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ASYMPTOTIC NORMALITY OF NONPARAMETRIC 

TESTS FOR INDEPENDENCE 

by 

F.H. Ruymgaart 

Mathematisah Centrwn, Amsterdam 

Summary. Asymptotic normality of linear rank statistics for 

testing the hypothesis of independence is established both under fixed 

alternatives (or the null hypothesis) and under converging alternatives. 

The results of Ruymgaart, Shorack and van Zwet [13] are used to obtain 

a further weakening of the smoothness conditions on the score functions. 

In the present case the score functions are allowed to have a finite 

number of discontinuities of the first kind. 
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1. Introduction. For each n, let (x1,Y 1), ... ,(Xn,Yn) be a set of 

independent identically distributed (iid) random vectors, with common 

continuous bivariate distribution function (df) H(x,y) having marginal 

dfs F(x) and G(y). The bi variate empirical df based on this sample is 

denoted by H . With respect to then random variables (rvs) X.(Y.) cor-
n i i 

responding to the first (second) coordinates, the empirical df is denoted 

by F (G ) , the i-th order statistic by X. (Y. ) and the rank of X. (Y.) 
n n in in i i 

by R.(Q.). All samples are defined on a single probability space 
i i 

(r;i ,A,P). 

The rank statistics most commonly used to test the independence 

hypothesis H = F.G, are of the linear type 

-1 In ) T = n . 1 a (R. b (Q.), 
n i= n i n i 

where a (i), b (i) are real numbers for i = 1 , ... , n (see Hajek and 
n n 

~idak [9]). A suitably standardized version of T will be (see also 
n 

Bhuchongkul [2]) 

( 1. 1) 

here 

( 1. 2) 

n1/2(T -µ) 
n 

= n 112[ff J (F) K (G )dH - µ]; 
n n n n n 

J (s) = a (i), K (s) = b (i), 
n n n n 

for (i-1)/n < s .::_ i/n and 1 = 1, ... , n, and 

( 1 • 3) µ = µ(H) = ff J(F) K(G)dH, 

for some functions J and Kon (0,1) that can be thought of as limits 

of the score functions J and K . 
n n 
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This paper is a continuation of Ruymgaart, Shorack and van Zwet [ 13]. 

Theorem 2.1 states the asymptotic normality of (1.1) both under the hy

pothesis and under fixed alternatives, and it covers [13], Theorems 2.1 

and 2.2 under Assumption 2.3 (b) as special cases. The generalization 

lies in a futher weakening of the smoothness conditions to be imposed 

on the score functions J and K on ( 0, 1',) • In the present case these 

functions are allowed to have a finite number of discontinuities of the 

first kind. This weakening of the smoothness conditions entails, as 

could be expected (see e.g. Dupa~ and Hajek [4]) a local differentiabi

lity condition on the underlying continuous df H. By a decomposition of 

the score functions J, Kin their continuous parts J , K and their 
C C 

discontinuous parts Jd, Kd the method of [13] can be ~sed to take 

care of the continuous part. This method is based on an application of 

the mean value theorem (Bhuchongkul [2] uses a Taylor-series expansion 

up to second order derivatives) and Lemma 2.2 of Pyke and Shorack [ 12 ]. 

For the discontinuous part we mainly need Lemma 4.4, which is similar 

to a bivariate form of Bahadur [1], Lemma 1 or Sen [14], Theorem 2.1. 

The results of Bahadur and Sen are for univariate dfs only but stronger 

in the sense that they provide "almost sure" statements while our result 

gives a statement "in probability". On the other hand Lemma 4. 4 does not 

require any condition on the underlying bivariate df H, which need not 

even be continuous, and the conclusion of the lemma is uniform in all 

sequences of intervals in the plane. Similarly Sen [15] utilizes his 

above result ([14], Theorem 2,1) for multivariate rank order statistics 

in the location problem, when purely discontinuous score functions with 

a finite number of jumps are used. More recently, among others Ghosh [6] 

studied the above mentioned problem for· univariate d.fs, initiated by Bahadur. 

In Theorem 2.2 the case of converging alternatives is considered: 

the bivariate df H, from which the sample has been drawn, may now depend 
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on the sample size n. Hence we write more explicitly H(n) instead of H 

and F(n)' G(n) for the marginals instead of F, G respectively. Under 

certain convergence conditions on the sequence of dfs H(,)' H( 2 ), ... 

asymptotic normality of 

( 1 • 4) n1/2(T -µ ) 
n n 

= n 112 [JJ J (F) K (G )dH - µ] 
n n n n n n 

is proved. Here 

( 1. 5) 
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2. Statement of the theorems. To formulate the assumptions needed 

for the theorems, we shall first introduce some notation. Attention will 

be restricted to the class Hof all continuous bivariate dfs H. Let further 

( 2. 1) A = A = A 1 x A 2 , with A 1 = [X 1 ,X ], A 2 = [Y 1 ,Y ], n nw n· w n w n n nn n n nn 

(2.2) F* = [n/(n+1)]F , a*= [n/(n+1)]G. 
n n n n 

For any pair of real numbers u, v the symbol o (v) stands for 
u 

(2,3) o (v) = 0 if v < u, o (v) = 1 if v > u. 
u u 

The assumption on the limit behaviour of J and K concerns 
n n 

(2.4) = n 1/ 2 !![J (F) K (G) - J(F*) K(G*)]dH , 
n n n n n n n 

For ease of reference some definitions of Pyke and Shorack [12] and 

Shorack [16] will be copied. 

DEFINITION 2,1. (Pyke and Shorack), Let Q' denote the class of all 

non-negative functions defined on [0,1] which for some a> 0 are bounded 

away from zero on (a,1-a), are non-decreasing (non-increasing) on 

[O,a]([1-a,1]) and have square integrable reciprocals. ~et 

Q = {q right continuous on [0,1] : q ~ q' for some q' € Q'}. 

DEFINITION 2.2. (Shorack). A strictly positive function r on (0,1) 

will be called "u-shaped" if for some O <a< 1 the function is de

creasing on ( 0 ,a] and increasing on ( a, 1). For S € ( 0, 1) we introduce 

the notation r 6 for 

(2.5) r 6(s) = r(Ss) for O < s < 1/2, r 6(s) = r(1-S(1-s)) for 1/2 < s < 1. 
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If for all positive Sin a neighborhood of zero there exists a constant MS 

such that r S .::_ M8r on ( 0, 1) , then r will be called a "reproducing u-shaped 

function". The class of all reproducing u-shaped functions will be denoted 

by R. 

~ ~ REMARK. Throughout this section the functions r 1,r1,r2 ,r2 are members 

of R. These functions and the points O < s 1 < ••• < sA < 1 and 

0 < t 1 <, •• < tv < 1 are supposed to be fixed. 

* ASSUMPTION 2,1. Let be given the subclass H• c H. As n ➔ 

uniformly for H e: H' • 

00 , B ➔ 0 
On p 

ASSUMPTION 2,2, The functions J and Kare defined on (0,1) and can 

be written as J =Jc+ Jd and K =Kc+ Kd. Here Jd = l~= 1 ai Qs. and 
i 

and with Q , Qt as de-s. . 
i J 

Kd = l~-, S. Qt for arbitrary constants a., S. 
J- J . i J 

J 
fined in (2,3), Further J and K are continuous on 

C C . 
(0,1) and have con-

tinuous derivatives J' = J' and K' = K' on the open intervals between 
C C 

the points O, s 1 , •.• , sA, 1 and 0, t 1 , ..• , tv, 1 respectively. As to 

the orders of magnitude of the above functions, where defined on ( O., 1) 

we have 

ASSUMPTION 2,3, Let be given the subclass H1 c H. For some constant 

E > 0 and functions q 1 , q2· e: Q we have 
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ASSUMPTION 2.4. Either (a) Jd = Kd = 0 on (0,1) in Assumption 2.2, 

or (b) the following holds for the subclass H' c H. There is an open set 

o1 containing the points s 1 , .•• , sA and an open set o2 containing the 

points t 1, .•• , tv such that for each H € H' the density h(s,t) = 

2 ( -1( ) -1( ))/ . . . ( ) = a HF s ,G t asat exists and is continuous on o1 x 0,1 U (0,1) X 02 , 

Moreover the subclass H' satisfies the equicontinuity conditions 

supH€H' jh(s,t) - h(si,t)I ➔ 0 ass ➔ si for all t € (0,1), 

i=1, ... ,A, 

supH€H I I h ( s , t) - h ( s, t j ) I ➔ 0 as t ➔ t j for all s € ( 0, 1 ) , 

j=1, ••. ,v, 

and has the property that there exist functions f and g on (0,1) such that 

supH€H' h(s,t) ~ f(s) for all ( s 't) € ( 0, 1 ) X 02 , 

with 
1 ' 

JO r ,( s) f( s) ds < co, 

supH€H' h(s ,t) ~ g(t) for all ( s 't) € 0 1 X (0,1), 

with !1 
0 r 2(t) g(t)dt < co, 

We also need the following modification of Assumption 2.4. 

ASSUMPTION 2,5, Let H(n) € H for n = 0,1,2,... As n ➔ co, 

H(n)(x,y) ➔ H(O)(x,y) for all x, y. Moreover either (a) Jd = Kd = 0 on (0,1) 

in Assumption 2,2, or (b) Assumption 2.4 (b) is satisfied with 

H' = {H(O)'H( 1),H( 2)''''}. In the latter case we further have 

hn(si,t) ➔ h0 (si,t) for all t € (0,1), i = 1, ... , A and hn(s,tj) ➔ h0 (s,tj) 

for all s € ( 0 , 1 ) , j = 1 , .•• , 

ponding to H(n)' n = 0,1,2, .•• 

v as n ➔ co, Here h is the density corres
n 
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THEOREM 2.1. (Hypothesis and fixed alternatives). Suppose 

(x1 ,Y 1), .•. , (Xn,Yn) is a sample from a fixed df HEH not depending 

on the sample size. If Assumptions 2.1 - 2.4 are satisfied with 

HI = {H} O, then 1/2 2 as n + co, with and E = n (T -µ) + N(O,o) n d 

finiteµ = µ(H) and o 2 = cr 2 (H) given by (1.3) and (3.5) respectively. 

Suppose Assumptions 2.1 - 2.4 are satisfied for some fixed subclass 

H' c Hand E > o. If o2 = o2 (H) is bounded away from zero on 

H', then the above convergence in distribution is uniform for H € H'. 

THEOREM 2.2. (Converging alternatives). Suppose (X1 ,Y 1), ..• , (Xn,Yn) 

is a sample from a df H(n) EH that may depend on the sample size n. Let 

for some H(O) EH Assumptions 2.1 - 2.3 and 2.5 be satisfied with 

H' = 

then 

. . . 2 2( ) 
E > O. If in addition o0 = o H(O) 

2 
n + co, with finite µn = µ(H(n)) and o 0 

given by (1.5) and (3.5) respectively. 

In spite of their formidable appearance, the assumptions of the 

theorems are satisfied in many interesting situations. Two examples of 

the validity of the first theor~m are provided by [13], Theorems 2.1 

and 2.2. Suppose that J (s) = J([n/(n+1)]s) and K (t) = K([n/(n+1)]t). 
n n 

. . . . . . . . * Thus Assumption 2,1 is trivially satisfied with Bon= 0 for all n and 

HEH. Further suppose that Assumption 2,2 is satisfied with Jd = Kd = 0 

on ( 0, 1) ( so that Assumption 2. 4 (-a) holds) 

-a ~ ) -a-1 : D[s(1-s)J , r 1(s) = D[s(1-s] , 

and 

-b r 2(t) = D[t(1-t)J , 

[ ( )J-b-1 . . . D t 1-t , where Dis a positive constant and a and bare 

given real numbers. For O < o < 1/2, first let a= (1/2-o)/p and 

-1 -1 
b = (1/2-o)/q , where p , q > 1 with p + q = 1. Secondly let 

a= b = 1/2 - o; for this constant o and a fixed constant C consider 

> 0' 
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the subclass 

HCo = {H € H: dH ~ C[F(1-F) G(1-G)]-o/2d.FdG}. Then for the above two 

choices of a,b Assumption 2,3 holds with H' =Hand H' = HCo respectively. 

In either case the assumption is satisfied for some E > 0 (depending 

1/2-0/4 1/2 o/4 on a,b,o) and for q1(s) = [s(1-s)J , q2 (t) = [t(1-t)J - . A 

third example is given by the quadrant test statistic for independence 

(see Hajek [8]), which is defined by the score functions Jn(s) = o 1; 2+1/n(s), 

Kn(t) = 0112+1/n(t). Taking J(s) = o112(s), K(t) = o112 (t) we see that 

B* = O(n- 112 ) uniformly for H € H, so that Assumption 2.1 is satisfied with 
On 

H' = H. By the boundedness of the score functions Assumptions 2.2 and 2,3 

are trivially satisfied for some e > 0 and with H1 = H. 

However, in the latter case Assumption 2.4 (b) must be fulfilled. 

Let us first note that Assumption 2.4 (b) holds if for H1 we take the class 

of all null-hypothesis dfs in H, since for such a df H = F,G the trans

formed df equals s.t on (0,1) x (0,1) with density identically equal to 

on the unit square. By way of a further example let us verify this assumption 

in the case of bivariate normal dfs <P (x,y) with standard normal marginal p 

dfs <I>(x) and <I>(y) and correlat'ion coefficient -1 < p < 1. The transformed 

df <I> (<I>- 1(s), <I>- 1(t)) has a continuous density on (0,1) x (O,1) given by 
p 

a2<I> (<I>- 1(s), <I>- 1(t))/asat = (1-p 2 )- 112exp(-[(p<I>- 1(s)) 2 + 
p 

(p<I>- 1(t)) 2 - 2p<I>- 1(s)<I>- 1(t)J/[2(1-p2 )J). From this it follows that As-

sumption 2.4 (b) is satisfied for any class H8 = {<I>P:-1+o ~ p ~ 1-o} 

with O < o < 1, In this case the assumption even holds with f and g 

constant on (0,1). 

Theorem 2,2 is especially useful for the calculation of Pitman

efficiencies. Then we take H(O) = F(O)'G(O)' i.e. for H(O) we take a 

null-hypothesis df, If in this case moreover 
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(2.6) 

as n + 00for some finite number e, Theorem 2.2 reduces to 

(2.7) 

2 
as n + co, Here µ 0 and cr0 are the null-hypothesis mean and variance 

respectively. 

For instance consider the class of alternatives H = FG[1+a.(1-F)(1-G)] 

for some -1 <a.< 1, introduced by Gumbel [7]. The marginal dfs of Hare 

F and G. For some fixed a. f O and F ( 0 ), G ( 0 ) let us choose 

H(n) = F(O) G(O) [1+n- 112a.(1-F(0))(1-G(O))J (more general alternatives of 

this form a.re considered e.g. by Puri, Sen and Gokhale [ 11 J). It is not 

hard to see that H(n) + F(O) G(O) and that the limit (2.6) exists as 

n + co, 
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3, Proof of Theorem 2.1: Asymptotic normality of the leading terms. Let 

( 3. 1 ) F- 1(s) = inf {x:F(x) ~ s}, G- 1(t) = inf {y:G(y) > t}. 

If Fis continuous these definitions imply F(F- 1(s)) = s, F(x) < s if 

-1 ) and only if x < F (s), F(x > s if and . -1 ( ) , . only if x ~ F s and similar 

statements for continuous G. The random functions F (F- 1) and G (G- 1) are 
n n 

with probability 1 the empirical dfs of the sets of independent uniform 

(0,1) rvs F'(X 1), ... , F(Xn) and G(Y 1), ... , G(Yn) respectively. Define the 

empirical processes U (s) = n 112[F (F-\s)) - s], V (t) = n 112[G (G-\t))-t] n n n n 

and the processes u*(s) = n 112[F*(F- 1(s))-s], v*(t) = n 112[G*(G- 1(t))-t] 
n n n n 

for s, t E [0,1] (see (2.2)). With probability 1 these processes satisfy 

U (F) = n 112 (F -F), V (G) = n 112 (G -G) and u*(F) = n 112 (F*-F), n n n n n n 

v*(G) = n 112 (G*-G) on (-00 , 00 ). For a suitable decomposition of (1.1) we 
n n 

need the following lemma. 

LEMMA 3,1, Let for HEH Assumption 2.4 (b) be satisfied with 

H' = {H}, Let ¢ and 1jJ be functions on the unit interval such that 

J~ l¢(s)lds, J~ l¢(s) f(s)lds, f~ liJJ(t)!dt, J~ !iJJ(t) g(t)ldt < 00 Here 

f and g are defined in Assumption 2.4 (b). Then 

(i) E(ijJ(G(Y))IF(X) = s) has a version continuous on o1 , to be 

denoted by EH(iJJ!s); 

(ii) E(¢(F(X))!G(Y) = t) has a version continuous on o2 , to be 

denoted by EH (¢It) , 

PROOF. It suffices to prove (i). Since (X,Y) has df H, (F(X) ,G(Y)) 

has df H(F- 1 ,G- 1) so that the latter df has uniform (0,1) marginals. 

Consequently the function J~ ijJ(t) h(s,t)dt is a version of the conditional 

expectation considered in (i), restricted to o1. Moreover this version is 
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continuous on o1, for lets, s + ~ e o1 and consider 

1 ! 0 $(t)[h(s+,,t) - h(s,t)Jdt. By continuity of the function h we have 

h(s+,,t) - h(s,t) ➔ 0 as, ➔ 0 for each t e (0,1). By the assumptions 

of the lemma we moreover have 

l$(t)llh(s+,,t) - h(s,t)I .S. 2l$(t) g(t)lfor each t e (0,1), and 

f~ l$(t) g(t)ldt < 00 , Finally, by the dominated convergence theorem, we obtain 

f~ $(t)[h(s+,,t) - h(s,t)]dt + 0 as,+ O. D 

At this point let us give the basic decomposition 

(3,2) n 112 (T -µ)=A + l~ (A! +A. ) + B0*n + B' + B + B' + B + C' + C , n On i=1 in in n n n n n n 

* with probability 1. Here Bon is defined in (2.4) and using the notation 

of Lemma 3,1 we further have 

A = On n 112 f!J(F)K(G)d(H -H), 
n 

A' 1n = f!Un(F)J'(F)K(G)dH, A1n = 

A' 2n = f!Vn(G)J(F)K'(G)dH, A2n = Lj= 1 

a. EH(K!s. )U (s. ), i i n i 

s. EH(Jlt,)V (t.), 
J J n J 

B~ = n 1/ 2 J![Jc(F:) - Jc(F)]K(G)dHn - A1n' 

Bn = n 112 JJ[Jd(F:) - Jd(F)]K(G)dHn - A1n' 

B' = n 1/ 2 JJJ(F)[K (G*) K (G)]dH A2'n' n c n c n 

Bn = n 1/ 2 JJJ(F)[Kd(G:) Kd(G)]dHn A2n, 

C' = n 112 Jf[J (F*) - J (F)][K(G*) - K(G)]dH, 
n c n c n n 

Cn = n 112 JJ[Jd(F:) - Jd(F)][K(G:) - K(G)]dHn. 

~ ~ ~ ~ 

Let us note that B', B are symmetric to B' B. Therefore B' and B will n n n' n n n 

not be treated in the sequel. 

In this section attention will be restricted to the asymptotic 

normality of the A-terms. As far as AOn' A1n and A2n are concerned see 

also [13]. The rv Aon may be written in the form 
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(3,3) - 1 /2 "n A = n I A On L.k=l Okn' 

where the AOkn = J(F(~)) K(G(Yk)) - J.J are iid with mean zero. For the 

fixed df H (the fixed subclass of dfs H1 ) the rv AOkn has a finite moment 

of order 2 (a finite absolute moment of order larger than 2, bounded on 

H') by Assumption 2. 3. 

Note that for o as defined in (2,3) with probability 1 we have 

o~(x) = oF(JSc)(F(x)) and o~(F- 1(si)) = oF(JSc)(si). Thus with probabi-

, -1 / 2 1n 
lity 1 we have Un(F) = n lk=l[oF(JSc)(F)-F] and 

Un(si) = n-l/ 2 I~= 1[oF(JSc)(si)-siJ. By this and similar expressions for 

V (G) and V (t.) we obtain 
n 11 J 

A' = n-1/2 In 
1n k=l A1kn ' Aln = -112 In 

n k=l A1kn' 

(3.4) 

A' = -1/2 \n 
A2kn A2n = -1/2 \n 

A2kn' 2n n L.k= 1 ' 
n L.k=1 

where Alkn -- JJ[oF(~)(F)-F]J'(F)K(G)dH, Alkn = I~=lai[oF(JSc)(si)-si ]EH(Klsi)' 

A2kn = JJ[oG(Yk)(G)-G]J(F)K'(G)dH, A2kn = Ij=lBj[oG(Yk)(tj)-tjJEH(Jltj)' 

k = 1 , ... , n. Each of these four sets of rvs consists cif n iid rvs with mean 

zero. As to the Alkn and A2kn the absolute moments of any order exist for 

fixed df H (are bounded on the fixed subclass of dfs H1 ). To see the existence 

of higher order moments of the Alkn and A2kn we need the following property 

of q-functions. 

LEMMA 3. 2. Let for arbitrary s, u E:: ( 0 ', 1 ) the symbol o ( u) be defined 
s 

as in (2.3), and let q be any function in Q (see Definition 2.1). Then there 

ex.i.3ts a constant M = M ( depending on q only) such that 
q 

los(u) - uJ .::_ M q(u)[q(s)J- 1 for O < s, u < 1. 
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PROOF, If q is non-decreasing on [O,a] with a> O, there exists a 

number E = E satisfying O < E < a, such that s ~ q(s) for O _.::. s _..::. E, For q 

suppose such E does not exist. Then there is a sequences + 0 satisfying 
n 

q(s ) < s , and hence [q(s )J-2 > s-2 . The reciprocal of q is square inte-n n n n 
1 ( ) -2 -1 grable on the unit interval; on the other hand J0[q s J ds ~ sn + 00 as 

n + 00 .which yields a contradiction. (Similarly sharper bounds for q in the 

neighborhood of zero may be obtained.) 

Let us first consider pairs u < s. Then 

los(u) - ul[q(u)J- 1 2,. u[q(u)J- 1. For O < u 2,. c:, with E as above, we find 

) -1 ( ) --1 ( u[q(u J 2,. 1 ~ M,Cq,s J ,if M1 = maxsdO, 1]q s). For E < u 2,. a and M1 as 

-1 -1 ( ) -1 ( ) -1 above we have u[q(u)J ~ [q(c:)] ~ M1[q E J [q s J • Finally for 

a< u < 1 we simply have u[q(u)J-1 2,. [q(s)J-1 . Evidently for u < s the lemma 

holds with M = max{M1, M1[q(c:)J- 1 , 1}. For pairs u > s the proof can be given 

in the same way. D 

Lemma 3,2 applied with q = q1 , where q1 is the function introduced in 

Assumption 2,3, guarantees the existence of a constant M1 = M such that for 
q, 

each w 

k=1, ... , n. By Assumption 2,3 for the fixed df H (the fixed subclass of 

dfs H') the random part [q1(F(~))J-1 of this upper bound possesses a finite 

moment of order 2 (a finite absolute moment of order larger than 2, bounded 

on H1 ). It is due to the same assumption that for the fixed df H (the fixed 

subclass of dfs H1 ) the non-random integral is finite (bounded on H1 ). A 

similar argument deals with A2kn' 
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Combining (3,3) and (3,4) we see that, given the fixed df H, for 

k = 1, ... , n the sums AOkn + A1kn + A1kn + A2kn + A2kn are iid with mean 

zero and finite variance depending on H,, equal to 

0 2 = 0 2 (H) = Var(AOkn + A1kn + A1kn + A2kn + A2kn). Hence application 

of the central limit theorem gives 

-l/ 2 \n (A +A' +A +A' +A ) A A' A A' A ( 2 ) n lk=1 Okn lkn lkn 2kn 2kn = On+ ln+ 1n+ 2n+ 2n ➔ dN 0, 0 ' 

Since, given be fixed subclass H1 of dfs, a finit~ absolute moment of 

order larger than 2 is bounded on H' and since moreover the variance is 

given to be bounded away from zero on H' , by Es seen' s theorem the above 

asymptotic normality is uniform on H1 • 

The variance 0 2 = 0 2 (H) of the limiting normal distribution can be 

given a nice expression using the conditional expectations, introduced in 

Lemma 3, 1, and Stieltjes-Lebesgue-integrals: thus we obtain 

2 2 1 I 
c; = 0 (H) = Var[J(F(X))K(G(Y)) + J0[oF(X)(s)-s]EH(K s)dJ(s) 

(3,5) 

In Section 6 this expression for the variance is studied more in detail 

(see (6.1)) .. 
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4. Proof of Theorem 2,1: Some lemmas. First we shall give a lemma 

needed for the proof of the asymptotic negligibility of the second order 

terms B' and C' connected with the continuous part of the score function 
n n 

J. This lemma is based on Lemma 2.2 of Pyke and Shorack [12] and is only 

slightly more general than [13], Lemmas 6.1 and 6.2. The proof will there

fore ee omitted. 

LEMMA 4.1. For each w let~ = ~ and W = W be functions on 

J\n1 = J\n1w 

min {F,F*} 
n 

n nw n nw 

and A 2 = A 2 respectively (see 
n n w 

(2.1)), satisfying 

< ~ < max {F,F*} and min {G,G*} 
n - n n 

< W < max {G,G*} where de-
- n - n 

fined (see (2.2)). Then, uniformly for n = 1,2, •.. and HEH: 

( i) supJ\ r(~ )/r(F) = 0 (1), sup/\. r(W )/r(G) = 0 (1), for each 
n 1 n P n2 n P 

r ER (see Definition 2,2); 

(ii) 

(iii) 

sup A 
n1 

supi\i1 

iu*(F)l/q(F) = 0 (1), for each q E Q (see Definition 2.1); n p 

iu* (F) - U (F)l/q(F) = o (1), for each q E Q. 
n n p 

The remaining lemmas of this section are specific for the second order 

terms B and C connected with the discontinuous part of the score function 
n n 

J. Let us denote the binomial distribution for n trials with success proba-

bility s by Bi(n;s). It is well known (see e.g. Dvoretzky, Kiefer and 

Wolfowitz[5]) that if Z is a Bi(n;s) distributed rv we have the exponential 

bound 

( 4. 1) Pr( IZ-nsl 2:._ np) = O(exp(-2np 2)) 

as n + 00 ,uniformly for s E (0,1) and p 2:._ O. This result entails a useful 

property of the function p (a,b;s), for fixed constants a,b and for 
n 

s E ( 0, 1) defined by 
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(4.2) 

Here the function o is defined in (2,3) with s 1 € (0,1). 
s1 

LEMMA 4.2. Let a and b be fixed constants and let p (a,b;s) be defined n 

as in (4.2). Then 

(i) pn(a,b;s) = O(exp(-2n(s-s 1)2 )) as n ➔ 00 , uniformly for 

s,s1 € (0,1); 

(ii) f~ pn(a,b;s) = o(n- 112 ) as n ➔ oo, 

PROOF, (i) The function pn(a,b;s) is unequal to zero only ifs< s 1 

and j ~ (n+b)s 1 - a, ors~ s 1 and j < (n+b)s 1 - a. Supposes< s 1. Then 

pn(a,b;s) = Pr(Z ~ (n+b)s 1-a), where Z is a Bi(n;s) distributed rv. 

Since (n+b)s 1 - a= n(s+[s 1-s+(bs 1-a)/nJ), we have by (4.1) since a and b 

are fixed 

Pr(Z ~ (n+b)s 1-a) 2 
~ M0exp(-2n[s 1-s+(bs 1-a)/n] ) 

2 
~ M1exp(-2n(s 1-s) ), 

provided s 1 - s + (bs 1-a)/n ~ 0, Now consider the set 

D = {s:s 1 + (bs 1-a)/n < s < s 1}. If Dis empty there is nothing left to 

prove, hence suppose Dis not empty. Then 

2 2 
sup exp(2n(s 1-s) ) ~ m_axn= 1, 2 , •.• exp(2(bs 1-a) /n) s€D;n=1,2, .•. 

2 = exp(2(bs 1-a) ) = M2 say. Since pn is a probability it is always bounded 

2 by 1 and hence by M2 exp(-2n(s-s 1) ) for alls€ D and all n = 1 ,2, ..• 

We thus have, letting M = max{M1 ,M2}, that pn is bounded by 

2 M exp(-2n(s-s 1) ) for alls< s 1 and n = 1,2, ••. This inequality can 

similarly be shown to hold for s ~ s 1. 
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(ii) This follows at once from part (i) by 

1 ~ 2 -1/2 f 0 pn(a,b;s)ds .:_ M !_~ exp(-2n(s-s 1) )ds = O(n ) as n + ~. Q 

LEMMA 4,3, Let ljJ be a function on the unit interval with J~II/J(t)ldt < ~. 

Then for any H € H the following holds 

(i) 

(ii) 

E !JI Co (F*) 
s 1 n 

E J JI [o (F*) 
s 1 n 

- os (F)]ljJ(G)ldH .:,_f~ pn(0,1;s)E(j1µ(G(Y))IIF(X) = s)ds; 
1 

- os (F)]ljJ(G)ldHn .:_ f~pn_ 1(1,2;s)E(II/J(G(Y))I IF(X)=s)ds. 
1 

PROOF. (i) Because P({(n+1)F*(x)=j})=(~)Fj(x)(1-F(x))n..:.j for 
n J 

j = 0,1, ••• , n, we obtain 

E JJl[o (F*) - o (F)Jl/!(G)ldH 
s 1 n s 1 

= !~ pn(0,1;s) E(ll/!(G(Y))I IF(X) = s)ds. 

(ii) Similarly, since 

P({(n+1)F*(x.) = jlF(X.)}) = e:- 1) Fj-\x.)(1-F(X.))n-j for j = 1, ... , n, 
n i i J-1 i i 

we have 

E JJl[o· (F*) - o (F)Jl/!(G)ldH 
s 1 n s 1 n 

:s-; E(E(l[o (F*(x.)) - o (F(x.))]1/J(G(Y.))IIF(x.),G(Y.))) 
s 1 n i s 1 i i i i 

= E(ll/!(G(Y.))j0 E(lo (F*(x.)) - o (F(X.))IIF(X.))) 
i s 1 n i s 1 i i 

= ffL~-, (~- 1
1) Fj- 1(1-F)n-jl[o (j/(n+1)) - o (F)]I/J(G)jdH 

J- J- s s 
. 1 1 

= !~ Pn_,(1,2;s) E(J1µ(G(Y))I IF(X) = s)ds. D 

The last lemma is a corollary to Kiefer [ 10], Theorem 1-m; it is due to 

W.R. van Zwet. Like Kiefer's theorem, Lemma 4.4 can be formulated for 

m-dimensional random vectors. To avoid the introduction of additional 
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notational conventions we shall restrict attention to the case where m = 2. 

One of the basic supports of Kiefer's theorem quoted above is a sharpening 

of the exponential bound (4.1); form= 2 the theorem implies that for any 

fixed r,; > 0 

(4.3) P({sup IH (x,y)-H(x,y)I > p}) = O(exp(-(2-r,;)q, 2)), ..DO<x,y<00 n -

uniformly for all bivariate dfs H (continuous or not) and uniformly for 

all P ~ o. For a comparison between Lemma 4.4 and related results of 

Bahadur [ 1], Sen [ 14] and Ghosh [6] see Section 1. For any Bore2- ::e: 0 ~ 1.n 

the plane we shall write [JD dH = H{D}. By an interval I in the plane 

the product·set of two intervals on the line will be understood. 

LEMMA 4.4. (van Zwet). Let I 1,r2 , ••• be a sequence of intervals in 

1 { **· . . . } the plane and let = I :I 1.s an 1.nterval conta1.ned 1.n I , n = 1,2, ••• n n n n 

Then 

* IH {I} * H{ I } I 
n n n 

as n + 00 , uniformly in all sequences of intervals r 1,r2 , •.. and all 

bivariate dfs H (continuous or not). 

PROOF, Given any O < E < 1, the existence of a number M = M must 
E 

be established such that 

(4.4) P( { supI*d 
n n 

IH {I*} - H{I*}I > M[H{I }/nJ 1/ 2}) 
n n n - n for all 

n, uniformly in all sequences of intervals r1 ,I2 , .•• and all bivariate 

dfs H, 

If H{I} = 0 the lemma follows immediately. It proves to be convenient 
n 

to consider the cases O < H{I} < 8/(en)and H{I } > 8/(en) separately. 
n - n 
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First suppose that O < H{I} < 8/(En) and choose M = M = (2/E) 312 . 
n - E 

It is always true that sup1* I IH {r*} - H{r*} I < max {H {I } , H{I } }. 
€ n n n - n n n 

n n 1/2 
By our choice of M we have M[H{In}/nJ .:.. H{In}/E. Consequently we only 

have to prove the same inequality for H {I}. Since n H {I} is a 
n n n n 

Bi(n; H{I }) distributed rv, application of Markov's inequality gives 
n 

P({H {I}> M[H{I }/nJ 112}) < P({H {I}> H{I }/E}) < E, nn- n - nn- n -

Next we suppose that H{I} > 8/(En). Then fork= 0,1, ••. , n we 
n 

may define the probabilities 

TI(k) = P({supI* I IH {r*} - H{r*}I > M[H{I }/nJ 112}1{H {I}= k/n}). 
E n n n - n n n 

n n 

The probability in the left-hand side of (4.4) can now be written as 

(4.5) 

By the Bienayme-Chebyshev inequality we have 

(4.6) 'k H{I }/2 TI(k)P({H {I}= k/n}) < P({H {I}< H{I }/2}) 
l <n n n - n n - n n 

since by assumption H{I} > 8/(En). The second term in (4,5) deals with 
n 

values k f O. Fork f O conditional on H {I}= k/n we have, since also 
n n 

H{I} > 0 
n 

IH {I*} - H{r*} I n n n 

* H {I } 
n n 
H{I } 

n 

* H {I } 
n n 

ff {I-} 
n n 

= IHn{In} - H{In}I + H{In}supI*EI 
n n 

H {I*} 
n n 

H {I} 
n n 



-20-

Here H{I*} = H{I*}/H{I }_ is the- conditional probability that the random n n n -

vector (X,Y) is an element of r* c I under the hypothesis that it is an n n 

element of I • Hence, given H {I}= k/n with k + O, the ratio n n n 

Hk{r*} = H {I*}/H {I} is distributed as the empirical df corresponding n n n n n · 

to H, based on k + 0 observations. Consequently fork+ Owe have 

1r(k) ~ 1T 1 (k) + 1r2(k), where 

1r 1(k) = P({JH {I} - H{I }J > M[H{I }/4nJ 112}J{H {I}= k/n}), nn n -. n nn 

1r2(k) = P({supI*€I 
n n 

Ii {r*} - H{r*}J > M[4nH{I }J-112}). 
-ltn n - n 

Applying once more the Bienayme-Chebyshev inequality we obtain 

(4.7) lk>nH{I }/2 7T1(k) P({Hn{In} = k/n}) 
- n 

~ P({JHn{In} - H{In}J .::,_ M[H{In}/4nJ 112}) ~ 4/M2 . 

Finally we have to consider the summation containing the 1r2(k), For any 

interval I in the plane we have 

IHk{I} - H{I}I ~ 4 sup < < Ii (x,y) - H(x,y)J. According to formula 
_00 x,y 00 --ic 

(4,3), applied to Hk and H with e.g. r;; = 1, there~ists a constant M0 

such that 

and hence 

(4.8) 

< Mo exp(-n H{I }M2/(128nH{I })) = Mo exp(-M2/128). 
- n n 
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Combining (4.6), (4.7) and (4.8) we see that for H{I} > 8/(En) in-n 

equality (4.4) holds, provided Mis chosen so large that both (4.7) and 

(4.8) are smaller than E/4. Let us finally note that the argument is in

dependent of the sequence I 1,r2 , ••• and the bivariate df H. D 
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5, Proof of Theorem 2.1: Asymptotic negligibility of the remainder terms. 

As has already been noted in Section 3, the rvs B' , B are symmetric to B' n n n' 

B and hence need not be considered. Since J is continuous on ( 0, 1) and 
n C 

continuously differentiable on the open intervals between the points 

O,s 1 , ... ,s.;1_'1' the second order terms B~ and C~ can be dealt with in 

essentially the same way as the B* - and c* - terms in [ 13], Section 6. We n n 

only have to use Lemma 4. 1 instead of [ 7 3], Lemmas 6. 1 and 6. 2. Although 

in the pres:ent case the function K is no longer continuous it is easily 

seen that this does not affect the argument, because the mean value theorem 

is applied only to J. 
C 

Therefore we may restrict attention to the terms B and C . It suffices 
n n 

to consider the case where (see Assumption 2.2) 

J = 0 
d s 1 

= Qt ' 
1 

for fixed s 1 ,t 1 € (0,1). Given any set D, D will denote its complement, 

x(D) its indicator function and x(D;x) the value of this function at the 

point x. For small positive y we adopt the notation 

( 5. 1 ) 

where G-l is defined in (3,1). 

Since K satisfies the conditions of Lemma 3, 1, the conditional ex

pectation E(K(G(Y))JF(X) = s) possesses a version which is continuous on 

the open set o1 defined in Assumption 2.4. By convention this special 

version will be denoted by EH(KJs). Let us write Bn and Cn as 

B = B + 'i'~ B . , C = 'i'~ C . , n ln li=2 yin n li=1 ~in 



where 

B 
Y3n 

B 
y4n 

C 
y1n 

C 
y2n 

C 
Y3n 
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= n 1/ 2 ff[o (F*) - o (F)]K(G)d.H - U (s 1) E (Kls 1), 
s 1 n s 1 n 71 

= n 112 ff [o (F*) - o (F)]K(G) d(H -H), 
( ) ,s 1 n s 1 n 

-00,00 xsy2 

= - n 1/ 2 ff _ [o (F*) - o (F)]K(G).dH, 
(-00 , 00 )xs ~ s1 n s1 . 

Y"--

= n112 ff _ [o (F*) - o (F)]K(G)d.H , 
(-00 , 00 )xsy2 s1 n s1 n 

1/2 * = n ff( ) _ [o (F) _co 00 xs s n 
, y2 1 

o (F)]K(G*)dH , 
s 1 n n 

= 112 ff [o (F*) 
n (-00,co)xs s1 n 

y2 
o (F)][K(G*) - K(G)]d.H, 

s 1 n n 

1/2 * = .,.. n ff ( ) - [ o ( F ) - o ( F ) ]K ( G ) dH • 
- 00 , 00 xsy2 s1 n s1 n 

From this we see that B 4 and C cancel out. Throughout this section 
y n y3n 

let n > 0 be a fixed number small enough to ensure that [s 1-n,s 1+nJ c o1 

(see Assumption 2,4), and let an arbitrary E > 0 be given, 

The asymptotic negligibility of B1 and B 2 is mainly based on 
n y n 

Lemma 4.4. Let 1 = l(n) be the fixed sequence of natural numbers uniquely 

determined by 

(5.2) (n+1)s 1 .:_ 1 < (n+1)s 1 + 1. 

If we define the function sgn x = -1 for x < 0, sgn x = 0 for x = O, 

sgn x = 1 for x > 0 we have 

(5.3) o (F*(x)) 
s 1 n 

for each w and all x. Here 

( 5 .• 4) . -1 ) -1 ) ) rn 1 = [min{Xln' F (s 1 }, max{X1n,F (s 1 }. 
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To verify the equality (5.3) we use that o is continuous from the right s, 
in s 1 (see (2.3)) and we use the last two properties of F- 1 , given below 

the definition in (3,1). From the properties of empirical dfs and order 

statistics it follows that there exists a constant M0 = MOE such that 

( 5, 5) 

has probability P(n0n) ,:_ 1-E/2 for all n and He: H. Let us further define 

Applying Lemma 4.4 with I = I x (-00 , 00 ), and thus with H{I} = 2M - 7/ 2 
n n1 n on ' 

we find by (5.4) and (5,5) that there exists a constant M1 = M1E such that 

(5.6) n = n0 n {sup1* IH {r 1 x rn*2} - H{r x r* }I < M n-314} 
1 n n n2 n n n 1 n2 - 1 

has probability P(rl 1n) ,:_ 1 - E for all n and all He: H. Here the supremum 

is taken over all intervals r:2 c (-00 , 00 ). 

COROLLARY 5,1. As n ➔ 00 , B1 ➔. 0 uniformly for He: H'. n p 

PROOF. Let us consider only values of n large enough to ensure that 

Using the above notation and results we may 
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By Assumption 2.4 we have 

(5.7) sup [ + J H H, I EH (KI s) I = M < 00 , se: s 1-n,s 1 n , e: 

and since EH(Kjs) is continuous on [s 1-n,s 1+nJ the mean value theorem 

for integrals applies. We thus obtain, writing 4>n ( s 1) for a random point 

between s 1 and 2s 1 - F:(F- 1(s 1)) and using (5.7), 

By (5.6) and. (5.5) for each we: f;1 1n the random point <Iln(s 1) satisfies 

I I -1 /2 <Iln(s 1) - s 1 .::_ M0n , so that the equicontinuity condition concerning 

the densities h corresponding to the HE H1 (see Assumption 2.4) yields 

that the first term in the bound for B12n converges to zero as n + 00 , 

uniformly for all H e: H1 • The same holds for the second term in this 

I , * -1 I bound, since Fn(F- (s 1)) - Fn(F (s 1)) = 1/(n+l). 

The rv B13n is bounded by 

< x ( f;1 1 ) Mn 1 / 2 1 H { r 1 x ( -co , co ) } - H { r x ( -co co) } I 
- n n n n1 ' 

+ x(f;1 1n)Mn 112 [1/(n+1) + 1(1-1)/n - s 1 jJ + 0 

as n + 00 , uniformly for H e: H' , by ( 5 . 2) , ( 5 . 6 ) and ( 5 . 7 ) . 

Since by (5.6) P({B 11 n f O }) < E for all n and all He: H, where 

E > 0 is arbitrary, the conclusion of the corollary follows. D 
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COROLLARY 5.2. For fixed y,B 2 ➔ 0 as n + 00 , uniformly for H € H. y n p 

PROOF. For each positive integer k we obtain the function~ from the 

function K by 

~(t) = K((i-1)/k) fort€ (0,1) n [(i-1)/k,i/k), i = 1, ••. , k, 

For any such k, using (5.3), let us make the decomposition 

By2n = By21n + Li=2By2ikn' where 

B y22kn 

B = x(n, )n112 ff( )xs [o (F*)- o (F)][K(G)-Kk(G)]dH , 
y23kn n - 00 , 00 y2 s, n s n 

B = x<n, )n112 ff( ) S [o (F*)- o (F)J[K. (G)-K(G)]dH. y24kn n - 00 , 00 x y2 s 1 n s 1 -K 

For arbitrary fixed w the integrand in the expression for BY22kn is 

a simple step function assuming the values ayjkn(w) on the set rn 1 x Syj 2 , 

where 

for j = 

S .2 = [G-\(j-1)/k), G-\j/k)) n S 2 , 
YJ y 

1 ' ••• ' k, Let M 
y 

= max IK(G)I, then by (5.6) we have for every w 
sy2 

1/21,k I = x(n 1 )n l ·= 1 a .k f fr xs d(H -H) n J YJ n 1 .2 n 
. n YJ 

1/2 ,k I I < X ( n 1 ) n M l . 1 H { r 1 xs . 2 } - H { r 1 xs . 2 } 
- n y J= n n YJ n y J 

-1/4 
< k M M n ➔ 0 y 1 

for fixed k as n + 00 , uniformly for H € H. 
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Since K(G) is bounded and continuous on sy2 we have 

sups jK(G)-~(G)J = 
y2 

s ➔ 0 for fixed y ask ➔ 00 , uniformly for HEH. 
yk 

Application of Lemma 4,3 (ii) and (i) with ~(G) = syk gives for the 

expectations of JBY 23knl and 1By24knl the bounds (see also{4.2)) 

( I I ) 1 /2 J 1 ( ) E BY 24kn < n syk O pn 0,1;s ds 

respectively. Since for fixed y the sequence syk ➔ 0 ask ➔ 00 , application 

of Lemma 4.2 (ii) leads to the conclusion that both expectations tend to 

zero for fixed y as k,n ➔ 00 , uniformly for HEH. 

As to B 21 , by (5.6) P({B 21 4 O}) < s for all n and all HEH, 
y n y n -

wheres> O is arbitrary. Combination of these partial results leads to 

the conclusion of the corollary. D 

The rvs B and C 1 concern the behaviour of the functions K(G(y)) 
y3n y n 

and K(G*(y)) respectively for large values of Jyl. Since by Assumption 
n 

2.2 the score function jKj .::_ r2 on (0,1) we have jK(G)j .::_ r 2 (G) and 

JK (G:)I .::_ r 2 (G:) on An2 (see (2.1),(2.2)). By the reproducing u-shaped 

character of r 2 (see Definition 2.2), it is possible to replace the random 

* argument G by the non-random argument Gin the latter case, which may be 
n 

seen from application of Lemma 4.1 (i) with q, = G*. According to this 
n n 

lemma for each s > 0 there exists a-number M2 = M2s such that the set 

( 5. 8) 

has probability P(n2n) .::_ 1-s for all n and all HEH. Thus the asymptotic 

negligibility of the rvs B 3 and C 1 may be obtained essentially in the y n y n 

same way (note that the random measure dH restricts integration to the 
n 
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random set A). It is mainly based on Lemma 4.3. The asymptotic negligibility 
n 

of C is a simple application of the same lemma. y2n 

COROLLARY 5,3, As y + 0 and n + ~, B 3 + 
Y n 

for H E: H'. 

0 and C p y1n + 0, uniformly 
p 

PROOF. For small positive y, let us introduce the function 

r 2y(t) = r 2 (t) fort E: (O,y)u(t 1-y,t 1+y)u(1-y,1),r2y(t) = 0 elsewhere. 

Because by Assumption 2.4 the functions r 2Y satisfy the conditions of Lemma 

3,1 for such values of Y, the conditional expectations E(r2Y(G(Y))jF(X)=s) 

have versions continuous on the open set o1, by convention denoted by 

EH(r2yjs). Since r 2Y + 0 on (0,1) as y + O, by the dominated convergence 

theorem and Assumption 2.4 we have as y + 0 

(5.9) 

As to B 3 , application of Lemma 4.3 (i) yields (see also (4.2)) 
Y n 

(5. 10) 

As to Cyln' using Lemma 4.3 (ii) and (5.8) we find 

(5.11) 

Because of the similarity between the right-hand sides of· ( 5. 10) and ( 5. 11 ) 

and because P(Q2 ) > 1-£ for all n and HE: H, it suffices to investigate 
n -

the right-hand side of (5.10). By Lemma 4.2 and (5,9) for that expression 

we find the bound 
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1/2 1 
n [sup [O J [ + ,J p (0,1;s)J[J0 r 2(t)dt] sE , s 1-n u s n , n 

+ n1/ 2 [J01 p (0,1;s)ds]~ + 0 
n y 

as y + 0 and n + 00 , uniformly for H € H1 • D 

COROLLARY 5,4. For fixed y, C .+ 0 as n + 00 , uniformly for H € H. y2n p 

PROOF. As dH restricts integration to A , application of Lemma 4.3 
n n 

(ii) with *(G) = 1 gives 

IC I< sup IK(G*)-K(G)ln 112 ! 01 p 1(1,2;s)ds. y2n - A nS n n-n2 y2 

The function K is uniformly continuous on [y/2,t 1-y/2Ju[t 1+y/2,1-y/2J 

and I G:-GI ~ 1 / (n+1) + I Gn -GI • Hence by the Gli venko-Cantelli theorem we 

have supA 8 IK(G*)-K(G)I + 0 as n + 00 , uniformly for H € H. The proof 
n2n y2 n p 

may be concluded by applying Lemma 4.2 (ii). D 

In order to show that B +C + 0 as n + 00 , uniformly for H € H1 , given 
n n p 

~ an arbitrary£> 0 first use Corollary 5.3 to choose a fixed y and an index 

~ Next application of Corollaries 5,1, 5.2 and 5.4 with the above fixed y 

gives the existence of an index n 1 = n1(y) > n0 , such that 

P({IB 1nl ,1By2nl ,lcy2nl 2,. d) ~ 1-£ for all n .::_ n1 and all H € H1 • Hence 

P({jBn+cnl ~ 5d) .::_ 1-2£ for all n .::_n 1 and H € H1 • 
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2 2 6. Proof of Theorem 2,2. It suffices to prove that crn ➔ o0 as n ➔ 00 • 

F th . · th t 2 > 2/2 > 0 f > d 11th or en we may ascertain a crn _ cr 0 or n _ n0 an· a e 

conditions, necessary for the application of the part of Theorem 2.1 

concerning the uniformity with H' = {H(n0 ),H(n0+1) , ... }, are covered by 

the conditions of Theorem 2.2. So we may conclude that the convergence 

n 112 (Tn-µ(H)) ➔ dN(O,cr 2(H)) is uniform on the above subclass H1 , and 

hence that n 112 (Tn-µn)/crn ➔ dN(0,1) as n ➔ 00 , But if cr! ➔ cr~ the weak 

2 2 convergence of N(O,crn) to N(o,cr0 ) follows, and thus we finally obtain 

n 112 (Tn-µn) ➔ dN(O,cr~) as n ➔ 00 • 

As in :Section 5 let us assume that J d = cS s, and Kd = cSt for fixed 
1 

s 1,t 1 E (0,1). For a function <j>(F(n/x),G(n)(y)), integrable with respect 

to H(n)' we have JJ<j>(F(n)(x),G(n)(y))dH(n)(x,y) = JJ<j>(s,t)dH(n)(s,t), 

where H(n)(s,t) = H(n)(F(~)(s),G(~)(t)). Note that H(n) has uniform (0,1) 

marginal dfs. Using the above transformation and writing the square of an 

integral as a repeated integral, we arrive at the following alternative 

expression for the variances (see (3.5)) 

2 
on= JJ[J(s)K(t) - JJJ(u)K(v)dH(n)(u,v) 

( 6. 1 ) 

+ JJ[cSs(u)-u]J'(u)K(v)dH(n)(u,v)+[cSs(s 1)-s 1JEH(n) (Kjs 1) 

+ f J'[ cS t ( v )-v ]J ( u)K' ( v) dH ( n) ( u, v) + [ cS t ( t 1 ) -t 1 ]EH ( n) ( J j t 1 ) J2 dH ( n) ( s , t) 

= I~= 1 I!= /ff ff f <Pi ( s , t , u , v) .q> j ( s , t , u ' , v ' ) dH ( n / u , v) dH ( n ) ( u ' , v ' ) dH ( n ) ( s , t ) , 

for n = 0,1,2, ... Here s,t,u,v,u' ,v' are restricted to (0,1) and 
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cp 1 (s ,t ,u,v) = J(s)K(t) , I <P 1 I .::_r 1(s)r2(t), 

cp2(s,t,u,v) = J(u)K(v) I <P 2 I .::_ r 1(u)r2(v), 

cp 3(s,t,u,v) [o (u)-u]J' (u)K(v) I <P 3 I 
-1 ~ = ' 

.::_M1[q1(s)J q1(u)r 1(u)r2 (v), s 

cp 4(s,t,u,v) [ o s ( s 1 )-s 1 ]~ ( n) (KI s 1 ) , I <P 4 I 
1 

= .::_ J 0r 2(t)g(t)dt, 

cp5(s,t,u,v) = [ot(v)-v]J(u)K'(v) 
' I <P 5 I .::_M2 [q2(t)J-1q2(v)r 1(u);'2(v), 

cp6(s ,t ,u,v) [ot(t 1)-t 1:EH (Jlt 1), I <P6 I 
1 

= .::_ J 0r 1 (s)f(s)ds. 
(n) 

The bounds for the absolute values of the cp. follow from Assumptions 2.2, 1. 

2,5 and Lemma 3,2 (M. depends on q. only, 1. = 1,2), 1. 1. 

Let us first note that the convergence H(n)(x,y) + H(O)(x,y) for all 

x,y (see Assumption 2.5) entails the convergence 

H(n)(u,v)H(n)(u' ,v')H(n)(s,t)-+ H(O)(u,v)H(O)(u' ,v')H(O)(s,t) as n + 00 1.n 

all continuity points of the latter product of dfs, A further application of 

Assumption 2,5 combined with the dominated convergence theorem yields 

(6.2) 

Convergence of each of the summands in (6.1) suffices to prove the convergence 

of the variances. The functions <P 4 and cp6 , which actually depend on n through 

multiplicative constants, do not disturb the applicability of Billingsley 

[3], Theorem 5,4, since by (6.2) these multiplicative constants converge 

properly. It thus remains to show that for some~> 0 

(6. 3) sup _1 2 JJJJ!ll<P-(s,t,u,v)<P.(s,t,u' ,v')l 1+~ 
n- ' '. . . 1. J 

dH(n) (u,v)dH(n) (u' ,v' )dH(n) (s ,t) < 00 

for 1 < i .::_ j .::_ 6. By the nature of the bounds for the I <P. I , the fact 1. 

that we are dealing with a product measure, and the similarity between 
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¢ 3 and ¢5 it follows that we only have to verify (6.3) for i = j = 1 ,2,3, 

From now on let us choose , = E/2 > 0 and let us first t.ake 

1 = j = 1. Since ¢1 is a function of sand t only, the supremum in (6.3) 

is bounded by 

2+21:,; -
supn=l ,2 , .. JHr,(s)r2(t)J dH(n)(s,t) < oo, 

by Assumption 2.3. The function ¢2 does not depend on s,t so that for 1 = J = 2 

the supremem (6.3) is bounded by 

by Assumption 2.3. Finally for i = J = 3 we see that the supremem in (6.3) 

lS bounded by 

2+21:,; -2-21:,; ~ 1+1:,; 
sup n = 1 , 2 , • • • M 1 J f J J J J [ g_ 1 ( s ) ] [ g_ 1 ( u )r 1 ( u) r 2 ( v ) ] 

2+21:,; 1 ( ) -2-21:,; ( )~ ( ) ( ) 1+1:,; - ( ) 2 
< supn=l, 2 , ••. M1 J 0[g_1 s J ds[JJ[g_1 u r 1 u r 2 v J dH(n) u,v J <oo, 

again by Assumption 2,3, This concludes the proof of Theorem 2.2. 
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7. Application and extension. An application of Theorem 2.1 in the 

case where the score functions are simple step-functions lies in the 

treatment of ties. Let us suppose that the sample has been drawn from a 

dfHwhich is no longer continuous but, on the contrary, is entirely con

centrated on a finite lattice of points in the plane. As has been point

ed out in Hajek [8], there are two possible techniques for adjusting the 

original rank statistic to this situation where necessarily ties will 

occur. The first technique is referred to as the method of .randomizing the 

ranks, and the second as the method of averaging the scores. By the 

former technique, which represents a purely theoretical approach to the 

problem, asymptotic normality of the resulting rank statistic follows 

immediately from Theorem 2.1. If appropriate simple step-functions are 

chosen as score functions, the above result for a rank statistic based 

on randomized ranks may be used to derive asymptotic normality for a 

rank statistic based on averaged scores, which is of greater practical 

interest. The proof relies on the fact that the difference of the two 

statistics tends in probability to zero as the sample size tends to in

finity. For more general results in the location problem see Vorli~kova 

[ 17]. 

Finally it should be noted that the restriction to linear rank 

statistics for which the score functions factorize and can be written 

as a product J(s)K(t) is inessential. No new difficulties will be en

countered when developping the theory for more general score functions 

J(s,t), as long as the functions that bound J(s,t) and its first 

partial derivatives oJ(s,t)/os, oJ(s,t)/at still factorize as products 

of functions of the arguments s a.11d,t separately. 
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