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On Dual Pairs of Antichains

by

A. E. Brouwer

ABSTRACT.

In this note we prove that for each n different from 1 and 3 there

exists an antichain on n points with period 2 under the operator +c max .

KEY WORDS: Antichains.



INTRODUCTION.

Let X,n :={1,2,...,n}. An antichain on n points is a collection of sub-
sets of Xn such that no inclusion holds between any two of them. If A is a

collection of subsets of Xn then we define
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[Note that the definition of 4+, ¢ and c depends on n.]

The operator 4 ¢ max permutes antichains and has an inverse ¥ c min

(seel1]). In BROUWER & SCHRIJVER [1] the question was raised to determine

the possible lengths of the orbits under this operator for given n. For

A

n 4 this is quickly done (here we write 13 instead of {1,3} etc.):

n =0 one orbit of length 2 : @, {@}.
n=1 one orbit of length 3 : ¢, {1}, {@}.
n =2 one orbit of length 4 : @, {12}, {1,2}, {#};

and one orbit of length 2 : {1}, {2}.
¢, {123}, {12,13,23}, {1,2,3}, {0},
{1}, {23}, {12,13}, {1,23}, {2,3} and
two others starting with {2} resp. {3}.

n = 3 four orbitsof length 5

4 : 2, 3 and 6
5:2, 3, 7, 16 and 27

The lengths occurring are for n

n

n = 6 : more than sixty possible lengths are

known; an exhaustive search for all possibilities has not yet been feasible.

In general, the question of which periods (=lengths of orbits) occur
for a certain n seems to beuntractable. Therefore we attacked this problem
from the other side and ask for all n such that a given period p is pos-
sible for an antichain on n points. This note solves the easiest nontrivial

special case: p = 2.



THEOREM. 4 dual pair of antichains on n points exists Zff n z 1 and n = 3.
(Here two antichains A and B are called dual if A = ghemax 9 g = Atcmax

or equivalently if A = B ¢Ma¥_ gremin

Previously the following special cases of this theorem were known:

a) even (see[l], addendum) °
b) n

¢) n =17, the configuration A

=}

{12,23,34,45,51} (seel11], p.10)

{124,125 and cyclic permutations of these}

5, the configuration A

(found independently by the PDP8/I computer (executing a
heuristic search program), two students of Prof. VAN LINT:
B.J. BRAAMS & H.D.L. HOLLMANN and A.E. BROUWER & A. SCHRIJVER.
[Here |A| = 14 and |B| = 21.]

d) n =9, a configuration consisting of 4-tuples found by A. SCHRIJVER
with geometrical arguments about the affine plane with 9 points.
Also a configuration consisting of triples found by A.E.BROUWER
and reproduced in the appendix. This example showed that an
antichain on n points with period 2 need not consist entirely
of either [%J - or of [E%l]-tuples.

e) n =11, existence proof by M.M. KRIEGER [2]; many (structureless) ex-—
amples found by the PDP8/I.

The experience with a conversational program on the PDP8/I computer
showed that for larger n pairs of dual antichains exist in abundance. It
appears that comparatively few m—sets are needed to cover all larger and
all smaller sets; if to both A and B enough m—sets are assigned, the re-
maining m-sets can be assigned arbitrarily, always obtaining a dual pair
of antichains. [Here and in the sequel m = [%j.]

For example, if n = 4 and {12,34} < A, {13,24} c B, then the pairs 14
and 23 can be assigned arbitrarily, giving rise to the two different orbits

of length 2: {12,34}, (13,14,23,24} and {12,23,34}, {13,14,24}.

PROOF OF THE THEOREM

Define VY i= {Ac X | |A] = k}.
ok n

sk



First we give a characterization of antichains with period 2 contained

in some Y :
n,k

PROPOSITION 1. Let A and B be antichains onm n points contained in Vn K
3

Then A and B form a pair of dual antichains i1ff:

(z) AuB=Y
n

s K
i 4 4
and (27) yn,k+1 c AT and yn,k+1 c B
ve. ¥ ¥
and (117) yn,k—l c A" and Vn,k—l c B'.

PROOF. Obvious. [J
It is easy to find dual antichains on an even number of points:

PROPOSITION 2. Let n = 2m,

>
]

{A eV ‘ |AnX_| evenl,
n,m m

B

i={A eV | |AnX_| odd}.
0 n,m m

4 ¥ i
pglemax_ yYvcmin

Then BO = A 0

PROOF. Obvious. g

To get a solution for odd n we need some freedom in the choice of

solutions for even n:

PROPOSITION 3. Let AO and BO be as in proposition 1. Let C be either AO or
BO, and let C € C. If C is different from X and X \K then

cvient = i

and

e\ch’ = c"vier.

Therefore C\{C} has period 2.



PROOF. By symmetry it is enough to prove (C\{C})+ - ¢"\{cy. Suppose
F=Cu {f} and F ¢ (C\{C})¢. Then for each ¢ € C the numbers

| e\ {c}) u {£}) n Xm| and |CnXm| have different parity. If f € X this
means that C = Xn\Xm’ and if f ¢ Xm then it follows that C = Xm; but these

are just the excluded cases. [

The freedom allowed by this proposition allows the construction of

solutions for odd n. (Remember the notation AS = {A®|AcA}).

PROPOSITION 4. Let n = 2m, AO and BO as before.

(1) If m = 2k then AO = Aﬁ'and BO = B%. If C is any element of BO then
A]:= AO u {C} and Bl:= BO\{C} form a dual pair of antichains in yn,m

such that C e A] and X \C e B1 . [Note: such a C exists iff k > 0.]

(i1) If m = 2k+1 then AO = B% and BO = A%. If C is any element of AO dif-
ferent from X N\K then A]:= AO\{C} and Bl:= BO u {C} form a dual pair
of antichains in Vn’ such that both C and X \C are in B] . [Note:

such a C exists iff k > 0.]

Now define in both cases:

A
and B :

Then A and B form a dual pair of antichains on n + 1 points.

1]

{A € Vn+l,m|(n+l € A and |AnC| even) or A € Al}
{A e Vn+l,m|(n+] € A and |AnC| odd) or A e B J.

]

PROOF. The statements about A] and B] follow from proposition 3 and the
fact that if m = 2k then both X and Xn\xm lie in AO’ while if m = 2k+]
then X e B. and X \X ¢ A . The cardinalities of A_ and B, are

m 0 n m 0 0 0

s %[i?] (m odd)
|AO| ) i g;en[i] ) 1 [ 2m +(_])m/Z L1 m ( )
A I 2 m/2 m even

and



%[ZmJ (m odd)

%[i?]-—(—l)m/Z . %{m72] (m even),

hence |BOI > 0 iff k > 0 and IAOl > 1 iff k > 0.
Next we have to prove that both A+ and B+ cover Vn+] " Let F =
=m+ 1. If n+ 1 ¢ F then F is covered already by Al and B'. 1f

n+ 1 e F and F intersects both C and Xn\C then F contains m—suésets con-
taining n + 1 and intersecting C with prescribed parity. If F = Xn\ClJ{n+]}
then F ¢ B+ since Xn\C € Bl’ and F ¢ AT since for each c ¢ C: (Xn\CU{c})) U
u {n+1} € A. [Note that 0 is even.]

Finally, if F = C u {n+1} then F contains m-subsets C and (C\{c}) v
u {n+1}; one belonging to A and the other to B (depending on the parity
of m). If m is even then C ¢ A] and (C\{c}) u {n+1} ¢ B, and if m is odd
then C € B] and (C\Mc}) u {n+1} € A.

Finally we have to prove that both A" and B' cover ¥ Let

n+l,m-1"
|F|] =m- 1. If n + 1 ¢ F then F is covered already by Al and Bt. If
n+ 1 e F then F is contained in m-supersets containing n + 1 and inter-—

secting C with prescribed parity. [

PROOF OF THE THEOREM. The previous propositions provide antichains with

period 2 for all n except n = 1 and n = 3. On the other hand, we saw in
the introduction that for these values of n only the periods 3 resp. 5

occur. g

REMARKS AND QUESTIONS

The above construction produces a partition of all m—tuples into two
parts in such a way that never all m-tuples contained in a (mt+l)-tuple lie
in the same part. Therefore n must be less than the Ramsey number

N(m+1,m+1; m).

COROLLARY. For all m:



N(m+l,m+l; m) > 2m + 13
If m 2 2 then
N(m+1l,m+l; m) = 2m + 2.

[This may be compared with the values N(1,130) = 1, N(2,2;1) = 3,
N(3,3;2) = 6, N(4,4;3) =2 13.]

Conversely, this agreement provides an upper bound for the numbers n
such that there exists a pair of dual antichains, each contained in yn,k
for some k. (For example: such a pair can be contained in yn,2 only for
n<5.) In other words, one cannot have arbitrarily large pairs of dual anti-
chains consisting entirely of pairs or of triples etc. On the other hand,
as is shown by the example of triples for n = 9, it is possible to have
antichains of period 2 in yn,k for k < [n/2].

The question remains whether there exist antichains with period 2 not

contained in some Vn The propositions below give some results in this

ok’
direction.
PROPOSITION 5. Let A and B be a pair of dual antichains.

Then max{|A||A ¢ A} = max{|B||B ¢ B}
and min{IAl|A e A} = min{[B||B € B}.

PROOF. Let |A0| = max{|A| |A € A}, where Ay e A
If a ¢ AO then AO e A ==B¢cnun'implies AO\{a} ¢ B¢C, i.e. AO\{a} € B+. But
AO\{a} ¢ B since A u B is an antichain, so max{|B||B ¢ B} = max{|A||A € A}.

By symmetry we are through. [

PROPOSITION 6. Let A and B be a pair of dual antichains on n points, and
set k:=min{|A||A € A} = min{|B||B ¢ B}. Then

4 _ 4
(AnVn’k) \(AnVn ) = (BnVn’k) \(BnVn ).

S ,k

PROOF. Obvious. 0
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APPENDIX

Reproduction of three antichains on nine points consisting of triples

only. (The format is described in [1])



R ANTIG
ANTIG AL-VES

N=S

#A
AED/ECE/CDF/DEG/EFA/FGB/GAC/ABE/BCF/CDG/DEA/EFB/FGC/GALD/AEK/ABI/CLE/CL
I/EFH/EFI/BGH/EG1/EBDH/BDI/DFH/DF1/AFh/AFI1 /AHI /CHI/EKI/CGhI/AGI/CEI/BFI/
FGH/ACH/EGH/

#L

GHI/FGKR/EKI/EGH/EF1/EFK/DF1/DFH/DEG/CHI/CFG/CEI/CDI/CCH/CCC/CLF/
LGI/EGh/BFI/BFG/BEF/BDI/BDH/ECF/BCE/AKL /AGI/AFI/AFH/AEF/ADG/ADE/
ACH/ACG/AEB1/ABH/ABE/ABD/

#G

l: FHI/FGI/EGI/EFG/DHI/DGI/DGH/DFG/DEI/DEH/DEF/CGI/CGH/CFI/CFHK/
CER/CEG/CEF/CDE/BHI/EFH/BEI/BEH/BEG/BDG/EDF/BLE/RCI/ECKH/ECG/BCD/
ACH/AFG/AEI/AEH/AEG/ADI/ADH/ADF/ACI/ACF/ACE/ACD /AEG/AEBF/ARC/

2: GHI/FGH/EHI/EGH/EF1/EFH/DFI1/DFH/DEG/CHI/CFG/CEI/CLI/CDH/CLG/
CDF/BGI/EGH/EF1/BFG/BEF/BDI/BEDH/BCF/BCE/AHI/AGI/AF1/AFH/AEF/ACG/
ADE/ACH/ACG/API/ABH/ABE/ABD/

#T

PEKIOD: 2

#A

DGKH/

#T

PERIOD: 2

#A

ACE/

#T

PEKIOD: 2

#S

ON

#G
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