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The uniqueness of the near hexagon on 759 points 

by 

A.E. Brouwer 

ABSTRACT 

We show that the unique near hexagon withs= 2 and t = 14 and t 2 = 2 

is the one with the blocks of the Steiner system S(S,8,24) as vertices and 

sets of three pairwise disjoint blocks as lines. 

KEY WORDS & PHRASES: Steinel' system, near hexagon 





INTRODUCTION 

A near hexagon is a partial linear space (X,L) such that 

a. For any point p EX and line l EL there is a unique point on l nearest p. 

b. Every point is on at least one line. 

c. The distance between any two points is at most three. 

(The distances are measured in the point graph: d(p,q) = 1 iff p and q are 

collinear.)· 

A regular near hexagon with parameters (s,t,t2) is a near hexagon such 

that each line contains l+s points, and each point is in l+t lines, and a 

point at distance 2 from a fixed point x0 is in l+t2 lines containing a 

neighbour of x. 
0 

SHULT & YANUSHKA [1] showed that there are exactly eleven possibilities 

for the parameters of a regular near hexagon with s=2. For nine parameter 

sets the corresponding near hexagons have been classified completely. Here 

we settle one of the two remaining cases by showing that there is a unique 

regular near hexagon with parameters (s,t,t2) = (2,14,2). As SHULT & 

YANUSHKA indicate an example is given by the 759 blocks of the Steiner 

system S(S,8,24), where lines are triples of pairwise disjoint blocks. One 

finds that distance 0,1,2,3 in the point graph corresponds to blocks inter­

secting in 8,0,4,2 points, respectively. Here we prove that this is the 

only example. [Note that WITT [2] proved the uniqueness of S(S,8,24).J 

(The last open case is (s,t,t2) = (2,11,1), v = 729 where an example can be 

found from the ternary Golay code. Most likely this example is unique as 

well.) 

1. STRUCTURE OF THE SYSTEM W.R.T. A POINT. 

Then 

Let x0 be any point of the near hexagon H. 
Let ki = lri(x0)1 = l{xld(x,x0) = i}I. 

kO = I 

kl = 30 (=. s(t+l)) . 

k2 = 280 (= k 1.s.t/(t2+t)) 

k3 = 448 (= k2.s.(t-t2)/t) 
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so that v = lk. = 759. 
1 

Diagram of the distance regular point graph: 

It is an association scheme with intersection numbers (p~.) where 
1J 

( I O O O ) 
I o 1 0 J) k 0 1 0 0 k 

( 3~ 
1 3 

(P . ) "k = (P lj) = 
OJ J O O 1 0 ' 28 3 

0 0 0 1 0 24 15 

(:s~ 0 1 0) (Pk) 28 3 15 = 
2j 28 140 85 

224 136 180 

(J 0 0 1 ) k 0 24 15 
(p3j) = 136 224 180 

224 288 252 

2. QUADS AND OVALS 

Let us first recall some facts from SHULT & YANUSHKA [1]. Two points 

p,q at distance 2 determine a generalized quadrangle (possibly degenerated) 

Q(p,q). If µ{p,q) is the set of common neighbours of p and q then Q = Q(p,q) 

is the set of points with distance at most two to each point of {p,q} u µ{p,q) • 

.Any point adjacent to two points in Q is already inside Q. Points outside Q 

are of two types: 

a) "classical type" 

xis of classical type if there is a unique pointy E Q closest to x. 

In this case d(x,z) = d(x,y) + d{y,z) for each point z E Q·. 

S) "Oval type" 

xis of oval type if the set of points in Q closest to x form an oval in 

Q, i.e., a set meeting each line of Qin exactly one point. In this 

case Q is regular and the oval has 1 + sQtQ points. 
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Two quads (generalized quadrangles Q(p,q)) intersect in the empty set, 

a point, a line, or coincide. 

Let us now apply this to our situation. Two points at distance 2 have 

3 common neighbours, so our quads will be GQ(2,2)'s. Points at distance one 

from a quad are necessarily of classical type. In GQ(2,2) points at distance 

2 occur, but in H distance 4 does not occur, so points at distance two from 

a quad are of oval type. No points have distance 3 from a quad. GQ(2,2) is 

unique up to isomorphism - an easy description is given by: vertices are the 

15 unordered pairs of 6 objects, lines are formed by three pairwise disjoint 

pairs. We have v = b=l5; in fact GQ(2,2) is self-dual. 

There are six ovals, each containing five points, namely the sets of 

pairs containing a fixed object. Two nonadjacent points determine a unique 

oval, two ovals intersect in a unique point and each point is in two ovals. 

Diagram of the quad: 

CD--®--®· 
6 l l 4 3 3 

Let us determine the structure of the system w.r.t. a quad. Let n. be 
i 

the number of points at distance i from Q. Then 

no = 15 

nl = 360 

n2 = 384 

(for: given a point x E Q, it is incident with 15 lines, 3 inside Q, 12 

leave, so x has 24 neighbours outside Q, and there are 15.24 = 360 points 

adjacent to Q). 

CLAIM. There are no lines disjoint from Q with 2 points adjacent to Q. 

PROOF. Suppose xyz is a line disjoint from Q, and x ~ x', y ~ y' with 

x',y' E Q. Then d(x,y') = 2 = l + d(x',y'), so x' y'. If z has distance 

2 to Q then z determines an oval O in Q containing the adjacent points 
z 

x' and y'. Contradiction. D 
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,Now by counting we see that if xis adjacent to Q then xis in 1 line 

intersecting Q, in 6 lines contained in r1(Q) (for: let x ~ x' E Q. For 

each pointy' E Q with y' ~ x' we find three lines through x containing a 

neighbour of y', one of them intersecting Q and the other two in r1(Q), 

projecting onto the line x'y') and in 8 lines with I point in r 1(Q) and 

2 points in r2 (Q). If x E r2(Q) and x determines the oval O = Ox in Q then 

the 15 connnon neighbours of x and some point of Oare on distinct lines 

through x (by the previous claim). But t+l = 15, so any line through x has , 
1 point in r 1(Q) and two points in r 2(Q). 

Diagram of H w.r.t. a quad: 

G-24--1 g1r~Q · 
6 13 ~ 

3. TWO DISJOINT QUADS 

CLAIM. Let Q and Q' be two disjoint quads. Then Q' contains 7 points at 

distance 1 from Q: a point xO and its six neighbours in Q'. 

PROOF. Any line in Q contains 1 or 3 points at distance 1 from Q'. Let 

Z = Q n r1(Q'). Then Z is a (possibly degenerate) generalized quadrangle: 

if l is a line in Zand pa point in Z\l then there is a line min Q con­

taining p and intersecting l. Since Im n zl ~ 2 it follows that m c Z. 

Consequently we have the following possibilities: 

(a) z is an oval in Q. 

(f3) z is the union of three concurrent lines. 

(y) z is a GQ(2,1): a lattice with 9 points and 6 lines 

(o) z = Q. 
Let Z' = Q' n r1(Q). We saw above that adjacent points project to 

adjacent points, so Z' is isomorphic to z. 
Let us first rule out case (a). 

Choose x E Q\Z. Then x determines an oval O in Q', and xis adjacent 
X 

to exactly lo n Z' I points of z. But a point outside an oval is adjacent 
X 

to three points of the oval, while two ovals intersect in 1 or 5 points. 

Contradiction. 

The cases (y) and (o) are ruled out by counting. Let xO be a fixed 
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point at distance 2 from the quad Q. Count the number of points adjacent to 

Q and at distance 2 from x0 in two ways. 

Let O be the oval in Q determined by x0 • Let z E Q. If z l O then 

d(x0 ,z) = 3 and z has 15 neighbours at distance 2 from x0• Three are.in O, 

and the remaining 12 count. If z E O then d(x0 ,z) = 2 and z has 3 neighbours 

at distance 2 from x0 • None of them is in Q. 

Altogether we find 10.12 + 5.3 = 135 points in r 1(Q) n r 2(x0). 

On the other hand, consider quads Q' through x0 • There are 15 lines 

incident with x0• and any two intersecting lines determine a quad Q', while 

Q' contains three lines through x0 • This shows that we have the structure 

of a STS(15) on lines and quads incident with x0 • (Later we shall see that 

in fact this STS(15) is PG(3,2).) In particular there are 35 quads incident 

with x0 • These quads are of three possible types: 

a) intersecting Q 

b) of type S: with 7 points adjacent to Q 

c) of type y: with 9 points adjacent to Q. 

Let there be n ,n. ,n quads of each type. a O C 
Then na + nb + nc = 35. Clearly na = 5. Now each point in r 1(Q) n r 2(x0) 

determines together with x0 a unique quad Q'. Each quad of type a contains 

3 such points (it has 1 point in Q and 6 points in r1(Q), 3 of which are 

adjacent to x0), each quad of type b: 4 such points, and each quad of type c: 

6 such points. Altogether we find 

Solving our equations yields na = 5, r;, 
y do not exist.· 

= 30, n 
C 

In a similar way we dispose of type o: 

= 0, so quads of type 

Let x be a point at distance one from Q. Count the number of points in 

r 1(Q) n r 2(x) in two ways. 

Let z E Q. If d(x,z) = 3 then z has 15 neighbours at distance two from 

x, 3 in Q and 12 in r1(Q). There are 8 such points z. If d(x,z) = 2 then z 

has 3 neighbours in r2(x), one in Q and 2 in r 1(Q). There are 6 such points 

z. If z is the unique neighbour of x in Q then z has 28 neighbours in 

r 2(x), 6 in Q and 22 in r 1(Q). Altogether we find lr1(Q) n r 2 (x)I = 

8.12 + 6.2 + 1.22 = 130. 
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On the other hand, consider quads Q' through x. These are of five 

possible types: 

a) intersecting Qin a line. 

b) intersecting Qin a point. 

c) contained in r 1(Q). 

d) with 7 points in r1(Q), where xis the point of intersection of the 

three line!S on those 7 points. 

e) with 7 points in r 1(Q), where x is not the point of intersection. 

Let there be n ,¾,n ,nd,n quads of each type. a c e 
Then n +¾ + n + nd + n = 35. a C e 
Let x ~ x' E Q. Each of the three lines through x' determines a 

of type a, so na = 3. The line xx' is in 7 quads, so na + nb = 7 and 

¾ = 4. Counting points in r 1(Q) n r 2 (x) we find 

quad 

Hence 2n + n = 24, n + nd + n = 
c e c e 

28. Now vary the point x, so that 
- - -

nc,nd,ne become functions of x. Let nc,nd,ne be the average values. 

For any quad of type S there is one point x for which it is of type 

d and six points x for which it is of type e. Consequently ne = 6~d' This 

yields~ = O, ~d = 4, n = 24. But if~ = 0 then clearly n = 0 for each 
C e C C 

x. This shows that quads of type o do not exist. D 

4. THE GRAPH ON THE OVALS 

Given two points p and q at distance 2 they determine a quad Q = Q(p,q) 

and inside Q an oval O = O(p,q). By counting one finds that there are 
24 exactly ( 4 ) ovals, and our aim is to identify the set of ovals with the 

vertices of the Johnson scheme J(24,4). We use the following characteriza­

tion (BROUWER [3]): 

THEOREM. Let G be a graph with v = ( 2
44) vertices, regular of valency k = 80, 

where each edge is in A= 22 triangles and any two nonadjacent vertices 

have at most 4 common neighbours. Then G can be labelled such that the 

vertices are the 4-subsets of a 24-set, and edges are pairs of 4-sets with 



3 points in aomrnon. 

In order to apply the theorem we have to define adjacency between two 

ovals and to prove that k = 80, A= 22, µ(x,y) s 4. 
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DEFINITION. Two ovals O and O' are called adjacent if lo n o'I = IQ n Q' I= 1, 

where Q and Q' are the quads containing O and O', respectively, and any two 

points of O u O' have distance 2. 

A. k = 80 

Given an oval O in a quad Q, choose a point x E O. Then xis in 35 quads, 

one is Q, 18 intersect Q in a line (for: each line is in 7 quads) and the 

remaining 16 intersect Q in {x}. Let Q' be one of these 16. Inside Q' the 

point Xis in two ovals, O' and O". Let y E o. Then d(y ,Q') = 2 (for if 

y ~ z E Q' then d(y,x) = l+d(z,x) = 2, so z ~ x and z has two neighbours 

in Q, so z E Q, i.e. z = x, contradiction) and y determines an oval in 

Q', say O'. Now any point z of O'\{x} has distance 2 to x and y hence 

determines the oval Oz= 0 in Q. We proved: 

LEMMA. Let Q and Q' be tuJo quads interseating in the point x. Then xis in 

ovaZs o 1, o2 in Q and Oj, o2 in Q' suah that any tuJo points in oi u Ol have 

distanae 2 (i = 1,2), and any point in o1\{x} has distanae 3 to eaah point 

of o2\{x} (and simiZarZy for o2 and Oj). [Thus: Oi ~ Ol (i = 1,2) .J 

Now the oval O contains 5 points, each point is in 16 quads Q' with 

IQ' n QI= 1 and each quad Q' contains a unique oval O' ~ O. This shows that 

k = 5 • 16 • 1 = 80. 

B. A= 22. 

Let O and O' be two adjacent ovals in quads Q and Q', respectively, 

where Q n Q' = {p}. 

If y E O\{p} and z E 0 1 \{p} then d(y,z) = 2 so that y and z determine 

a quad Q" = Q(y,z) and an oval O" = O(y,z). One sees immediately that 

Q n Q" = {y} (otherwise Q and Q" intersect in a line .t, z has a neighbour 

u on .l, so d(z,Q) = 1 and d(p,z) = 1 + d(u,p) = 2 sou~ p, u ~ z and 
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hence u e: Q', sou= p, contradiction) and Q' n Q" = {z} and since 

d(p,z) = 2 it follows that O ~ O" ~ O'. Thus we find 4.4 = 16 conunon 

neighbours O" not containing p. 

Through p there are 6 quads Q" intersecting both Q and Q' only in the 

point p (- count in the local STS(15) at p: there are 6 triples disjoint 

from a given pair of disjoint triples), and each quad Q" contains a unique 

oval adjacent to O and a unique oval adjacent to O' - if we show that this 

is always the same oval then it follows that A= 16 + 6 = 22 as desired. 

LEMMA. Let O be an ovai, p e: 0 and y,z two points at distance 2 to ea?h 

point of 0. Then either d(y,z) = 2 or (d(y,z) = 3 and there is a iine 

l = py'z' through p with y ~ y', z ~ z'). 

PROOF. Let Q be the quad containing O. Then d(y,Q) = d(z,Q) = 2. If y ~ z 

then each point of O has two points at distance 2 on the line yz, so the 

third point on this line is adjacent to each point of O, a contradiction. 

Given y, there are 3 lines through p containing a neighbour of y. The 

third point z' on each of these lines has 16 neighbours in r2 (Q), situated 

on 8 lines. If pis in the ovals O and O' inside Q then each of these 16 

points has either O or O' as the corresponding oval in Q, but we just saw 

that adjacent points correspond to different ovals, so we find 8 neighbours 

of z' corresponding to O. Two of these are in the quad determined by y and p. 

Thus we find three choices for z' and for each z' six choices for z - 18 

points altogether. 

(Note that if y and z have distinct neighbours on a line land y,z 

and l are not in a quad, then d(y,z) = 3.) In order to prove the lenuna it 

suffices to show that there are 64 points in r2(Q) corresponding to O, 

45 of which have distance 2 to a given pointy. 

But a given point in Q is at distance 2 from 24.6/3 = 128 points in 

r2(Q). Let O. (i=l,2,3,4,5,6) be the six ovals in Q and P. (l~i~6) the 
1 1 

six subsets of r2(Q) corresponding to 0 .• Then IP. u P. I= 128 for all 
1 1 J 

pairs i,j with i ~ j and it follows that IPil = 64 for all i. Let o1 = O. 

Now if d(y,z) = 2 then y and z determine a quad Q' = Q(y,z). If Q' intersects 

Q then Q' is one of the five quads Q(x,y) with x e: O. For each such quad 

Q' n r 2(Q) is contained in P1 u Pj for some j and has the structure of K4,4-

matching (i.e. of the cube 23), so that Q' contains 3 points in r2(y) n P1• 



If Q' is disjoint from Q (this is the case for the remaining 30 quads 

through y) then if u is the center of Q' n r1(Q) and u ~ u' E Q and 
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u' E o5 n 06 , say, then Q' n r2 (Q) has the structure of a cube with 2 points 

in each Pi (I::;;i:,;4) and no points in P5 u P6 • 

Consequently Q' contains I point in r2(y) n P1• Altogether we find 

5.3 + 30.I = 45 points z as desired. D 

LEMMA. Let Q. (i=I,2,3) be three quads pairwise intersecting in the point 
i 

x. Let Oi be an oval in Qi (i=I,2,3) such that o1 ~ o2 and o1 ~ o3• Then 

02 ~ 03. 

PROOF. Choose y E o2\{x}, z E o3\{x}. If d(y,z) = 2 we are done. Otherwise 

apply the previous lemma to find a line l through x containing neighbours 

of y and z. But then l c Q2 n Q3, contradiction. D 

This completes the proof of:\= 22. 

c. µ :,; 4 

As auxiliary result we need the following characterization of PG(3,2). 

THEOREM. Let (X,r;) be an STS(15) such that each pair of disjoint Unes is 

contained in a spread. Then (X,r;) = PG(3,2). 

PROOF. By counting one sees that there are at least 28 spreads. From the 

data given by BUSSEMAKER & SEIDEL [4] on the number of spreads in each of 

the 80 distinct STS(IS)'s we see that there are only two candidates; but 

inspection of one of them shows the existence of pairs of disjoint lines 

not in a spread. Hence (X,r;) is PG(3,2). Note that in PG(3,2) any two 

disjoint lines are in exactly two spreads, and any three pairwise disjoint 

lines determine a unique spread. D 

REMARK. It is an easy exercise to show that an STS(IS) where any two 

disjoint lines are in at least two spreads, must be PG(3,2) (by showing 

that Pasch's axiom holds). For the above result however, I need the 

classification of all STS(I5)'s. 
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COROLLARY. In our nea:r>-hexagon, the 15 Unes and 35 quads through a point 
fo1wz a PG(3,2). 

PROOF. Let Q1 and Q2 be two quads with Q1 n Q2 = {p}. Choose points xi E Qi 

such that d(xi,p) = 2 (i=l,2) and d(x1,x2) = 2. Let Q = Q(x1,x2). Let O be 

the oval in Q determined by p. Then the five quads Q(p,x) with x E O 

intersect pairwise in the point p. This shows that the local STS(lS) at p 

satisfies the hypothesis of our theorem. D 

Now let O and O' be two nonadjacent ovals. We must show that they have 

at most four common neighbours. 

(i) Let O, O' be two ovals in the same quad Q. Then µ(O,O') = O. 

(ii) Let O, O' be two ovals in quads Q, Q', respectively, where Q n Q' = l, 

a line. Suppose that the oval 011 contained in the quad Q11 is a comm.on neigh­

bour of O and O'. Then Q11 n Q = Q" n Q' = {p} and p E £.. Consequently, if 

µ(O,O') > 0 then On l = O' n l = {p}. Looking at the local PG(3,2) in p, 

we see that 

(for: pis 

both Q and 

there are 8 

in 35 quads, 

Q' in a line 

quads Q" intersecting both Q and Q' in p only 

33 distinct from Q and Q'; S contain l; 4 intersect 

other than l; 16 intersect one of Q and Q' in a 

line, remain 8); if we call two such quads adjacent if they intersect in p 

only then the graph on these 8 quads is the union of two four-cycles. Now 

suppose Q11 ~ Q ". Then there is an oval O II c Q II such that 0 111 ~ 011 • By 
1 1 1 

the transitivity lemma in the previous section we find from O "~ 011 ~ 0 
1 

that O 11 ~ 0 and likewise O 11 ~ O'. This proves that if a quad contains 
1 . 1 

a common neighbour of O and O' then so does any adjacent quad. Therefore 

the number of common neighbours of O and O' is O, 4 or 8. But clearly, if 

0 is the other oval through pin Q' then µ(O,O') + µ(O,O) = 8 (each of the 

8 quads contains a unique neighbour of O; this oval is adjacent to either 

O' or O), so in order to prove that we have µ(O,O') = 4 it suffices to 

prove µ(0,0) ~ 1. 

To this end choose XE O and XE O with X; p; X and d(x,x) = 2. 

(This is possible: O\{p} contains 2 points at distance 2 and 2 points at 

distance 3 from x.) In Q(x,x) the points x and x have three common neigh­

bours; one is on l. Let y i l be a common neighbour of x and x. Then 

d(y,Q) = d(y,Q') =I.Let m be a line through y such that the two other 



points on m have distance 2 to both Q and Q'. (In fact there are 4 such 

lines). 

1 1 

Let m = {y,u,v}. Both u and v determine an oval through x in Q; let u 

be the potnt determining O = O(x,p). Then d(u,p) = 2 so that u also deter­

mines O = O(x,p) in Q'. Consequently, O(p,u) is a connnon neighbour of O and 

0 as was to be proved. 

(iii) Let O, O' be nonadjacent ovals in Q, Q' with Q n Q' = {p}. 

If Q" intersects both Q and Q' in a single point then either p E Q" 

or the points of intersection have distance 2 from p. If pi Ou O' then 

both O and O' -contain three neighbours and two nonneighbours of p. Each 

pair of nonneighbours gives at most one Q", so in this case µ(O,O') ~ 4. 

If p E O, pi O' then of the two points in O' nonadjacent top one has 

distance 2 and the other distance 3 to .each point of 0\p. Again 

µ(O,O') E 4. 

Finally, if both O and O' contain p then each point of 0\p has 

distanc~ 3 to each point of O'\p so connnon neighbours can only be found 

in quads through p. But then in view of the lennna above µ(O,O') = O. 

(iv) Let O, O' be ovals in Q, Q' with Q n Q' = 0. Each oval O in Q has 2 

or 4 points at distance 2 from Q', the latter case occurring exactly when 

x E O, where xis the center of the set Q n r1(Q'). If both O and O' 

contain 2 points at distance 2 from Q' respectively Q, then µ(O,O') ~ 4. 

If O contains 4 points at distance 2 from Q' then there is no point 

z E Q' at distance 2 from each point of O (for: let x ~ x' E Q. Since 

d(z,x) = 2 it follows that z x' and so d(z,Q) = 1 and r2(z) n Q does 

not contain an oval) so that there cannot be an oval O(y,z) intersecting 

both O and O' with O ~ O(y,z) ~ O'. Thus µ(O,O') = 0 in this case. 

This completes the proof ofµ~ 4. 

From now on we may assume that the ovals are labelled with quadruples 

from a 24-set such that adjacent ovals have labels with 3 elements in 

connnon. 
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5. CONSTRUCTION OF S(S,8,24) 

Given the labelling of the ovals it is not difficult to find the Steiner 

system S(S,8,24). Repeating the same argument three times we find objects 

inside H labe,led with triples, pairs and singletons from a 24-set. Then 

points can be: labeled with 8-sets. 

A. Look at the graph J(24,4), where adjacent quadruples have Johnson distance 

1. Each edge is in two maximal cliques: a 5-clique and a 21-clique. 

In J(24 1.4) the 5-cliques are the five quadruples in a 5-set and the 21-

cliques are the 21 quadruples containing a given triple. Consequently we 

may label thE~ 21-cliques with triples. In H the 5-cliques are the sets of 

five ovals through a fixed point p, where no quad not containing p intersects 

three of the ovals. 

The 21-cliques are sets P of size 21 such that two points in Pare at 

distance 2, and the oval they determine is contained in P. P together with 

its ovals has the structure of a projective place PG(2,4). 

(For: let o1 ~ o2, o1 n o2 = {x} and choose y E o1\{x}, z E o2 \{x}. 

Let Q = Q(y, :z). Then d (x,Q) = 2 and x determines an oval O inside Q. For 

each point u. E Owe find an oval 0. = O(x,u.) (i=l,2,3,4,5). 
1 1 1 

Now {O, 0. (1::;;i::;;5)} is a 6-clique and hence contained in a 21-clique. 
1 

This shows that an oval~ x intersecting two of the 0. intersects each of 
1 

them.) Each oval is in four such 21-sets, and two 21-sets are disjoint, 

have a point or an oval in connnon, or coincide. In the sequel we write 

'21-set' instead of '21-set such as described under A'. 

B. Look at the graph J(24,3) where adjacent triples have Johnson distance 1. 

Each edge is in two maximal cliques: a 4-clique and a 22-clique. 

The 4-cliques are the four triples contained in a fixed quadruple. In 

H these correspond to the four 21-sets containing a fixed oval. 

The 22-cliques are the 22 triples containing a fixed pair. In H these 

correspond to sets of twenty-two 21-sets, any two of them intersecting in 

an oval, wheire each of the 21 ovals in a 21-set is in exactly one other 

21-set. Consequently each point in a 21-set is in five other 21-sets, so 

that each point of such a 22-clique is in six 21-sets and there are 77 

points. In the sequel we shall call the 22-cliques '77-sets'. The 



incidence structure in a 77-set with the 21-sets as points and the points 

as blocks has S(2,5,21) as derived system, hence is the unique S(3,6,22) 

design. We label the 77-sets with pairs from 24 symbols. 
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C. Look at the graph J(24,2) where adjacent pairs intersect (the 'triangular 

graph' T(24)). Each edge is in two maximal cliques: a 3-clique and a 23-

clique. The 3-cliques are the three pairs contained in a fixed triple. In 

H these correspond to the three 77-sets containing a fixed 21-set. 

The 23-cliques are the 23 pairs containing a fixed symbol. In H these 

correspond to sets of twenty-three 77-sets, any two of them having a unique 

21-set in conunon. Each of the twenty-two 21-sets in a 77-set is in exactly 

one other 7'7-set. Consequently each point in a 77-set is in six other 77-

sets so that each point of such a 23-clique is in seven 77-sets and there 

are 253 points. In the sequel we shall call the 23-cliques '253-sets'. The 

incidence structure in a 253-set with 77-sets as points and points as blocks 

is the unique S(4,7,23) design. We label the 253-sets with 24 symbols. 

D. Each point is in 8 253-·sets. 

For ovrals, 21-sets, 77-sets and 253-sets we had that inclusion of sets 

was equivalent to inverse inclusion of labels (one implication by definition, 

the other by counting). If x E O, 0 an oval with label ijkl, then 

x E O c Pc Ac B where Pis the 21-set with label ijk, A is the 77-set with 

label ij and Bis the 253-set with label i. This shows that any symbol 

occurring in the label of an oval containing x also is a symbol in the label 

of x. Thus the 70 =(:)ovals incident with x are labeled with the 4-subsets 

of the label of x. 

Now we have identified the points of H with the blocks of S(S,8,24). 

In S(S,8,24) blocks intersect in either 0,2,4 or 8 points. Two blocks 

intersecting in 4 points are points of Hin a connnon oval, i.e., points at 

distance 2. But knowledge of the graph with adjacencies x ~ y when d(x,y) = 2 

in H determines H itself: two adjacent points have 28 points at distance 2 

£row both of them, while two points at distance 3 have 85 points distance 2 

from both of them. 
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This shows that adjacent points in Hare disjoint blocks in S(5,8,24), 

and lines are triples of pairwise disjoint blocks. 

This completes the uniqueness proof. 
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