

(xi −
∑ℓ−1

j=i+1
2
jx j) = c

A
i +cBi , where c

A
i can be computed in clear by

party A, and cBi by party B. Then, for each i , 0 ≤ i < ℓ, it requires

only one multiplication to compute JciK← JcAi K · JcBi K, which party

A has to perform in case δA = 1. These modified ci ’s retain the

property that precisely one of them is zero, if and only if, a , b.
In case δA = 0, party A can use the same JcB

0
K to compute

an encryption of c0 ← (−r0 +

∑ℓ−1

j=1
2
jr j) + cB

0
instead of c0 ←∑ℓ−1

i=0
ri ⊕ xi , which requires computing cA

0
← −r0 +

∑ℓ−1

j=1
2
jr j in

clear. Also for this c0, we have c0 = 0, if and only if a = b. This
optimization avoids computing Jri ⊕ xiK by party A, and reduces

the computation of each JciK to one multiplication.

3.2 Equality Testing Protocol (EQT)-2
Our proposal also uses the Hamming distance of a and b, which is

d (a,b) ←
∑ℓ−1

i=0
ai⊕bi , to determineϑ . As described in Protocol 2, it

works as follows: (1) party A computes [x], (2) party A computes the

encrypted Hamming distance between x mod 2
ℓ
and r mod 2

ℓ
, and

(3) party A and B use a secure comparison protocol to compute the

encryption of (d > 0) . If d > 0, then a , b, and a = b, otherwise.
Note that there is a fundamental difference with EQT-1, which

also computes Hamming distance: EQT-2 computes the Hamming

distance of the two encrypted inputs, invokes a secure comparison

protocol, namely EPPCP from [22], which returns an encrypted

result. Therefore, there is no information revealed to Party B. The

choice of using EPPCP is based on its high performance. The DGK

comparison protocol is not preferred as the message space too large

to create a look-up table.

Protocol 2 EQT-2

1: Party A generates a sufficiently large (κ + ℓ + 1 bits) random

value r , computes [x]← [a − b + r], and sends [x] to B.

2: Party B decrypts [x], computes the first ℓ bits xi , 0 ≤ i < ℓ,

and their sum X ←
∑ℓ−1

i=0
xi , encrypts them all separately, and

sends them to A.

3: Party A computes [d] ← [

∑ℓ−1

i=0
ri ⊕ xi] = [

∑ℓ−1

i=0
ri] · [X] ·

(
∏ℓ−1

i=0,r i=1
[xi])

−2
.

4: Two parties jointly run the comparison protocol (EPPCP) [22],

where party A receives [1] if [0 < d], [0] otherwise, while

both parties learn nothing about the inputs and the relation

between [d] and [0]. The ones’ complement of the result of

EPPCP is simply the result of the equality test, [ϑ] ← [1] −

EPPCP ([0],[d]).

Correctness. Since x − r = a − b, and 0 ≤ a,b < 2
ℓ
, then a = b

if d = d (x mod 2
ℓ,r mod 2

ℓ) = 0. To check if a = b, party A and

party B jointly run EPPCP, where EPPCP returns (encrypted) zero

when a = b, and (encrypted) one when a , b.

Optimization. In EQT-2, we first securely compute d ← d (a,b),
0 ≤ d ≤ ℓ, and afterward securely compute δ ← (d > 0). The
complexity of EPPCP depends on the size of its inputs. To reduce

this size, we can add an additional communication round to securely

compute
´d ← d (d ,0), 0 ≤ ´d < log

2
ℓ, and securely compare

´d with

0. This way of reducing the input size can be repeated many times,

which reduces the computation effort at the cost of increasing the

number of communication rounds.

3.3 Equality Testing Protocol (EQT)-3
Previously presented protocols rely on secure comparison or effi-

cient zero-check of the DGK encryption scheme. Unlike the other

two protocols, EQT-3, described in Protocol 3, is a protocol that

does not require zero-checking or secure comparison. The main

idea of EQT-3 is to first compute the Hamming distance e between

x mod 2
ℓ
and r mod 2

ℓ
similar to the other protocols. Note that

0 ≤ e ≤ ℓ, where ℓ is the bit-length of the inputs a and b. To make

the range of e smaller (later we show that the smaller range of e
results in a significant more efficient protocol), we mask [e] with

a large number numberw , [y]← [e +w]. Afterward, we compute

the Hamming distance d between y mod 2
log

2
ℓ
andw mod 2

log
2
ℓ
,

where 0 ≤ d ≤ log
2
ℓ . Finally, we generate and compute a polyno-

mial that maps d = 0 to 1, and d ∈ {1,2, . . . , log
2
ℓ} to 0.

Protocol 3 EQT-3

1: Party A generates a sufficiently large (ℓ + 1 + κ bits) random

value r , computes [x] = [a − b + r], and sends [x] to B.

2: Party B decrypts [x], computes the first ℓ bits xi , 0 ≤ i < ℓ, and

their sum X =
∑ℓ−1

i=0
xi , encrypts them separately, and sends

them to A.

3: Party A computes the first ℓ bits of r to derive [e] = [

∑ℓ−1

i=0
ri ⊕

xi] = [

∑ℓ−1

i=0
ri] · [X] · (

∏ℓ−1

i=0,r i=1
[xi])

−2
.

4: Party A generates a sufficiently large (log
2
ℓ + κ bits) random

valuew , computes [y = e +w], and sends [y] to B.

5: Party B decrypts [y], computes the first log
2
ℓ bits yi , 0 ≤

i < log
2
ℓ, and their sum Y =

∑(log
2
ℓ)−1

i=0
yi , encrypts them

separately, and sends them to A.

6: Party A computes the first log
2
ℓ bits of w to derive

[d] = [

∑(log
2
ℓ)−1

i=0
wi ⊕ yi] = [

∑(log
2
ℓ)−1

i=0
wi] · [Y] ·

(
∏(log

2
ℓ)−1

i=0,w i=1
[yi])

−2
.

7: Party A generates a sufficiently large (log
2

log
2
ℓ + κ bits) ran-

dom value s , computes [z = d + s], and sends [z] to B.

8: Party B decrypts [z], computes λ = z mod ϱ, where ϱ =
(log

2
ℓ) + 1, and from that the integers γi , 0 ≤ i < (2 log

2
ℓ) + 1,

as specified bellow. Party B encrypts the γi , and sends them to

A.

9: Party A computes σ = s mod ϱ, and [ϑ] = [f (σ − λ)] =

[

∑2 log
2
ℓ

i=0
γiσ

i
] = (. . . ([γ

2 log
2
ℓ]
σ · [γ(2 log

2
ℓ)−1

])σ . . . · [γ1])σ ·

[γ0].

The polynomial f , which is specified below, can be computed

beforehand in the clear. Each integer γi can be computed by only

Page 4 of 10

Secure Equality Testing Protocols in the Two-Party Setting ARES 2018, August 27–30, 2018, Hamburg, Germany

one multiplicative inverse and one multiplication. The exponentia-

tion to the power −2 in step 3 is implemented by one multiplicative

inverse, and one square.

Computation of γi . As shown before, x = a − b + r , e = d (x ,r),
y = e + w , d = d (y,w), z = d + s , and finally ϑ = (z = s), where
0 ≤ d ≤ log ℓ. The idea is to compute the Lagrange polynomial f (x)
such that it maps 0 to 1, and maps x to 0, where 0 < |x | ≤ log

2
ℓ.

Then, we can compute δ = f (s mod ϱ − z mod ϱ) = f (σ − λ).
The Lagrange polynomial f is easily found as f (x) =∏log ℓ
i=− log

2
ℓ,i,0

x−i
−i = (−1)log ℓ (log ℓ!)−2

∏log ℓ
i=− log ℓ,i,0

(x − i) =

(−1)log ℓ (log ℓ!)−2
∑2 log ℓ
i=0

fix
i
, where fi ∈ Z can be derived.

The binomial expansion of x i = (σ − λ)i , for 0 ≤ i ≤ 2 log ℓ,

gives

∑i
j=0

(i
j

)
σ j (−λ)i− j . Therefore, we can write

f (σ − λ) = (−1)log ℓ (log ℓ!)−2

2 log ℓ∑
i=0

fi

i∑
j=0

(
i

j

)
σ j (−λ)i− j ,

which reduces to

∑2 log ℓ
j=0

γ jσ
j
, whereγ j = (−1)log ℓ (log ℓ!)−2

∑2 log ℓ
i=j

fi
(i
j

)
(−λ)i− j and 0 ≤ j ≤ 2 log ℓ. In order to compute the γ j , party

B computes the multiplicative inverse of (log ℓ!)2 modulo n, and

multiplies this with the integer

∑2 log ℓ
i=j fi

(i
j

)
(−λ)i− j .

Correctness. In EQT-3, the Hamming distance e between x mod

2
ℓ
and r mod 2

ℓ
is computed. For efficiency purpose (we will dis-

cuss this later), then, the second Hamming distance d between the

first log ℓ low significant bits of e + w and w is computed. After-

ward, party B computes encrypted γi values, which are required

from party A to compute a polynomial that outputs the equal-

ity testing result. Actually, a Lagrange polynomial f (σ − λ) =∏log ℓ
i=− log ℓ,i,0

(σ −λ)−i
−i is generated in this equality testing proto-

col, where it maps (σ − λ = 0) to 1 and other values to 0. Recall

that σ = s mod ϱ, λ = z mod ϱ, and z = d + s ; therefore, if and only
if d = 0, then f (σ − λ) outputs 1.

Optimisation. Similar to ETQ-3, adding one more round reduces

the communicational and computational costs. Besides that, it is

also possible to lessen the number of rounds in EQT-3 if there is a

limit in a particular application setting. However, decreasing one

round makes the polynomial more complicated and the protocol

more expensive.

4 SECURITY ANALYSIS
In this section, we provide proofs to show that our three secure

equality testing protocols are simulation secure in the semi-honest

security model. Informally, we mean that the probability that an

adversary can learn private information from truly generated data

by the parties in our protocols is at most negligibly more than

the probability that an adversary can learn from given randomly

generated data. We use the simulatability paradigm [20] in our

proofs, where the adversary takes the control of the network and

try to obtain the final result of the protocol by itself as the only

party in the protocol. In this paradigm, security is defined as a

comparison of computation work-flow in “real world" and “ideal

world".

In real world, a protocol can be broken into sub-protocols or

computations that are carried out by each party throughout the

protocol. Let us denote π as one of EQT protocols; we can split π
into two parts: π = πA and πB , which are performed in parties A
and B, respectively. πA takes [a] and [b], which are the inputs, and

outputs [ϑ], [ϑ]← πA([a],[b];ϕ). And πB decrypts the given en-

cryptions from party A, processes them, and sends their encrypted

versions to party B. Thus, to perform secure equality testing the

encrypted messages flow from one party to another party and to-

gether they generate the [ϑ] as the result of EQT. Assuming party

A is corrupted by an adversary A, then A has access to [a], [b],

and [ϑ]. Similarly, when party B is corrupted, the adversary has

access to the intermediate computation results.

In an ideal world, it is assumed that one of the parties is corrupted

by an adversary. Then, he uses a simulator to generate the outputs

of the other party. This would be similar to performing EQT with

just one party, which is corrupted. In the ideal world, an adversary

´A, who has control over party A, has only access to her inputs [a],

[b], and the garbage inputs given from simulated party B instead of

the correct result of πB . The goal is to show thatA can learn equal

or negligibly more than
´A, meaning that they are computationally

indistinguishable, then we can claim that EQT is a simulation secure

protocol.

Definition 4.1. Let a ∈ {0,1}∗ represents the parties’ inputs,

n ∈ N to be a security parameter, and X = {X (a,n)}a∈{0,1}∗;n∈N
and Y = {Y (a,n)}a∈{0,1}∗;n∈N, two infinite sequences of random

variables, are probability ensembles. Then, X and Y are computa-

tionally indistinguishable, denoted asX
c
≡ Y , if there is a polynomial

p (.) for every non-uniform polynomial-time probabilistic algorithm

(nuPPT) D such that:

|Pr [D (X (a,n)) = 1] − Pr [D (Y (a,n)) = 1]| < 1/p (n) (1)

4.1 Security of EQT-1
Let denote the computation of [ci] as Af1 , δB as Bf1 , and [ϑ] as Af2
in EQT-1. Let f = (Af ,Bf), where Af = (Af1 ,Af2) and Bf = (Bf1),

the f to be the PPT functionality for EQT-1. The view of the i th

party, i ∈ {A,B}, during the execution of EQT-1 on ([a],[b];ϕ)

and security parameter n is denoted by view
EQT −1

i ([a], [b];ϕ;n) =

(w ,ri ;m
i
1
, · · · ,mi

t), wherew ∈ {[a],[b],ϕ} based on the value of i ,

r i are the i th party internal random numbers, andmi
j represents

the j th message that is received by i th party. Recall that party B

does not have any initial input, thus its inputs is denoted as ϕ.

output
EQT −1

i ([a],[b];ϕ;n) represents the output of each party in

EQT-1. To represent the joint output of both parties, we denote

output EQT −1 = (output
EQT −1

1
([a],[b];ϕ;n),

output
EQT −1

2
([a],[b];ϕ;n)).

(2)

Definition 4.2. EQT-1 securely computes f = (Af ,Bf) in the

semi-honest security setting if there exits PPT algorithms SimA
and SimB such that:

{(SimA(1
n ,[a],[b],Af , f))}

c
≡ {(view

f
A

([a],[b];ϕ;n),output f ([a],[b];ϕ;n))}
(3)

Page 5 of 10

ARES 2018, August 27–30, 2018, Hamburg, Germany Majid Nateghizad, Thijs Veugen, Zekeriya Erkin, and Reginald L. Lagendijk

and

{(SimB (1
n ,ϕ,Bf , f))}

c
≡ {(view

f
B

([a],[b];ϕ;n),output f ([a],[b];ϕ;n))}
(4)

Theorem 4.3. The protocol EQT-1 is simulation secure and se-
curely computes the functionality f , when the party A is corrupted
by adversary A in the presence of semi-honest adversaries.

We need to show that party A cannot computationally distin-

guish between generated messages and outputs from S2 that is

the simulation of party B, and randomly generated data. Party A

receives an output from S2, [δB]. Given [a], [b], and 1
n
(security

parameter), party A works as follow:

(1) Party A chooses uniformly distributed random number r ,
δA, and ri , i ∈ {0, · · · , ℓ − 1} for Af .

(2) Party A executes Af1 to obtain [ci], and sends them to S2.

(3) S2 tosses a random coin
´δB ∈ {0,1} and sends [

´δB] to party

A.

(4) Party A performs Af2 based on given [
´δB] to get [

´ϑ].

The output of the simulation can be written as: SimA(1
n , [a], [b],Af

, f) = ([a],[b],r ,δA,ri ; [
´δB]; ([´ϑ],ϕ)). The real view of part A can

be presented as view
f
A([a],[b]) = ([a],[b],r ,δA,ri ; [δB]). And the

output of the real view is output f ([a],[b]) = ([ϑ],ϕ). It can be

observed that the encryption pairs ([´δB],[´ϑ]) and (δB ,[ϑ]) are
computationally indistinguishable, since the crypto-scheme used

in EQT-1 is semantically secure. Therefore, we can claim that

SimA(1
n ,[a],[b],Af , f)

c
≡ {view

f
A([a],[b];ϕ),output f ([a],[b];ϕ)}.

(5)

Theorem 4.4. The protocol EQT-1 is simulation secure and se-
curely computes the functionality f , when the party B is corrupted
by adversary A in the presence of semi-honest adversaries.

(1) S1 chooses ℓ uniformly distributed random integers ći and
encrypts them, [ći].

(2) S1 tosses a random coin r1 ∈ {0,1}. If r1 = 1, then S1 chooses

a uniformly distributed random number r2 ∈ {0, · · · , ℓ − 1}

and sets [ćr2
]← [0].

(3) S1 sends [ći] to party B.

(4) Party B executes Bf1 and sends [δB] back to S1.

The simulation and the real view can be written as:

SimB (1
n ,ϕ,Bf1 , f) = (ϕ; [ći]; ([ϑ],ϕ))

view
f
B ([a],[b],ϕ,n) = (ϕ; [ci]; ([ϑ].ϕ))

(6)

Since party A has the decryption key, we should show that A

cannot distinguish between ći and ci . To do so, we analyze two

possible types of information leakage:

(1) Existence of zero in ci : in EQT-1, A cannot learn extra in-

formation if, for any i , ci = 0. The reason is that δA decides

whether ci = 0 means the equality or inequality of a and b,
and party B has no access to δA. Moreover, location i does
not leak any information, because party A permutes the ci
values before sending them to party B.

(2) Information about a and b if ci , 0: in case of ci , 0, party

B is still cannot learn any extra information, since the ci
values are multiplicatively masked in party A.

Therefore, A cannot distinguish between ci and ći , which means:

SimB (1
n ,ϕ,Bf1 , f) = {view

f
B ([a],[b],ϕ,n),output f ([a],[b];ϕ)}

(7)

4.2 Security of EQT-2
Denoting computation of [x] as Af1 , ([X], [xi]) as Bf1 , [д] as Af2 ,

([д̂], [ti], [д.2− log
2
ℓ
]) as Bf2 , [ei] as Af3 , [

ˆλ] as Bf3 , and [ϑ] as

Af4 , we have Af = (Af1 ,Af2 ,Af3 ,Af4), Bf = (Bf1 ,Bf2 ,Bf3), and
f = (Af ,Bf).

Theorem 4.5. The protocol EQT-2 is simulation secure and se-
curely computes the functionality f , when the party A is corrupted
by adversary A in the presence of semi-honest adversaries.

(1) Party A chooses uniformly random numbers r , r̂ , s , and hi .
(2) Party A executes Af1 to obtain [x] and sends it to S2

(3) S2 generate ℓ random one-bit values x̂ and another random

integer X̂ . S2 sends [x̂i] and [X̂] to party A.

(4) Party A calls Af2 to get [д] and sends it to S2.

(5) S2 generate three random numbers [д́], [t̂i], and [д
′′

] to party

A.

(6) Party A executes Af3 , computes [ei], and sends [ei] to S2.

(7) S2 tosses a random coin
ˆλ and sends it to party A.

(8) Party A executes Af4 to obtain [ϑ].

Based on the same reason in Theorem 4.3, clearly, party A cannot

distinguish between ([x̂], [X̂], [д́], [t̂i], [д
′′

], [´λ]) and ([x], [X], [д], [ti], [д·

2
− log

2
ℓ
],[ˆλ]). Therefore,

SimA(1
n ,[a],[b],Af , f)

c
≡ {view

f
A([a],[b];ϕ),output f ([a],[b];ϕ)}.

(8)

Theorem 4.6. The protocol EQT-2 is simulation secure and se-
curely computes the functionality f , when the party B is corrupted
by adversary A in the presence of semi-honest adversaries.

Party A receives three outputs from S1 [x], [д], and [ei]. Given
[1], [b], and 1

n
(security parameter), party A works as follow:

(1) S1 chooses a (κ + ℓ + 1)-bit random value x̂ , a random value

o ∈ {−ℓ, · · · , ℓ} and sends [x̂]← [x̂ + o] it to party B.

(2) Party B executes Ff1 and sends [xi] and [X] back to S1.

(3) S1 generates a (κ + log
2
ℓ + 1)-bit random value д́ and sends

it to party B.

(4) Party B call Ff2 and sends [д̂], [ti], and [д · 2− log
2
ℓ
] to S1.

(5) S1 chooses i random number êi ∈ Z
∗
u , i ∈ {0, · · · , log

2
ℓ − 1}.

Then, S1 tosses another coin δ , and if δ = 1, then chooses a

random i and êi = 0. Afterwards, S1 sends [êi] to party B.

(6) Party B executes Bf3 to get
´λ, and sends it to S1.

The simulation and the real view can be written as:

simB (1
n ,ϕ,Bf , f) = (ϕ; [x̂],[д́],[êi]; ([ϑ ,ϕ]))

view
f
B ([a],[b],ϕ,n) = (ϕ,[x],[д], [ei]; ([ϑ ,ϕ]))

(9)

To provide simulation security, party B should not be able to distin-

guish between (x̂ ,д́, êi) and (x ,д,ei). Recall that party B has access

to the decryption key and can see the data in the clear. 1) party

A masks [a − b] with a large enough random value r to hide the

difference from party B. Thus,A cannot distinguish between x and

Page 6 of 10

Secure Equality Testing Protocols in the Two-Party Setting ARES 2018, August 27–30, 2018, Hamburg, Germany

x̂ . 2) [z] values are also additively masked with another random

number, which makes д́ and д indistinguishable for party B. 3) party
A also multiplicatively masks ci values which also makes ê indis-
tinguishable from e to party B. 4) party B cannot learn about the

relation between a and b be seeing a zero in one of the ei values,
since it is calculated based on random number s . Thus, if any of

ei = 0 then still party B does not know whether a = b or a , b.
Based on the four stated properties, we can claim that:

SimB (1
n ,ϕ,Bf , f) = web{view

f
B ([a],[b],ϕ,n),output f ([a],[b];ϕ)}

(10)

4.3 Security of EQT-3
Let us denote computation of [x] as Af1 , [xi] and [X] as Bf1 , [y] as

Af2 , [yi] and [Y] as Bf2 , computation of [z] as Af3 , [γ] as Bf3 , and
computation of [ϑ] as Af4 .

Theorem 4.7. The protocol EQT-3 is simulation secure and se-
curely computes the functionality f , when the party A is corrupted
by adversary A in the presence of semi-honest adversaries.

S2 works as follow:

(1) Party A generate uniformly distributed random numbers r ,
w and s .

(2) Party A executes Af1 to obtain [x] and sends it to S2.

(3) S2 generate uniformly distributed random numbers [x̂i] and
[X̂], and sends them to party A.

(4) Party A calls Af2 and sends [ŷ] to S2.

(5) S2 generate random number [ŷi] and [Ŷ], and sends them

to party A.

(6) Party A performs Af3 to get [z] and sends it S2.

(7) S2 chooses a random number γ̂ and sends [γ̂] to party A.

(8) Party A executes Af4 to obtain [ϑ].

Because of semantical security of the crypto-schemes used in this

work, A cannot distinguish between ([x̂i],[X̂],[ŷi],[Ŷ],[γ̂]) and
([xi],[X],[yi],[Y],[γ]). Thus, we can claim that

SimA(1
n ,[a],[b],Af , f)

c
≡ {view

f
A([a],[b];ϕ),output f ([a],[b];ϕ)}.

(11)

Theorem 4.8. The protocol EQT-3 is simulation secure and se-
curely computes the functionality f , when the party A is corrupted
by adversary B in the presence of semi-honest adversaries.

S1 works as follow:

(1) S1 chooses a random number [x̂].

(2) Party B receives [x̂], decrypts it, executes Bf1 to obtain xi
and X , and sends them to S1 in encryption form.

(3) S1 generates random number ŷ and sends [ŷ] to party B.

(4) Party B executes Bf2 and sends [yi] and [Y] back to S1.

(5) S1 chooses a random number ẑ and sends [ẑ] to party B.

(6) Party B calls Bf3 to get γ and sends it to S1 in encryption

form.

Recall that party B is keeping the private key and is able to

decrypts the encryption given from party A. Thus, we need to

show A cannot learn any private information by distinguishing

given messages. First, party B cannot distinguish between x̂ and

x , since x is additively masked with a κ + ℓ + 1-bit value. Second,

distinguishing between ŷ and y is not computationally possible for

party B, since y is additively masked with large enough random

value. Similarly, party B cannot distinguish between ẑ and z, since
z value is additively masked. Therefore, we can conclude that

SimB (1
n ,ϕ,Bf , f) = {view

f
B ([a],[b],ϕ,n),output f ([a],[b];ϕ)}

(12)

5 PERFORMANCE ANALYSIS
5.1 Complexity Analysis

Communication. Table 2 presents the number of communica-

tion rounds and the amount of data transmitted. Table 2 shows

that, except ST06 and NO07, they are all constant-round protocols.

ST06 uses bit decomposition, which results in more number of

communication rounds.

Table 2: Number of communication rounds and amount of
data transmission (ℓ = 20,φ = 12,u = 31).

Protocols Rounds Transmitted data (KB)

[LT13] 2 2 ℓ + 1 21

[ST06] 2ℓ+2⌈log
2
ℓ⌉+2 52 (6ℓ − 5)/2 57.5

[NO07] 3φ 36 (2φ + ⌈log
2
φ⌉ + 1)/2 14.5

EQT-1 2 2 (ℓ + 2)/2 1 1

EQT-2 3 3 (ℓ + ⌈log
2
ℓ⌉)/2 + 2 14.5

EQT-3 3 3 (ℓ + 3⌈log
2
ℓ⌉ + 6)/2 20

According to Table 2, using EQT-1 requires the least data trans-

mission among the other protocols, which is mainly due to the

use of DGK encryption scheme. In contrast, EQT-3 is the least

communication-wise efficient protocol because of the large cipher-

text space of Paillier and transmission of the Lagrange polynomial

coefficients.

Computation. Table 3 presents the overall computational cost

given in the number of modular multiplications. The cost of the

DGK zero-check function can be represented as 3t/4 multiplica-

tions modulo n [10] and we can show the complexity of a ciphertext

modulo n with an x-bit exponent as 3x/2 multiplications modulo n.
According to Table 3, LT13 is the most computation-wise expen-

sive protocol because of having ℓ exponentiations with (2κ)i bits
exponents, for 1 ≤ i ≤ ℓ. There are also (6ℓ)−1 exponentiations in

ST06, but the exponents are −1. From the Table 3, we can see that

EQT-3 has the least number of multiplication among the others.

The main reason for having this outstanding efficiency in EQT-3

is performing less expensive exponentiations. In EQT-3, there are

(2⌈log
2
ℓ⌉) exponentiations with ⌈log

2
ℓ⌉/2-bit exponents.

Table 4 presents the numbers of encryption and decryption.

According to Table 4, ST06 and NO07 require a higher number of

decryption to be performed compared to the other protocols. Since

Paillier decryption is an expensive operation, a large number of

decryption in a protocol is not desirable.

Our proposed protocols show different performances regarding

communication and computation. For a system with limited com-

munication resources, EQT-1 is a suitable choice, since it has only

two communication rounds and the lowest data transmission cost.

Page 7 of 10

ARES 2018, August 27–30, 2018, Hamburg, Germany Majid Nateghizad, Thijs Veugen, Zekeriya Erkin, and Reginald L. Lagendijk

Table 3: Overall computational cost and the complexity (ℓ =
20).

Protocols Multiplication Complexity

[LT13] ℓ(768(ℓ + 1) + 7/2) + 3079 331169 O (ℓ2)

[ST06] 45ℓ + ℓ/2 − 1 902 O (ℓ)

[NO07] (3ℓ⌈log
2
ℓ!⌉)/2+ℓ+20672 22522 O (ℓ log

2
ℓ!)

EQT-1 504ℓ + ℓ/2 + 345 10435 O (ℓ)

EQT-2 ℓ/2 + 841⌈log
2
ℓ⌉ + 25 4240 O (ℓ)

EQT-3 ℓ/2 + 3/2(⌈log
2
ℓ⌉)2 +

5/2⌈log
2
ℓ⌉ + 14

74 O (ℓ)

Table 4: Number of encryption and decryption per protocol
(ℓ = 20,φ = 12,u = 31).

Protocols Encryption Decryption

[LT13] 2ℓ + 1 41 2 2

[ST06] 5ℓ 100 3ℓ − 1 59

[NO07] ℓ + 2φ + 1 45 2φ + 1 25

EQT-1 2ℓ + 2 42 1 1

EQT-2 ℓ + 2⌈log
2
ℓ⌉ + 5 35 2 2

EQT-3 ℓ + 3⌈log
2
ℓ⌉ + 8 43 3 3

Although EQT-1 has a very low communication cost, its computa-

tional cost is twice more than EQT-2 and hundred times more than

EQT-3. For a system with very limited computational resources,

EQT-3 is a good choice, since it has significantly low computational

cost. However, EQT-3’s data transmission cost is twice more than

EQT-1 and also higher than EQT-2.

5.2 Experimental Results
The protocols are implemented using C++ and external libraries:

MPIR, Boost, and SeComLib on a single Linux machine running

Ubuntu 14.04 LTS, with a 64-bit microprocessor and 8 GB of RAM,

ignoring network latency. The cryptographic key lengths of the

Paillier and DGK cryptosystems are chosen according to NIST stan-

dards [2], which are valid until 2030. Table 5 shows the parameters

used for the implementation.

Table 5: Parameters used in the implementation.

Parameter Symbol Value

Bit size of inputs ℓ 2-30

Security parameter κ 112 bits

Paillier message space n 2048 bits

DGK message space u 31

DGK security parameter t 224 bits

Error controller in NO07 φ 12

As [23] does not provide an analysis on φ, we implemented and

analyzed their proposal. Figure 2 shows various values of φ with

their corresponding error rates. Furthermore, it presents run-time of

the NO07 equality testing protocol with 25-bit inputs, and different

φ values. As it is shown in Figure 2, choosing φ = 12 makes the

error probability negligible.

2 4 6 8 10 12

iteration

0

10

20

30

40

50

60

er
ro

r
(%

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

tim
e

(s
)

error-rate
run-time

Figure 2: The error-rates and run-times ofNO07 for different
values of φ.

Figure 3 shows the run-times of all the described secure equality

testing protocols. Since VAT09, LT13, ST06, and NO07 are much

more expensive regarding run-time than our protocols; we present

their run-times separately in Figure 3b. As it is shown in Figure 3a,

EQT-1 has the lowest run-time for inputs smaller than 20 bits.

Figure 3b shows the proposed protocols are computationally much

more efficient than the state-of-the-art, as they outperform NO07,

ST06, VAT09, and LT13 by 95%, 96%, 97%, and 99%, respectively for

25-bit inputs.

Notice that Figure 3a shows the total run-time, which involves

run-times of all operations including encryption and decryption.

However, Table 3 only presents the complexities of multiplication,

exponentiation, and DGK zero-check, and it does not take into

account the encryption and decryption costs.

5.3 Applying data packing
We observed that Paillier decryption dominates a significant portion

of the total run-times of the protocols. For instance, it is shown

in Table 3 that EQT-3 is the most efficient protocol. However, in

Figure 3a, EQT-3 does not demonstrate the same efficiency due to

the cost of Paillier decryption. Data packing [29] can be used to

mitigate such effect of Paillier decryption cost. Data packing reduces

decryption cost since multiple messages packed in one ciphertext

can be decrypted at once. However, data packing is applicable in the

cases where there are multiple equality tests to be performed. This

condition is realistic since in existing applications such as search

algorithms many equality tests are needed. Since data packing uses

the plaintext space of the encryption scheme, Paillier, efficiently, it

also reduces the communication cost. Figure 4 shows that the run-

time and total data transmission of our equality testing protocols

are reduced significantly after applying data packing. Notice that

Page 8 of 10

Secure Equality Testing Protocols in the Two-Party Setting ARES 2018, August 27–30, 2018, Hamburg, Germany

5 10 15 20 25 30

input bitsize

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

tim
e

(s
)

[VAT09]

[LT13]

[ST06]

[NO07]

EQT-1

EQT-2

EQT-3

(a)

5 10 15 20 25 30

input bitsize

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

tim
e

(s
)

EQT-1
EQT-2
EQT-3

(b)

Figure 3: Run-times of the equality testing protocols without data packing.

the results in Figure 4a are matching our analysis in Table 3, which

does not take encryption and decryption into account. According

to Figure 4a, EQT-3 after data packing outperforms VAT09, LT13,

ST06, and NO07 by 99% for the inputs larger than 20 bits.

Table 6 compares performance of the protocol based on run-

time, communicational round, and total data transmission for the

inputs size of 20 bits. Table 6 clearly shows the trade-off between

communication and computation costs in all protocols.

Table 6: Comparing EQT’s performances (ℓ = 20,φ = 12,u =
31).

Protocols Run-time (sec) Rounds Data transmission (KB)

EQT-1 0.008 2 10

EQT-2 0.0048 3 13

EQT-3 0.0033 3 19

6 CONCLUSIONS
Testing equality of encrypted values is a building block in a number

of cryptographic protocols such as searching in encrypted databases.

In this work, we have investigated the state-of-the-art protocols and

propose three new cryptographic protocols, which are significantly

more efficient than the existing work regarding communication and

computation. However, each protocol presented in this paper has

its own advantages and disadvantages on run-time, bandwidth, and

the number of rounds. Nevertheless, our analysis and experimental

results support our claims in terms of efficiency compared to the

state-of-the-art.

REFERENCES
[1] Judit Bar-Ilan and Donald Beaver. 1989. Non-Cryptographic Fault-Tolerant

Computing in Constant Number of Rounds of Interaction. In Proceedings of the

Eighth Annual ACM Symposium on Principles of Distributed Computing, Edmonton,
Alberta, Canada, August 14-16, 1989. 201–209. DOI:http://dx.doi.org/10.1145/
72981.72995

[2] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. 2007.

Nist sp800-57: Recommendation for key management part 1: General (revised).

NIST, Tech. Rep (2007).

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Complete-

ness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computa-

tion (Extended Abstract). In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. 1–10. DOI:
http://dx.doi.org/10.1145/62212.62213

[4] Guilhem Castagnos, Laurent Imbert, and Fabien Laguillaumie. 2017. Encryption

Switching Protocols Revisited: Switching Modulo p. In Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part I. 255–287. DOI:http://dx.doi.org/
10.1007/978-3-319-63688-7_9

[5] David Chaum, Claude Crépeau, and Ivan Damgård. 1988. Multiparty Uncondi-

tionally Secure Protocols (Extended Abstract). In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA.
11–19. DOI:http://dx.doi.org/10.1145/62212.62214

[6] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. 2015.

Secure Multiparty Computation and Secret Sharing. Cam-

bridge University Press. http://www.cambridge.org/de/academic/

subjects/computer-science/cryptography-cryptology-and-coding/

secure-multiparty-computation-and-secret-sharing?format=HB&isbn=

9781107043053

[7] Ronald Cramer, Eike Kiltz, and Carles Padró. 2007. A Note on Secure Computation

of the Moore-Penrose Pseudoinverse and Its Application to Secure Linear Algebra.

In Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings. 613–630.
DOI:http://dx.doi.org/10.1007/978-3-540-74143-5_34

[8] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.

2006. Unconditionally Secure Constant-Rounds Multi-party Computation for

Equality, Comparison, Bits and Exponentiation. In Theory of Cryptography, Third
Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7,
2006, Proceedings. 285–304. DOI:http://dx.doi.org/10.1007/11681878_15

[9] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. 2008. Homomorphic

encryption and secure comparison. IJACT 1, 1 (2008), 22–31.

[10] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. 2009. A correction to

‘efficient and secure comparison for on-line auctions’. IJACT 1, 4 (2009), 323–324.

DOI:http://dx.doi.org/10.1504/IJACT.2009.028031
[11] Ivan Damgård and Jesper Buus Nielsen. 2003. Universally Composable Efficient

Multiparty Computation from Threshold Homomorphic Encryption. In Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,

Page 9 of 10

http://dx.doi.org/10.1145/72981.72995
http://dx.doi.org/10.1145/72981.72995
http://dx.doi.org/10.1145/62212.62213
http://dx.doi.org/10.1007/978-3-319-63688-7_9
http://dx.doi.org/10.1007/978-3-319-63688-7_9
http://dx.doi.org/10.1145/62212.62214
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://dx.doi.org/10.1007/978-3-540-74143-5_34
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1504/IJACT.2009.028031

ARES 2018, August 27–30, 2018, Hamburg, Germany Majid Nateghizad, Thijs Veugen, Zekeriya Erkin, and Reginald L. Lagendijk

5 10 15 20 25 30

input bitsize

0

1

2

3

4

5

6

7

8

9

tim
e

(s
)

10-3

EQT-1
EQT-2
EQT-3

(a)

5 10 15 20 25 30

input bitsize

0

5

10

15

20

25

co
m

m
un

ic
at

io
n

(K
B

)

EQT-1
EQT-2
EQT-3

(b)

Figure 4: Run-time and data transmission of the equality testing protocols after data packing.

Santa Barbara, California, USA, August 17-21, 2003, Proceedings. 247–264. DOI:
http://dx.doi.org/10.1007/978-3-540-45146-4_15

[12] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2, Basic Appli-
cations. Cambridge University Press.

[13] Carmit Hazay and Tomas Toft. 2014. Computationally Secure Pattern Matching

in the Presence of Malicious Adversaries. J. Cryptology 27, 2 (2014), 358–395.

DOI:http://dx.doi.org/10.1007/s00145-013-9147-8
[14] Kaibin Huang, Raylin Tso, and Yu-Chi Chen. 2017. Somewhat semantic secure

public key encryption with filtered-equality-test in the standard model and its

extension to searchable encryption. J. Comput. Syst. Sci. 89 (2017), 400–409.
[15] Arjan Jeckmans, Andreas Peter, and Pieter Hartel. 2013. Efficient privacy-

enhanced familiarity-based recommender system. In Computer Security–ESORICS
2013. Springer, 400–417.

[16] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. 2009. Im-

proved Garbled Circuit Building Blocks and Applications to Auctions and Com-

puting Minima. In Cryptology and Network Security, 8th International Conference,
CANS 2009, Kanazawa, Japan, December 12-14, 2009. Proceedings. 1–20. DOI:
http://dx.doi.org/10.1007/978-3-642-10433-6_1

[17] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit:

Free XOR Gates and Applications. In Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,
Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming &
Track C: Security and Cryptography Foundations. 486–498. DOI:http://dx.doi.org/
10.1007/978-3-540-70583-3_40

[18] Hyung Tae Lee, San Ling, Jae Hong Seo, and Huaxiong Wang. 2016. Semi-

generic construction of public key encryption and identity-based encryption

with equality test. Inf. Sci. 373 (2016), 419–440.
[19] Chen Li, Rongxing Lu, Hui Li, Le Chen, and Jie Chen. 2015. PDA: a privacy-

preserving dual-functional aggregation scheme for smart grid communications.

Security and Communication Networks 8, 15 (2015), 2494–2506.
[20] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation Proof

Technique. In Tutorials on the Foundations of Cryptography. 277–346.
[21] Helger Lipmaa and Tomas Toft. 2013. Secure Equality and Greater-Than Tests

with Sublinear Online Complexity. In Automata, Languages, and Programming -
40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceed-
ings, Part II. 645–656. DOI:http://dx.doi.org/10.1007/978-3-642-39212-2_56

[22] Majid Nateghizad, Zekeriya Erkin, and Reginald L Lagendijk. 2016. An efficient

privacy-preserving comparison protocol in smart metering systems. EURASIP
Journal on Information Security 2016, 1 (2016), 1–8.

[23] Takashi Nishide and Kazuo Ohta. 2007. Multiparty computation for interval,

equality, and comparison without bit-decomposition protocol. In Public Key
Cryptography–PKC 2007. Springer, 343–360.

[24] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding. 223–238. DOI:http://dx.doi.org/10.
1007/3-540-48910-X_16

[25] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding. 223–238. DOI:http://dx.doi.org/10.
1007/3-540-48910-X_16

[26] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. 2009. Efficient

Privacy-Preserving Face Recognition. In Information, Security and Cryptology -
ICISC 2009, 12th International Conference, Seoul, Korea, December 2-4, 2009, Revised
Selected Papers. 229–244. DOI:http://dx.doi.org/10.1007/978-3-642-14423-3_16

[27] Berry Schoenmakers and Pim Tuyls. 2006. Efficient Binary Conversion for

Paillier Encrypted Values. In Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings. 522–537.
DOI:http://dx.doi.org/10.1007/11761679_31

[28] Qiang Tang. 2012. Public key encryption supporting plaintext equality test and

user-specified authorization. Security and Communication Networks 5, 12 (2012),
1351–1362.

[29] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, Mehmet Celik, and Aweke

Lemma. 2007. A secure multidimensional point inclusion protocol. In Proceedings
of the 9th workshop on Multimedia & security. ACM, 109–120.

[30] Libing Wu, Yubo Zhang, Kim-Kwang Raymond Choo, and Debiao He. 2017.

Efficient and secure identity-based encryption scheme with equality test in cloud

computing. Future Generation Comp. Syst. 73 (2017), 22–31.
[31] Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong. 2010. Proba-

bilistic Public Key Encryption with Equality Test. In Topics in Cryptology - CT-RSA
2010, The Cryptographers’ Track at the RSA Conference 2010, San Francisco, CA,
USA, March 1-5, 2010. Proceedings. 119–131.

[32] Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. 2005. Privacy-Preserving

Classification of Customer Data without Loss of Accuracy. In Proceedings of the
2005 SIAM International Conference on Data Mining, SDM 2005, Newport Beach, CA,
USA, April 21-23, 2005. 92–102. DOI:http://dx.doi.org/10.1137/1.9781611972757.9

Page 10 of 10

http://dx.doi.org/10.1007/978-3-540-45146-4_15
http://dx.doi.org/10.1007/s00145-013-9147-8
http://dx.doi.org/10.1007/978-3-642-10433-6_1
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dx.doi.org/10.1007/978-3-642-39212-2_56
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-14423-3_16
http://dx.doi.org/10.1007/11761679_31
http://dx.doi.org/10.1137/1.9781611972757.9

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Security Setting
	2.2 Homomorphic Encryption

	3 Our Protocols
	3.1 Equality Testing Protocol (EQT)-1
	3.2 Equality Testing Protocol (EQT)-2
	3.3 Equality Testing Protocol (EQT)-3

	4 Security Analysis
	4.1 Security of EQT-1
	4.2 Security of EQT-2
	4.3 Security of EQT-3

	5 Performance Analysis
	5.1 Complexity Analysis
	5.2 Experimental Results
	5.3 Applying data packing

	6 Conclusions
	References

