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On the nonexistence of certain planar spaces 

by 

A.E. Brouwer 

ABSTRACT 

In certain cases we show the nonexistence of planar spaces all of 

whose planes are isomorphic to a given linear space L. In particular we 

settle five of the six possibilities for L suggested by DOYEN. 
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O. INTRODUCTION 

During the "Seminaire de Mathematiques superieures: Configurations et 

applications non-statistiques" held at the university of Montreal (780612-

780707) Jean DOYEN gave a series of lectures about linear spaces. One of 

the questions he posed was whether in a nontrivial planar space in which all 

planes are isomorphic to a given linear space Lall lines have the same 

cardinality (unless Lis a degenerate projective plane); he also gave the 

six smallest linear spaces L for which this was not settled yet. 

I showed the impossibility of five of these six cases (by various count­

ing arguments); in this note a rather strong result on the parameters (im­

plying the previous results) and some miscellaneous results on special clas­

ses of linear spaces are given. Other results on this subject were found by 

Douglas LEONARD during the seminar. 

1 . PLANAR SP ACES 

A planar space is a set with two kinds of distinguished subsets, call­

ed lines and planes, such that any two points determine a unique line, and 

any three points not on a line determine a unique plane. Examples are for 

instance (truncations of) classical spaces (PG(d,n) and AG(d,n); d ~ 3). 

A planar space is trivial when it has only one plane or no plane at all. A 

planar space is called an L-space when each of its planes is isomorphic to 

the linear space L. The only known example of a nontrivial L-space contain­

ing lines of different sizes is 

• • •••• 
L = p = 

••••• • •••• 

one where Lis a degenerate projective plane: one line of size n and n lines 

of size two on n+l points, and the planar space Pis union of two disjoint 

lines of size n, all other lines having size two, and planes are chosen in 

the obvious way. BUEKENHOUT & DE HERDER showed that given a linear space L 
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with lines of at least two sizes, there are only finitely many L-spaces. 

During his lectures DOYEN gave the six smallest possibilities for nontrivial 

L-spaces with varying line sizes (lines of size 2 are not drawn): 

v: 126 

p: 19065 

27 

90 

27 

90 

47 

517 

47 

517 

1444 

6951264 

Here v and p denote the number of points and planes of the planar space P. 
I shall show the impossibility of five of the six cases, leaving only the 

case 

L = 

Let us start with the simplest case, L -11\ . {That v a 27, p • 90 

is the only possibility for an L-space is seen by writing down the condition 

that three points not on a line determine a unique plane. In this case we 

find(;)= p (Sv-21), hence 8v(8v-8)(8v-16)(8v-24) = 0 (mod Sv-21), i.e., 

(8v-21) I 32.5.7.13. Only two solutions have p > 1: p = 11, v = 14 and 

p = 90, V = 27. But the first is impossible because of HANAN!' s inequality 

p ~ V •} Suppose an L-space P exists, and fix a point x0 E P. Let x0 be in 

u lines of size 3. Since v = 27 it follows that u :5 13, and u = 13 is im-

possible because otherwise each line of size 3 must contain x0 (L does not 

contain a configuration,6 ), i.e. each plane contains x0 , contradiction. 

If 5 < u < 13 then let LO be a line of size 2 through x0 • For each line Li 

of size 3 through x0 we find a plane <Lo,Li> (1:5i:5u), and these planes are 

mutually distinct. But L0 is in only;=;= 5 distinct planes. Contradiction. 

Next observe that the planes with 'top' x0 determine a Steiner triple system 

S(2,3,u) on the lines of size 3 through x0 , so that u = 1 or 3 (mod 6) and 

hence u :5 3. But this means that x0 is 'top' of at most one plane~ Since x0 
was arbitrary we have 90 planes but at most 27 tops, a contradiction. 

Douglas LEONARD proved more generally that L cannot look like a fan: one 

point only in lines of size at least three, all other points in at most 
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one such line. 

Next examine the case L =8. The parameters ar~ the same as in the 

previous case: v = 27, p = 90. Distinguish three kinds of points in L: its 

'centre' (in no lines of size 3), its 'side's (in one line of size 3) and 

its 'corner's (in two lines of size 3). Suppose an L-space P exists and 

choose Xo E ·p, fixed for the moment. Let x0 be centre in q0 planes, side in q1 
planes and corner in q2 planes. Count triples (x0 ,t2 ,TI) with x0 E l 2 c TI, 

l 2 a line of size two and TI a plane in P: 

. v-2 
A line of size two is in - 5- = 5 planes, and a line of size three is in 
v-3 
4 = 6 planes. Hence 

The point xis joined to 26 other points, hence 

i.e., 

1sq0 + 17q 1 + 16q2 = 390. 

FliOffi 

8q 1 + 16q2 = 48t (by the definition oft) 

it follows that 

6q0 + 3q 1 = 130 - 16t, so that t = (mod 3) and t ~ 8, 

We find three solutions; using q2 = (~) (for: two lines of size 3 through x 

determine a plane): 

(i) t = 1 ' qo = 16, ql = 6, q2 = O, 

(ii) t = 4, qo = 5, ql = 12, q2 = 6, 

(iii) t = 7, qo = 3, ql = O, q2 = 21. 

This means that P may contain three kinds of points with incidence numbers 

given by (i), (ii) or (iii). Let there be A points x E P of the first kind, 
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B of the second kind and C of the third kind. Then 

A + B + C = 27 (count points), 

A+ 4B + 7C = 135 (count pairs (x,13); note that P contains 

45 lines of size three), 

6B + 21C = 270 (count pairs (x,,r) where x is a corner of ,r), 

This system has the unique solution A= -3, B = 24, C = 6, a contradiction. 

The other three spaces L die in a similar way (in fact the argument is 

shorter for them since they contain only two kinds of points so that we have 

no variable 4o; it turns out that there is not even an integral solution for 

t, q 1, q2). We skip the detailed arguments since these contain no new ideas 

and the non-existence of L-spaces for each of the five possibilities for L 

follows inmediately from more general results presented in the next section. 

IA. Planar spaces (continued) 

Visiting Vanl~se (Copenhagen) for two weeks after the seminar in 

Montreal I found some general results from which the statements in the pre­

vious section can be derived inmediately. 

Let us first generalize the concept of planar space slightly. In counting 

arguments one can distinguish lines of different lengths but sometimes it 

is desirable to distinguish between lines of the same length. Therefore 

define a aoZored Zinear space as a linear space where each line has some 

color and lines of the same color have the same 1ength (but not necessarily 

conversely). Of course each linear space can be viewed as a colored linear 

space by taking the length of a line as its color. (The drawing convention 

for linear spaces corresponds to giving lines of size two the color invisi­

ble). If Lis a colored linear space then an L-space is a planar space with 

colored lines such that each of its planes is a copy of L. 

A planar space is called proper if it contains three points not on a line. 

If Pis a proper L-space then L contains more than one line. In the sequel 

we shall always assume that all planar spaces under consideration are proper. 



A planar space is called nontrivial if it contains mo:re than one plane. 

THEOREM I. Let L be a colored linear space and P a nontrivial L-space. 

Let P have v points and p p Zanes. 

Let L have u points and n. lines of color 
]_ 

i, each of size k .. 
]_ 

5 

Then each point of P is incident with the sam)e number pu of planes, and for 
pn•k•(u-k• v 

each color i with the same number 1.(1. k) i of lines of color i. 
V V- i 

PROOF. Fix a point x0 E P. Fix a color ('red') and set k = kred' n = nred' 

Let a be the number of red lines through x0 and q the number of planes 

through x0 • 

Let there be qj planes TI through x 0 such that in TI the point x 0 belongs 

to j red lines. 

We have (counting pairs (x0 ,TI) with x 0 E TI): 

q = I q., 
j J 

and (counting triples (x0 ,.l,TI) with x 0 El c TI, la red line): 

a • v-k = 'i' J. •q 
u-k l . ' 

J J 

and (counting triples (x0 ,.l,TI) with l a red line not containing x 0 , TI the 

plane detem:ined by x0 and l): 

u-k l np - - a= (n-j)q .• v-k . J 
J 

Adding the last two equations and using the first yields 

u-k u-k 
a= n(q - p v-k)v-u 

This is valid for every color, so writing k., n. and a. again we find (since 
]_ ]_ ]_ 

x0 is joined to the v-1 other points) 

v- I = l a . (k . - I ) 
]_ ]_ 

]_ 
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u-k· 
This is a linear equation in q, and q has coefficient I. n. • __ 1. • (k.-1) :/: 0 

' l. l. v-u l. 

hence is determined uniquely. But this means we can express q in v, p, u, 

ni, ki so that q does not depend on the point x0 chosen. Now counting pairs 

(x,TI) with x € TI we find 

i.e., 

vq = pu, 

q = ~ 
V 

Substituting this in the expression for a yields 

a= n (u _ u-k)u-k = npk(u-k) 
p v v-k v-u v(v-k) 

proving the theorem. D 

COROLLARY. The numbers~ and pn~(u~~) are integers (far each coZor). 
V V v-

Using the notation defined in the above proof we have moreover 

PROPOSITION 1. Fix a coZor ('red'). The nwnbers q. defined above satisfy 
J 

(i) l· q. = pu 
J J V 

(ii) l- j •q. = a. v-k = npk 
u-k v J J 

(iii) l-J 

where a= pnk(u-k) 
v(v-k) 

PROOF. (i) and (ii) were already derived. (iii) follows by counting quad­

ruples (x0 ,l,l' ,TI) where land l' are two distinct red lines contained in TI 

and intersecting in x0 • D 

As an application we may look again at the six examples given by Doyen: 

l. L = Q , u = 6, v = 126 = 7. 18, p = 19065 = 

no such L~space exists. 

3 . 5 • 31 • 4 1 , pu ,I. IN hence 
V 



2. L = A\ or L = A , u = 

L-spaces exist. 

3. L = ~ , u = 9, v = 1444 

again pu I. lN. 
V 

7, V = 27, p 

2 =4.19,p= 

= 90, ~ i lN hence no such v· 

7 

6951264 5 
= 2 .3.19.37.103 and 

4. L = A or L = A , u = 7, v = 4 7 , p = 51 7, k = 3, n = 4, k' = 2, 

n 1 = 9 pu = 77 pnk(u-k) = I 2 pn 'k' (n-k') = 22 does not give a contra-
' v ' v(v-k) ' · v(v'."'k') 

diction. Solving the system 

qi + q2 + q3 = 77 

qi + 2q2 + 3q3 = 132 

q2 + 3q3 = 66 

we find q 1 = q = 33 q = 11. But clearly in the first case q3 = 0. 2 ' 3 
Hence only the second case might be possible. 

PROPOSITION 2. A solution of the system of equations given in proposition 
u· 

I is given by q. = ...1. q where q = pu and u. is the number of points in L 
J U V J 

inaident with j red lines. If u. is nonzero for at most three different 
J u· 

values of j then this is the unique solution., i.e. we have q. = _J_q = u.•.£. 
J U J V 

PROOF. 

(i) 

(ii) 

(iii) 

I qJ. =.£.I u. = pu . 
V J V 

l j q. =.£.1 ju. =.£.•nk 
J V J V 

(Count points in L.) 

(Count pairs (x,l) with x El, 
la red line in L) 

(Count triples (x,l,l') with 
x E l n l' , l ,f, l' , l and l' 
red lines in P) 

The unicity in case of not more than three variables follows from the fact 

that the determinant on the coefficients is essentially a Vandermonde 

determinant: 
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j3 
I 

j I = -2 
'f O. • 

(j3) .2 
2 J I 

Note that in order to verify that the q. satisfied equation (iii) we used 
J 

the existence of P. This gives a rather strong condition on the parameters: 
~ usually the q. do in fact not satisfy (iii), as in the first half of exam-

J 
ple 4 above (q1 = 22, q2 = 55, q3 = O). 

From theorem I it follows that for any two colors that occur in L there is 

a pair of intersecting lines in L with these colors (because there is such 

a pair in P). We also get strong results on the parameters of P when in L 
all lines with a given color are disjoint. 

PROPOSITION 3. Let L be a colored linear space in which all red lines are 

mutually disjoint. Let P be a non-trivial L-space. Then the red lines form 

a partition of P and 

v(v-k) 
p = nk(u-k) 

where n > 0 is the number of red lines in Land k is the length of a red 

Zine. 

pnk(u-k) 
PROOF. Each point of Pis incident with a= v(v-k) red lines by theorem I. 

But no two red lines can intersect in P since they do not intersect in L. 
Hence a = I. D 

Note that this equation for p implies that v must be small: regarding Las 

fixed and pas a function of v we have that p grows like v3 but here pis 

only quadratic in v. In fact if the index i runs through the colors except 

red then we have 

so 

v - I = k - I + l a. (k. - I ) 
l. l. 



u-k. 
\ v-k i 

v - k = l nk(u-k) niki v-k. (ki-l), 
i 

hence 

Letting 

we find 

so that 

nk(u-k) 
u-k. 

= L n.k. (k.-1)-ki ii i v- . 
i 

A := 

u-k. 
i 

In. k • (k • - I )-::--r.:-;-v • i i i v-~i 
I:n. k . (k . - I ) 

1 1 i 

nk(u-k) = A I n. k . (k . - I ) 
i 1 i 

= A(u(u-1)-nk(k-l)) 

nk(u-k) 
A= u(u-1)-nk(k-1) · 

u-k. 
But A is a (weighted) average of the numbers v-k~' hence if k' = 

i 
and k" = max k. then 

i 

v-k' u(u-1)-nk(k-1) v-k" 
-- < ------- :s; -k" u-k' - nk(u-k) u-

. v v-k' and (using -- s -- and n ~ I): u u-k' 

V :s; 
u(u+k-1) 

nk 

u2 (u+k-1/ 
P :s; 3 3 ' 

n k (u-k) 

mink. 
i 
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THEOREM 2. Let L be a linear space colored with two colors (red and green) 

such that the red lines are mutually disjoint. Let P be a non-trivial L­
space. Let L contain n > 0 red lines of length m and let the green lines 

have length k. Then either P = PG(3,q), L = PG(2,q), p = v = q3 + q2 + q +I, 
2 

u = q + q + I , k = m = er + I , L has one red Une and in P the red Unes 

form a spread ( q2 + I disjoint Unes)., or P = ·- ·-·-· , L = • , ·-·-·-· ·-·-·-· 
p = v = 2m, u = m+l, k = 2, m ~ 2, L has one red line and Pis union of two 

disjoint red Unes. 
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PROOF. Let L be a colored linear space with u points and n red lines (of 

size m). Then L has (u(u-1) - nm(m-1))/k(k-1) green lines (of size k). Let 

P be a non-trivial L space with v points and p 

planar space any line of length l is contained 

P conta.;ns npu-m red 1· d u(u-I) - nm(m-l) 
.._ v-m ines an k(k-l) 

Counting pairs gives the equation 

planes. Observing that 
. v-l 1 f" d in--,; panes we in u--c... 

u-k . • p • -- green lines . v-k 

v(v-1) 
u-k u-m = p((u(u-1)-nm(m-l))v-k + nm(m-l)v-m) 

or, 

in a 

that 

v(v-1) (v-k) (v-m) p ( (v-m) (u-k) (u(u-1) - nm(m-1)) + (v-k) (u-m)nm(m- 1)). 

By proposition 3 the red lines partition P and 

v(v-m) 
p = nm(u-m) 

Substituting this in the previous equation yields 

i.e., 

or, 

(v-l)(v-k)(u-m)nm (v-m)(u-k)(u(u-1)-nm(m-l)) + (m-l)(v-k)(u-m)nm, 

(v-k)(u-m)rnn = (u-k)(u(u-1) - nm(m-1)), 

v·-k 
u·-k 

(u-m) (u+m-1) - (n-1 )m(m-1) 
nm(u-m) •&•••••••••••• .. •••(*) 

When P does not contain a red and green line which are mutually skew then 

we have the second possibility of theorem. For: if u ~ m+2 then fix a red 

line l 0 in P and let 1r and 1r 1 be two distinct planes containing l 0 . Choose 

x E rr\l0 and two distinct points y 1,y2 E rr'\l0 • The lines xy 1 and xy2 are 

both skew to £0 and thus both red. But red lines do not intersect, a contra­

diction. This proves u < m+2. Since L cannot consist of a single red line 
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we must have u = m+l. ,Now clearly k = 2 and Lis a projective plane in the 

broad sense: red picture: • , green picture: ~- We know already 

that Pis partitioned by the red lines. But if there were three red lines 

then we could find a green triangle in P, but such a configuration does not 

occur in a plane. Hence there are exactly two red lines, and v = 2m. 

When P does contain a red line which is skew to a green line then this 
v-k green line is in at least m distinct planes, so k ~ m. Now(*) yields 

v-k u+m-1 u-
m< -- ~ ---, i.e., - u-k nm 

(I) 
2 u ~ nm - m+l. 

But:=~ is an integer, so(*) implies that (u-m)I (n-l)m(m-1) and when n > l 

it then follows that 

(2) u ~ m+ (n-l)m(m-1). 

But (1) and (2) contradict each other, and consequently n = 1. The equality 

(*) now passes into 

v-k 
u-k = 

u+m-1 
m 

It follows that u - (mod m), say u = qm+l for some integer q. We just 

treated the case q = l hance may suppose now that q ~ 2. Now 

v-m 
u-m 

+ l + qm-qk = 
q qm- m+l 

2 qk-m+l q + -~---,-
qm-m+l · 

v-m v-m q 
If m > k then it follows that -- > q + l and -- < q + l +--1, u-m u-m q-
Consequently m = qk+ 1, q = (m-1)/k, k(u-1) = m(m-1), 

2 2 2 k ( v-1) = (m- l ) (m - m - k + k + km) • 

i.e. 
v-m 
-- = u-m 

Since mlv we find -k2 = -(-k2+k) (mod m), i.e., k(2k-l) = 0 (mod m). But 

q + 2. 

m = qk+l implies (m,k) =land thus 2k-l - 0 (mod m) which is impossible 

because m ~ 2k+l. Therefore we must have m ~ k. But from the existence of 

Lit follows that m-1 = 0 (mod k-1) [for: L contains points which are only 

incident with green lines, hence u-1 = O(mod k-1), and L also contains points 
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which are incident with some green lines and (the unique) red line, hence 

u-m = 0 (mod k-1) and subtracting these congruences yields m-1 = 0 (mod k-1)] 

and hence m ~ k. It follows that m = k: all lines of L have the same size. 
2 Now v = q k + q + 1. Fix a plane 1r0 in P and a point x0 E 1r0 and count the 

number of planes intersecting 1r0 in the point x0 only. Through x0 pass 
pu u u-1 v = k(q+l) planes; through each of the k-l lines through x0 and 1r0 pass 
v-k u-k - 1 = q planes different from 1r0 so that there are 

u u-1 
s := -k(q+l) - - • q - 1 k-1 

planes intersecting 1r0 exactly in x0 . But then 

k(k-I)s = u(k-q) - k2 + k - I 

and it follows that k > q. From klv we see that q = -I (mod k) and hence 
2 3 2 q = k-1. Now m = k = q+l, u = q + q + I, v = q + q + q + I, L is PG(2,q), 

Pis PG(3,q) which is the first alternative of the theorem. 0 






