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A (57,14,1) strongly regular graph does not exist
by

H,A. Wilbrink & A.E. Brouwer

ABSTRACT
We show that a strongly. regular graph with parameters
n = 57, k = 14, A =1, u=xa

( (0,1)-eigenvalues: 1x14, 38%x2, 18x(-5);

(1,-1)-eigenvalues: 1%28, 38x(-5), 18%9 ) does not exist.
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1. TWO LEMMAS

LEMMA 1. Let G be a strongly regular graph with parameters n,k,\,u. Let H be
miwwwswwwhm%anm%Me@%aﬂd@we%wﬁwdpuu%.
Then

N N 4.
(kN - 2M) - (AM () -m - ) (21)> < n-N
2 i=1

and equality holds <Iff exactly (kN-2M) - (n-N) points in G\H are adjacent
to precisely two points of H, while the remaining points in G\H are adjacent

to precisely one point of H.

PROOF. Let there be X: points in G\H adjacent to i points of H. We have

Z’ﬁ = n-N,

Y ixg kN - 2M,

7Gx, = e u(MH-w - E‘ &)
27%i R Ly o2

. i . _ N i-1 .
Since Z(z)xi - lei + in = X, + Zi=3( 9 )xi > 0 this proves the lemma. [

LEMMA 2. Let G be a strongly regular graph with parameters n,k,A,u. Let s

be the smallest eigenvalue of the (0,1)-adjacency matrix of G, Z.e., the
negative root of the equation x2 + (p=M)x + py=k = 0. Then Zf S is a coclique
in G we have

ne(-s)

= <
v = |5 < 28

and equality holds Tff each point outside S is adjacent to exactly

points in S. In this case we find a 2- (V,K,u) design with point set S and

blocks B, = {y € S | y adjacent to z} for z e G\S.

PROOF. Let there be X points in G\S adjacent to i points of S. We have



z x; =n-V,
Z ixi =k-V,
I Gx, = ue D,
so that
) (i—1<)2xi = pv(v-1) + kv - %f_y-; > 0.

Writing x = é%% and simplifying (using O < V < n) we see that this inequal-

ity is equivalent with

x2 + (u- E%l - k+1)x + up=k <0

which is exactly the desired inequality (- note that the largest possible V
corresponds to the smallest possible x, and that the middle coefficient

equals p=A since n = 1+k+k(k-1-A2)/u). 0O

2. THE NONEXISTENCE OF (57,14,1)

Let G be a strongly regular graph with parameters n = 57, k = 14 and
X =1, Then u = 4 and the smallest eigenvalue of the (0,1)-adjacency matrix
of G is s = =5. By Lemma 2 a coclique in G can have at most 15 points. We
first derive a contradiction under the assumption that G contains a coclique

of size 15, and then under the opposite assumption.

2.1. G has a 15~coclique

Let S be a 15-coclique in G. If we identify a point z not in S with
the set Bz ={y eS I y ~ z} (where ~ denotes adjacency) then the points of
G are the points and blocks of a 2- (15,5,4) design (S,B). Choose a block
BO’ and investigate the intersection numbers

x, 1= x;(By) := #{B ¢ B | |Bn3B, |
Obviously, since A,u < 4 we have Xg = 1, i.e., there are no repeated

blocks.



Since A = 1, each edge is in a unique triangle, and each point is
incident with 7 triangles. Of the seven triangles incident with BO, five
contain apoint of S and two consist of blocks only. But if a triangle
consists of three blocks, these blocks must be mutually disjoint, because
A = 1. This proves X, 2 4,

We have the equations

Xo + X+ X, + x5+ X, = 41,
X, + 2x2 + 3x3 + 4x4 = 5¢13 = 65,
_ /5
X, * 3x3 + 6x4 = (2) 3
Consequently,
Xg + Xg 3x4 = 6.

Since X, > 4 it follows that X, = 0 and thus xoi-x3 = 6. But this soon leads

to a contradiction:

Let BO,B B2 and BO,B3,B4 be two triangles containing BO' Since inter-—

sections of size 4 do not occur we may
11111 00000 000OO

B0 suppose IB3nB1l = 3, and then
B 00000 11111 0000O

1° IBanle = 3,
B2 00000 00000 11111 Let BI’BS’B7 be another triangle contain-
B3: 00000 11100 11000 ing Bl' W.l.0.g. |B5ﬂBO| - 3.
B4 00000 00011 00111 Let B,,B,,B, be another triangle contain—
B <3x1> 00000 <2=*1> . 2776’ 8

5° ing B,. W.l.0.g. IB nBOI = 3.
B6 <3x1> <2x1> 00000 Finally, let B3,B B' be another triangle
B: <3%1> 000.. 00...

containing By. W.l.o.g. IBnBOI =3

Since Xq < 2 and B5 # B6’ B must coincide with either B5 or B6' But then B

and BO have at least five common neighbours: B1 or B2, B3, and the three

points in B n BO. Contradiction, for A,u < 4.

2.2. G does not contain a 15-coclique

LEMMA. G does not contain a regular subgraph H with 6 points and valency 3
(Z.e., Ky 5 or the prism).

?



PROOF. Apply Lemma 1 with N =6, M = 9, d1 = ... = d6 = 3.

We find 66-15 < 51. Since equality holds, exactly 15 points outside H are
connected with two points in H. If z is a point in G\H adjacent to two
points of H, then let HZ be the graph induced by G on H u {z}. Again apply

| =2, d,=dy=d, =dg =3, d, =d, =4
We find 76-26 < 50. Since equality holds again, no point in G\ (Hu{z}) is

Lemma 1, now with N =7, M= 11, d

adjacent to three points in H u {z}. It follows that if S is the set of 15
points adjacent to two points in H, then S is a 15-coclique.

Contradiction. [J

In the previous section we considered G as a 2- (15,5,4) design; now
we shall consider G as a GD[4,3,2;14] group divisible design: Let = be some
fixed point, T := I'(») the set of its neighbours and A the set of its non-
neighbours. Then |T| = 14 and |A| = 42. G induces on T a regular graph with
valency A = 1, so that we find seven disjoint pairs in ', the groups. For
each point z € A we find a block B, = {x e T | x ~ 2z} of size u = 4. One
verifies immediately that T with these groups and blocks is a group divisible

design GD[4,3,2;14] (in HANANI's notation).

(A) Let T be the union of two groups in T'. The set R of the six points in A

not joimed to any point of T s a 6-coclique.

PROOF. For u € R, let X, i= xi(u) = #{z ¢ A | z ~u and |[T'(z)nT| = i}. Then

x0+xl+x2=k—u = 10
and
X, + 2x2= pe|T| = 16
so that Xy~ = 6. Suppose that u,v € R and u ~ v. Then X, > 1, so X, > 7

and hence both u and v have at least 7 neighbours in the set (of size 12)
of points with two neighbours in T. But then they must have at least two

common neighbours. Contradiction with A = 1. [

(B) Let U = U(B) be the union of the three groups that do not intersect B.
Let X, = xi(U) = #{z € A I |IT(z)nU| = i}. Then



Xx. +x, + x,+ X Al = 42,

]

X, + 2x2 + 3x3 U] (k=-2) = 72,

X, + 3x 12+ (u=1) = 36,

so that x0+x3 = 6.

Let y; = yi(B) = #{z € A l z ~ B and |T(z)nU(B)| = i}. Then

Yo * ¥t Yyt vy =ku=10
and

ue |U|l = 24.

Yyt 2y * 3y3

From (A) it follows that Yo =Y = 0 and hence ¥, = 6, yg = 4., We can iden-
tify these four neighbours of B intersecting U in three points: they are
the blocks Bp where p € N and pB Bp is a triangle.

[For: suppose Bp intersects U in less than three points. Then there is a
second group {r,s} intersecting both B and Bp. Of course r € B n Bp is
impossible since X = 1, so we would have r € B and s ¢ Bp. But now we find
a prism on the set {B,Bp,p,r,s,w}. Contradiction. ]

There are 42 blocks, but only (Z) = 35 sets of 4 groups. Therefore,
there must be two blocks, say B' and B'", intersecting the same four groups
(i.e., U =0U(B'"'") = UB")). Now xO(U) > 2 and x3(U) > Y3 = 4, so
x3(U) = y3(B') = y3(B") = 4: the four blocks intersecting U in three points
are common neighbours of B' and B", so B' n B" = ¢ since u = 4.

But for p € B' the block B; intersects I'\U only in the point p, i.e.,
B; # BH for p € B', q € B". Contradiction.

Hence no graph G exists.

Vanldse, 781208
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