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O. INTRODUCTION 

In this paper we study the following problem which is a special case 

a problem in radioastronomy: how to arrange antennas 1.n a linear array 

such that certain prescribed mutual distances occur?(see [I] for more details): 

PROBLEM I. Let d and m be positive integers. For what values of d and mis 

it possible to find m triples A.= {a.,b.,c.} (i = 1,2, ••. ,m), such that the 
1 l. l. l. 

3m numbers (called associated differences of the triples) b.-a., c.-a., 
l. 1 l. l. 

c.-b. (i = 1,2, .•• ,m) are all the integers of the set {d,d+l, .•• ,d+3m-1}? 
l. l. 

For example A1 = {0,4,6}, A2 = {0,9,10}, A3 = {0,8,11}, A4 = {0,7,12} is a 

solution form= 4, d = I. 

REMARK. As we are interested only in the differences associated with the 

triples, we may suppose that a.= 0 in all triples. 
l. 

Related to this problem 1.s: 

PROBLEM II. Let d and m be positive integers. For what values of d and mis 

it possible to find a partition of the set {1,2, .•• ,2m} into m pairs {p.,q.} 
l. 1 

such that them numbers q.-p. (i = 1, ••• ,m) are all the integers of the set 
1 1 

{d,d+l, ••• ,d+m-1}? 

Obviously a solution to the second problem implies a solution to the 

first one: take as triples A. = (O,p.+m+d-l,q.+m+d-1). 
l. 1 l. 

All our solutions to problem I will also be solutions to problem II. 

(But the solution given in the above example is not derived from a solution 

to problem II.) 

PROPOSITION 1. Neaessa:l'y aonditions for the existenae of a solution to probZem 

I a:l'e: 

(i) m ~ 2d-l or m = 0 

(ii) If dis od.d m - 0 or 1 (mod4) 

If dis even m = 0 or 3 (mod4). 

PROOF. This is a special case of theorem 2.4 of [1]. For completeness we 

give an independent proof in this case. 
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Let the triples {O,b.,c.} (i = 1,2, .•. ,m) constitute a solution to problem 
1 1 

I, where b. < c .. Then 
1 1. 

2m m m m 
I (d+i-1) ~ I b.+(c.-D.) = 

1 1 1 I C. ~ 
1 I (d+3m-i) 

i=l i=l i=] i=J 

since all differences b.,c.,c.-b. have to be different. 
1 1 1 1 

Hence m(2d+2m-l) ~ ½m(2d+5m-1) from which (i) follows. 

Furthermore 

m m 3m 
3 I b.+(c.-b.)+c. = 2 I c. = I (d+i-1) = 2 m(2d+3m-l) 

i= 1 1. 1 1 1 
i=l 1 i=l 

is even, so that 3m(2d+3m-l) - 0 (mod4). This yields (ii). D 

1. RESULTS 

THEOREM 1. Ford= 1,2, or 3 the necessary conditions of proposition 1 are 

sufficient to guarantee the existence of a soiution to problem II (and a 

fortiori to problem I). 

PROOF. (i) d = 1. 

In this case problem II reduces to Skolem's problem [7]: for what values of 

mis it possible to partition the integers {1,2, ••• ,2m} into m pairs {a.,b.} 
1. 1 

(i = 1,2 .•• ,m) such that b.-a. = i? 
1. 1 

But it is well known [4,7] that a solution of Skolem's problem exists if£ 

m = 0 or l (mod4), and thus case (i) is proved. D 

REMARK. Recall that a graceful numbering [3] (ors-valuation [6]) of a graph 

G withe edges 1s an assignment of a subset of the numbers {0,1, ••• ,e} to 

the vertices of Gin such a way that the values of the edges are all the 

numbers from 1 toe, where the value of an edge is defined as the absolute 

value of the difference between the numbers assigned to its endpoints. 

Then in cased= 1 a solution to problem I is equivalent to a grace­

ful numbering of the graph consisting of m triangles having exactly one 

vertex in connnon (this is an easy consequence of the remark in the intro­

duction). The existence of a graceful numbering of such graphs was asked 

by C. HOEDE (who called these graphs "mills") at the 5th Hungarian Colloquium 



1.n Keszthely 1976. 

(ii) d = 2 

In this case problem II is equivalent to Langford's problem [5]: for what 

values of m 1.s it possible to find a sequence of length 2m consisting of 2 

occurrences of i (l~i~m) such that for each i the two occurrences of i are 

separated by 1. other elements of the sequence? 

EXAMPLE. Form= 3 (3,1,2,1,3,2) 1.s a Langford sequence. 

If the number i occurs at positions a. and b. in the sequence, then the 
l. l. 

3 

pairs {a.,b.} partition {l,2, •.• ,2m} while b.-a. = i+l, i.e. we have a solu-1. l. l. l. 

tion of problem II with d = 2. Conversely any solution to problem II with 

d = 2 yields a Langford sequence. But it has been proved by R.O. DAVIES [2] 

that a Langford sequence exists iff m = 0 or 3 (mod4), and thus case (ii) is 

proved. 

(iii) d = 3 

First let m = 4k, k > I. A solution is given by the following eight groups 

of pairs {a.,b.}: 
l. l. 

(AGl) a· b. l. l. 

(I) J 4k-j+3 

(2) k+j 3k-j+3 

(3) k+I 5k+2 

(4) 2k+l 6k+3 

(5) 2k+2 6k+l 

(6) 4k+2 6k+2 

(7) 4k+j+2 8k-j+l 

(8) 5k+j+2 7k-j+2 

Next let m = 4k+l. k > 1. A solution 

b.-a. 
l. l. 

4k+2-2j 

2k+3-2j 

4k+l 

4k+2 

4k-l 

2k 

4k-2j-1 

2k-2j 

l.S given by: 

J = 1,2, .•• ,k 

J=2, .•. ,k 

j = 1 , ••• , k-1 

j = I , ... , k-2 
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(AG2) a· i 
(1) j 
(2) k+l 
(3) k+l+j 
(4) 2k+l 

(5) 2k+2 

(6) 4k+2 

(7) 4k+2+j 

(8) Sk+3+j 

b· i 
4k-j+2 

5k+3 

3k-j+2 

6k+4 

6k+3 

6k+2 

8k-j+3 

7k-j+3 

b.-a. 
i i 

4k-2j+2 

.4k+2 

2k-2j+I 

4k+3 

4k+l 

2k 

4k-2j+I 

2k-2j 

J = 1,2, .•• ,k 

J = I , ••• , k-1 

J = 1,2, •.• ,k 

j = 1 , ••• , k-2 

Finally form= 5 a solution is given by {1,8}, {4,10}, {2,7}, {5,9}, {3,6}. 

REMARK. Another solution for the case m = 4k+J is given in the next theorem. 

This completes the proof of theorem I. 

THEOREM 2. Let m = 2d-l (mod4), m ~ 2d-1, d ~ 2. Then a solution to problem 

II exists. 

PROOF. We distinguish two cases, according to the parity of d, First let d 

be even, and let m = 4t+3. 

From d ~ 2 and m ~ 2d-l we get ½d-1 ~- 0 and t-½d+I ,~- 0. 

A solution is given by the following ten groups of pairs {p.,q.}: 
i i number 

(last 
(AEBI) 4 i value) 

(1) 2t+d+2+j 3t+½d+2 

(2) 3t+½d+3+j 4t+3 

(3) 4t+4+j 4t+½d+2 

(4) 4t+½d+3 

(5) 

(6) 

4t+½d+4+j 4t+d+2 

5t+½d+4 

(7) 6t+ 6+j 6t+½d+5 

(8) 6t+½d+6+j 6t+d+4 

(9) 6t+d+5+j 7t+½d+S 

(IO) 7t+½d+6+j 8t+6 

p. 
i 

2t+l-j 

t+½d-1-j 

d-2-j 

2t+½d+I 

½d-1-j 

t+½d 

(last 
value) 

t+½d+l 

d-1 

½d 

2t+d+l-j 2t+½d+2 

2t+½d-j 2t+2 

6t+5-j 5t+½d+5 

5t+½d+3-j 4t+d+3 

q.-p. 
i i 

(last . of 
1 )parity . 

va ue pairs 

d+l+2j 

2t+4+2j 

2t+l 

4t-d+4 

4t-d+6+2j 4t+2 

2t+2 

4t+5+2j 

4t+4 

4t+d+l 

0 

E 

E 

E 

0 

E 

4t-d+5+2j 4t+3 O 

4t+6+2j 

d+2j 

2t+3+2j 

4t+d+2 E 

2t E 

4t-d+3 o 

t-½d+l 

t-½d+I 

½d-1 

}d-1 

!d 
½d-1 

t-½d+l 

t-½d+I 

4t+3 
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Here the variable j ranges from O up to and including n-1, where n is the 

number of pairs. 

Next, let d be odd, and let m = 4t+1, d = e-1. 

From d ~ 3 and m ~ 2d-I we get ½e-2 ·~ 0 and t-½e + 1 <!:: o. 
A solution is given by the following ten groups of pairs { p., q.}: 

1 1 number 
(last (last (last of 

(AEB2) value) p. 
value) q.-p. value) Eariti pairs q· 1 1 1 ] 

(I) 2t+e+j 3t+½e 2t-j t+½e e+2j 2t E t-!e+l 

(2) 3t+½e+l+j 4t+I t+½e-2-j e-2 2t+3+2j 4t-e+3 0 t-!e+l 

(3) 4t+2+j 4t+½e e-3-j ½e-:-1 4t-e+5+2j 4t+I 0 ½e-1 

(4) 4t+½e+l 2t+½e 2t+l 0 1 

(5) 4t+½e+2+j 4t+e-1 }e-2-j 4t+4+2j 4t+e-2 E ½e-2 

(6) 5t+½e+l t+½e-1 4t+2 E 1 

(7) 6t+3+j 6t+}e+1 2t+e-1-j 2t+½e+l 4t-e+4+2j 4t E ½e-1 

(8) 6t+½e+2+j 6t+e 2t+½e-1-j 2t+l 4t+3+2j 4t+e-1 0 ½e-1 

(9) 6t+e+l+j 7t+½e+l 6t+2-j St+½e+2 e-1+2j 2t-l 0 t-½e+l 

(10) 7t+½e+2+j 8t+2 St+½e-j 4t+e 2t+2+2j 4t-e+2 E t-½e+l 

4t+l 

In case m = 0 (mod4) we have a solution for large d: 

THEOREM 3. Let m = 4t, d = 2t-e (e~O). Then if 2d ~ 3t+l a solution to 

problem II exists. 

PROOF. From 2d ~ 3t+l we get t-2e-1 ~ 0 so that the following seven groups 

of pairs provide a solution: 
number 

(last (last (last of 
(AEB3) q. value) p. value) q.-p. value) :eairs 1 1 1 1 

(I) 8t-j 7t+e+l 2t+e+l+j 3t 6t-e-I-2j 4t+e+l t-e 

(2) 7t+e-j 6t+e+l 3t+2e+2+j 4t+2e+l 4t-e-2-2j 2t-e t 

(3) 6t+e-2j 6t-e 2t-j 2t-e 4t+e-j 4t e+J 

(4) 6t+e-I-2j 6t-e+l 2t+e-j 2t+l 4t-1-j 4t-e e 

(5) 6t-e-1-j 5t+l ]+j t-e-1 6t-e-2-2j 4t+e+2 t-e-1 

(6) St-j 4t+2e+2 t+e+l+j 2t-e-1 4t-e-I-2j 2t+3e+3 t-2e-1 

(7) 3t+2e+l-j 3t+l t-e+j t+e 2t+3e+I-2j 2t-e+l 2e+l 

4t 
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REMARK. This solution was found using certain linear programming techniques; 

I do not know whether it can be generalized tom= 0 (mod4) and arbitrary 

d (with m~2d). In any case the solutions depicted in tables (AEBl) and (AEB2) 

are much more elegant than the above one. Concerning the LP techniques and 

the theory of set-addition, these will be the subject of a future paper. 

Solutions for small d can be obtained by pasting together other solutions: 

PROPOSITION 2. Suppose we have solutions of problem II u>ith (m,d) = (l,d0+a) 

a:nd with (m,d) = (a,d0). Then a solution u>ith (m,d) = (l+a,d0) e:x:ists. 

PROOF. Let the first solution consist of the pairs {p.,q.} (i = 1, ••• ,1) 
1. l. 

and the second one of the pairs {a.,b.} (i = 1, ••• ,a). Then the collection 
1. 1. 

of pairs {p.+2a,q.+2a} (i = 1, .•• ,1) together with {a.,b.} (i = 1, ••• ,a) 
1 1. 1 1. 

forms a solution of problem II with (m,d) = (l+a,d0). D 

In particular we get: 

THEOREM 4. Let m = 0 (mod4), m ~ 4(2d-1). Then a solution to problem II 

e:x:ists. 

PROOF. Take in the previous proposition d0 = d, a= 2d-l, 1 ~ 2(d0+a)-1, 1 

odd and apply theorems I and 2. 

Now in order to complete the solution to problem II, we only have to con­

struct a finite number of solutions for any fixed d. 

E.g. ford= 4 we have left the cases m = 12,16,20 or 24, and it is easy 

to provide an explicit solution: 

(i) d = 4, m = 12 

Take the following pairs: 

{5,9}, {19,24}, {4,10}, {6,13}, {15,23}, {12,21}, {8,18}, {11,22}, {2,14}, 

{7,20}, {3,17}, {1,16}. 

(ii) d = 4, m = 16 

Take the following pairs: 

{27,31}, {25,30}, {4, 10}, {8, 15}, {6,14}, {23,32}, {7, 17}, {11,22}, {12,24}, 

{16,29}, {5,19}, {13,28}, {2, 18}, {9,26}, {3,21}, {1,20}. 
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(iii) d = 4, m = 20 

Take the following pairs: 

{36,40}, {11,16}, {29,35}, {32,39}, {30,38}, {28,37}, {8,18}, {6,17}, {9,21}, 

{7,20}, {13,27}, {4,19}, {10,26}, {14,31}, {5,23}, {15,34}, {2,22}, {12,33}, 

{3,25}, {1,24}. 

(iv) d = 4, m = 24 

Take the following pairs: 

{43,47}, {40,45}, {12,18}, {34,41}, {38,46}, {39,48}, {9,19}, {33,44}, 

{8,20}, {22,35}, {11,15}, {6,21}, {16,32}, {7,24}, {13,31}, {4,23}, {10,30}, 

{15,36}, {5,27}, {14,37}, {2,26}, {17,42}, {3,29}, {1,28}. 

This proves: 

THEOREM 5. Ford= 4 the necessary conditions of proposition 1 are suffi­

eient to guarantee the e:dstence of a solution to pr>oblem II. 
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