Triple systems and associated differences
by
J.C. Bermond*, A.E. Brouwer ${ }^{\star *}$ \& A. Germa*

ABSTRACT

We formulate a problem that is a common generalization of the problems of Skolem and Langford. Necessary conditions on the parameters are derived and many (but not all) cases are solved.

* C.M.S., 54 Bd. Raspail 75006 Paris
** Mathematical Centre, 2e Boerhaavestraat 49, Amsterdam.

0. INTRODUCTION

In this paper we study the following problem which is a special case a problem in radioastronomy: how to arrange antennas in a linear array such that certain prescribed mutual distances occur? (see [1] for more details):

PROBLEM I. Let d and m be positive integers. For what values of d and m is it possible to find m triples $A_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}(i=1,2, \ldots, m)$, such that the $3 m$ numbers (called associated differences of the triples) $b_{i}{ }^{-a}{ }_{i}, c_{i}{ }^{-a}{ }_{i}$, $c_{i}{ }^{-b}{ }_{i}(i=1,2, \ldots, m)$ are all the integers of the set $\{d, d+1, \ldots, d+3 m-1\}$?

For example $A_{1}=\{0,4,6\}, A_{2}=\{0,9,10\}, A_{3}=\{0,8,11\}, A_{4}=\{0,7,12\}$ is a solution for $m=4, d=1$.

REMARK. As we are interested only in the differences associated with the triples, we may suppose that $a_{i}=0$ in all triples.
Related to this problem is:

PROBLEM II. Let d and m be positive integers. For what values of d and m is it possible to find a partition of the set $\{1,2, \ldots, 2 m\}$ into m pairs $\left\{p_{i}, q_{i}\right\}$ such that the mumbers $\mathrm{q}_{\mathrm{i}}{ }^{-\mathrm{p}_{\mathrm{i}}}(\mathrm{i}=1, \ldots, m)$ are all the integers of the set $\{\mathrm{d}, \mathrm{d}+1, \ldots, \mathrm{~d}+\mathrm{m}-1\}$?

Obviously a solution to the second problem implies a solution to the first one: take as triples $A_{i}=\left(0, p_{i}+m+d-1, q_{i}+m+d-1\right)$.
All our solutions to problem I will also be solutions to problem II.
(But the solution given in the above example is not derived from a solution to problem II.)

PROPOSITION 1. Necessary conditions for the existence of a solution to problem I are:
(i) $m \geq 2 \mathrm{~d}-1$ or $\mathrm{m}=0$
(ii) If d is odd $\mathrm{m} \equiv 0$ or $1(\bmod 4)$

If d is even $\mathrm{m} \equiv 0$ or $3(\bmod 4)$.

PROOF. This is a special case of theorem 2.4 of [1]. For completeness we give an independent proof in this case.

Let the triples $\left\{0, b_{i}, c_{i}\right\}(i=1,2, \ldots, m)$ constitute a solution to problem I, where $b_{i}<c_{i}$. Then

$$
\sum_{i=1}^{2 m}(d+i-1) \leq \sum_{i=1}^{m} b_{i}+\left(c_{i}-b_{i}\right)=\sum_{i=1}^{m} c_{i} \leq \sum_{i=1}^{m}(d+3 m-i)
$$

since all differences $b_{i}, c_{i}, c_{i}-b_{i}$ have to be different.
Hence $m(2 d+2 m-1) \leq \frac{1}{2} m(2 d+5 m-1)$ from which (i) follows.
Furthermore

$$
\sum_{i=1}^{m} b_{i}+\left(c_{i}-b_{i}\right)+c_{i}=2 \sum_{i=1}^{m} c_{i}=\sum_{i=1}^{3 m}(d+i-1)=\frac{3}{2} m(2 d+3 m-1)
$$

is even, so that $3 \mathrm{~m}(2 \mathrm{~d}+3 \mathrm{~m}-1) \equiv 0(\bmod 4)$. This yields (ii).

1. RESULTS

THEOREM 1. For $\mathrm{d}=1,2$, or 3 the necessary conditions of proposition 1 are sufficient to guarantee the existence of a solution to problem II (and a fortiori to problem I).

PROOF. (i) $d=1$.
In this case problem II reduces to Skolem's problem [7]: for what values of m is it possible to partition the integers $\{1,2, \ldots, 2 m\}$ into m pairs $\left\{a_{i}, b_{i}\right\}$ ($i=1,2 \ldots, m$) such that $b_{i}{ }^{-a}=i$?
But it is well known [4,7] that a solution of Skolem's problem exists iff $m \equiv 0$ or $1(\bmod 4)$, and thus case (i) is proved.

REMARK. Recall that a graceful numbering [3] (or β-valuation [6]) of a graph G with e edges is an assignment of a subset of the numbers $\{0,1, \ldots, e\}$ to the vertices of G in such a way that the values of the edges are all the numbers from 1 to e, where the value of an edge is defined as the absolute value of the difference between the numbers assigned to its endpoints.

Then in case $d=1$ a solution to problem I is equivalent to a graceful numbering of the graph consisting of m triangles having exactly one vertex in common (this is an easy consequence of the remark in the introduction). The existence of a graceful numbering of such graphs was asked by C. HOEDE (who called these graphs "mills") at the 5th Hungarian Colloquium
in Keszthely 1976.
(ii) $\mathrm{d}=2$

In this case problem II is equivalent to Langford's problem [5]: for what values of m is it possible to find a sequence of length 2 m consisting of 2 occurrences of $i(1 \leq i \leq m)$ such that for each i the two occurrences of i are separated by i other elements of the sequence?

EXAMPLE. For $m=3(3,1,2,1,3,2)$ is a Langford sequence. If the number i occurs at positions a_{i} and b_{i} in the sequence, then the pairs $\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}\right\}$ partition $\{1,2, \ldots, 2 \mathrm{~m}\}$ while $\mathrm{b}_{\mathrm{i}} \mathrm{-a}_{\mathrm{i}}=\mathrm{i}+1$, i.e. we have a solution of problem II with $d=2$. Conversely any solution to problem II with $\mathrm{d}=2$ yields a Langford sequence. But it has been proved by R.O. DAVIES [2] that a Langford sequence exists iff $m \equiv 0$ or $3(\bmod 4)$, and thus case (ii) is proved.
(iii) $d=3$

First let $m=4 k, k>1$. A solution is given by the following eight groups of pairs $\left\{a_{i}, b_{i}\right\}$:

(AG1)	a_{i}	b_{i}	$b_{i}{ }^{-a}{ }_{i}$
(1)	j	$4 k-j+3$	$4 k+2-2 j$
(2)	$k+j$	$3 k-j+3$	$2 k+3-2 j$
(3)	$k+1$	$5 k+2$	$4 k+1$
(4)	$2 k+1$	$6 k+3$	$4 k+2$
(5)	$2 k+2$	$6 k+1$	$4 k-1$
(6)	$4 k+2$	$6 k+2$	$2 k$
(7)	$4 k+j+2$	$8 k-j+1$	$4 k-2 j-1$

Next let $m=4 k+1 . k>1$. A solution is given by:

(AG2)	a_{i}	b_{i}	$b_{i^{-a}}$
(1)	j	$4 k-j+2$	$4 k-2 j+2$
(2)	$k+1$	$5 k+3$	$4 k+2$
(3)	$k+1+j$	$3 k-j+2$	$2 k-2 j+1$
(4)	$2 k+1$	$6 k+4$	$4 k+3$
(5)	$2 k+2$	$6 k+3$	$4 k+1$
(6)	$4 k+2$	$6 k+2$	$2 k$
(7)	$4 k+2+j$	$8 k-j+3$	$4 k-2 j+1$

Finally for $m=5$ a solution is given by $\{1,8\},\{4,10\},\{2,7\},\{5,9\},\{3,6\}$.

REMARK. Another solution for the case $m=4 k+1$ is given in the next theorem. This completes the proof of theorem 1.

THEOREM 2. Let $m \equiv 2 \mathrm{~d}-1(\bmod 4), \mathrm{m} \geq 2 \mathrm{~d}-1, \mathrm{~d} \geq 2$. Then a solution to problem II exists.

PROOF. We distinguish two cases, according to the parity of d. First let d be even, and let $m=4 t+3$.

From $d \geq 2$ and $m \geq 2 d-1$ we get $\frac{1}{2} d-1 \geq 0$ and $t-\frac{1}{2} d+1: \geq 0$.
A solution is given by the following ten groups of pairs $\left\{p_{i}, q_{i}\right\}$:

(AEB1)) q_{i}	$\begin{aligned} & \text { (last } \\ & \text { value) } \end{aligned}$	p_{i}	$\begin{aligned} & \text { (1ast } \\ & \text { value) } \end{aligned}$	$\mathrm{q}_{\mathrm{i}}{ }^{-\mathrm{p}_{i}}$	$\begin{aligned} & \text { (last } \\ & \text { value) parity } \\ & \hline \end{aligned}$		of pairs
(1) 2	$2 t+d+2+j$	$3 t+\frac{1}{2} d+2$	$2 t+1-j$	$t+\frac{1}{2} d+1$	$d+1+2 \mathrm{j}$	$2 t+1$	0	$t-\frac{1}{2} \mathrm{~d}+1$
(2) 3	$3 t+\frac{1}{2} d+3+j$	$4 t+3$	$t+\frac{1}{2} d-1-j$	d-1	$2 t+4+2 j$	$4 t-d+4$	E	$t-\frac{1}{2} d+1$
(3) 4	$4 t+4+j$	$4 t+\frac{1}{2} d+2$	d-2-j	$\frac{1}{2} \mathrm{~d}$	$4 t-d+6+2 j$	$4 t+2$	E	$\frac{1}{2} d-1$
(4) 4	$4 t+\frac{1}{2} d+3$		$2 t+\frac{1}{2} d+1$		$2 t+2$		E	1
(5) 4	$4 t+\frac{1}{2} d+4+j$	$4 t+d+2$	$\frac{1}{2} d-1-j$	1	$4 t+5+2 j$	$4 t+d+1$	0	$\frac{1}{2} d-1$
(6) 5	$5 t+\frac{1}{2} d+4$		$t+\frac{1}{2} \mathrm{~d}$		$4 t+4$		E	1
(7)	$6 t+6+j$	$6 t+\frac{1}{2} d+5$	$2 t+d+1-j$	$2 t+\frac{1}{2} d+2$	$4 t-d+5+2 j$	$4 t+3$	0	$\frac{1}{2} \mathrm{~d}$
(8)	$6 t+\frac{1}{2} d+6+j$	$6 t+d+4$	$2 t+\frac{1}{2} d-j$	$2 t+2$	$4 t+6+2 j$	$4 t+d+2$	E	$\frac{1}{2} d-1$
(9)	$6 t+d+5+j$	$7 t+\frac{1}{2} d+5$	$6 t+5-j$	$5 t+\frac{1}{2} d+5$	$\mathrm{d}+2 \mathrm{j}$	2 t	E	$\mathrm{t}-\frac{1}{2} \mathrm{~d}+1$
(10) 7	$7 t+\frac{1}{2} d+6+j$	$8 t+6$	$5 t+\frac{1}{2} d+3-j$	$4 t+d+3$	$2 t+3+2 \mathrm{j}$	$4 t-d+3$	0	$t-\frac{1}{2} \mathrm{~d}+1$
								$4 t+3$

Here the variable j ranges from 0 up to and including $n-1$, where n is the number of pairs.

Next, let d be odd, and let $m=4 t+1, d=e-1$.
From $d \geq 3$ and $m \geq 2 d-1$ we get $\frac{1}{2} e-2 \geq 0$ and $t-\frac{1}{2} e+1 \geq 0$.
A solution is given by the following ten groups of pairs $\left\{p_{i}, q_{i}\right\}$:

In case $m \equiv 0(\bmod 4)$ we have a solution for large d :

THEOREM 3. Let $\mathrm{m}=4 \mathrm{t}, \mathrm{d}=2 \mathrm{t}-\mathrm{e}(\mathrm{e} \geq 0)$. Then if $2 \mathrm{~d} \geq 3 \mathrm{t}+1$ a solution to problem II exists.

PROOF. From $2 \mathrm{~d} \geq 3 t+1$ we get $t-2 e-1 \geq 0$ so that the following seven groups of pairs provide a solution:

(AEB3)		$\begin{aligned} & \text { (last } \\ & \text { value) } \end{aligned}$	P_{i}	$\begin{aligned} & \text { (last } \\ & \text { value) } \end{aligned}$	$\mathrm{q}_{\mathrm{i}}{ }^{-p}{ }_{i}$	$\begin{aligned} & \text { (last } \\ & \text { value) } \end{aligned}$	```number of pairs```
(1)	$8 t-j$	$7 \mathrm{t}+\mathrm{e}+1$	$2 t+e+1+j$	$3 t$	$6 t-e-1-2 j$	$4 t+e+1$	t-e
(2)	$7 t+e-j$	$6 t+e+1$	$3 t+2 e+2+j$	$4 t+2 e+1$	4t-e-2-2j	$2 t-e$	t
(3)	$6 t+e-2 j$	6t-e	2t-j	$2 t-e$	$4 t+e-j$	$4 t$	e+1
(4)	$6 t+e-1-2 j$	$6 t-e+1$	$2 t+e-j$	$2 t+1$	4t-1-j	4t-e	e
(5)	$6 t-e-1-j$	$5 t+1$	1+j	t-e-1	$6 t-e-2-2 j$	$4 t+e+2$	t-e-1
(6)	5t-j	$4 t+2 e+2$	$t+e+1+j$	$2 t-e-1$	4t-e-1-2j	$2 t+3 e+3$	$t-2 e-1$
(7)	$3 t+2 e+1-j$	$3 t+1$	$t-e+j$	t+e	$2 t+3 e+1-2 j$	$2 t-e+1$	$2 \mathrm{e}+1$
							$4 t$

REMARK. This solution was found using certain linear programming techniques; I do not know whether it can be generalized to $m \equiv 0$ (mod4) and arbitrary d (with $\mathrm{m} \geq 2 \mathrm{~d}$). In any case the solutions depicted in tables (AEB1) and (AEB2) are much more elegant than the above one. Concerning the LP techniques and the theory of set-addition, these will be the subject of a future paper.

Solutions for small d can be obtained by pasting together other solutions:

PROPOSITION 2. Suppose we have solutions of problem II with $(\mathrm{m}, \mathrm{d})=\left(1, \mathrm{~d}_{0}+\mathrm{a}\right)$ and with $(\mathrm{m}, \mathrm{d})=\left(\mathrm{a}, \mathrm{d}_{0}\right)$. Then a solution with $(\mathrm{m}, \mathrm{d})=\left(1+\mathrm{a}, \mathrm{d}_{0}\right)$ exists.

PROOF. Let the first solution consist of the pairs $\left\{p_{i}, q_{i}\right\}(i=1, \ldots, 1)$ and the second one of the pairs $\left\{a_{i}, b_{i}\right\}(i=1, \ldots, a)$. Then the collection of pairs $\left\{p_{i}+2 a, q_{i}+2 a\right\}(i=1, \ldots, 1)$ together with $\left\{a_{i}, b_{i}\right\}(i=1, \ldots, a)$ forms a solution of problem II with $(m, d)=\left(1+a, d_{0}\right)$.

In particular we get:

THEOREM 4. Let $m \equiv 0(\bmod 4), m \geq 4(2 d-1)$. Then a solution to problem II exists.

PROOF. Take in the previous proposition $d_{0}=d, a=2 d-1,1 \geq 2\left(d_{0}+a\right)-1$, 1 odd and apply theorems 1 and 2.

Now in order to complete the solution to problem II, we only have to construct a finite number of solutions for any fixed d.
E.g. for $d=4$ we have left the cases $m=12,16,20$ or 24 , and it is easy to provide an explicit solution:
(i) $\mathrm{d}=4, \mathrm{~m}=12$

Take the following pairs:
$\{5,9\},\{19,24\},\{4,10\},\{6,13\},\{15,23\},\{12,21\},\{8,18\},\{11,22\},\{2,14\}$, $\{7,20\},\{3,17\},\{1,16\}$.
(ii) $\mathrm{d}=4, \mathrm{~m}=16$

Take the following pairs:
$\{27,31\},\{25,30\},\{4,10\},\{8,15\},\{6,14\},\{23,32\},\{7,17\},\{11,22\},\{12,24\}$, $\{16,29\},\{5,19\},\{13,28\},\{2,18\},\{9,26\},\{3,21\},\{1,20\}$.
(iii) $\mathrm{d}=4, \mathrm{~m}=20$

Take the following pairs:
$\{36,40\},\{11,16\},\{29,35\},\{32,39\},\{30,38\},\{28,37\},\{8,18\},\{6,17\},\{9,21\}$, $\{7,20\},\{13,27\},\{4,19\},\{10,26\},\{14,31\},\{5,23\},\{15,34\},\{2,22\},\{12,33\}$, $\{3,25\},\{1,24\}$.
(iv) $\mathrm{d}=4, \mathrm{~m}=24$

Take the following pairs:
$\{43,47\},\{40,45\},\{12,18\},\{34,41\},\{38,46\},\{39,48\},\{9,19\},\{33,44\}$, $\{8,20\},\{22,35\},\{11,15\},\{6,21\},\{16,32\},\{7,24\},\{13,31\},\{4,23\},\{10,30\}$, $\{15,36\},\{5,27\},\{14,37\},\{2,26\},\{17,42\},\{3,29\},\{1,28\}$.

This proves:

THEOREM 5. For $\mathrm{d}=4$ the necessary conditions of proposition 1 are sufficient to guarantee the existence of a solution to problem II.

REFERENCES
[1] BERMOND, J.C., A. KOTZIG \& J. TURGEON, On a combinatorial problem of antennas in radioastronomy, Proc. 5th Hungarian Colloquium Keszthely 1976.
[2] DAVIES, R.O., On Langford's problem (II), Math. Gaz. 43 (1959) 253-255.
[3] GOLOMB, S.N., How to number a graph, in "Graph theory and computing" (ed. R.C. Read) Acad. Press, New York 1972, pp. 23-37.
[4] HANANI, H., A note on Steiner triple systems, Math. Scand. $\underline{8}$ (1960) 154-156.
[5] LANGFORD, C.D., Problem, Math. Gaz. 42 (1958) 228.
[6] ROSA, A., On certain valuations of the vertices of a groph, in "Theory of Grophs" (ed. P. Rosenstieh1). Dunod Gordon Beach 1967, pp. 349-355.
[7] SKOLEM, Th., On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957) 57-68.

