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ABSTRACT

We formulate a problem that is a common generalization of the problems
of Skolem and Langford. Necessary conditions on the parameters are derived

and many (but not all) cases are solved.
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0. INTRODUCTION

In this paper we study the following problem which is a special case
a problem in radioastronomy: how to arrange antennas in a linear array

such that certain prescribed mutual distances occur? (see [1] for more details):

PROBLEM I. Let d and m be positive integers. For what values of d and m is

it possible to find m triples Ai = {ai,bi,ci} (i=1,2,...,m), such that the

i’

ci—bi (i =1,2,...,m) are all the integers of the set {d,d+1,...,d+3m~1}?

3m numbers (called associated differences of the triples) bi—a., c.-a

For example A = {0,4,6}, A2 = {0,9,10}, A3 = {0,8,11}, A, = {0,7,12} is a

1 4
4, d = 1.

solution for m

[

REMARK. As we are interested only in the differences associated with the
triples, we may suppose that a; = 0 in all triples.

Related to this problem is:

PROBLEM II. Let d and m be positive integers. For what values of d and m is
it possible to find a partition of the set {1,2,...,2m} into m pairs {pi,qi}
such that the m numbers 9;7P; (i =1,...,m) are all the integers of the set
{d,d+1,...,d+m=1}?

Obviously a solution to the second problem implies a solution to the
first one: take as triples Ai = (O,pi+m+d-1,qi+m+d—l).
All our solutions to problem I will also be solutions to problem II.
(But the solution given in the above example is not derived from a solution

to problem II.)

PROPOSITION 1. Necessary conditions for the existence of a solution to problem

I are:

(i) m=22d-1 or m =0

(i1) If d Zs ocdd m = 0 or 1 (mod4)
If d 28 even m = 0 or 3 (mod4).

PROOF. This is a special case of theorem 2.4 of [1]. For completeness we

give an independent proof in this case.



Let the triples {O,bi,ci} (i =1,2,...,m) constitute a solution to problem
I, where bi < c,. Then

2m m m m
) (d+i-1) < ¥ b.+(c.-b.) = J c. < J (d+3m-i)
i=1 =1 * 1t s =
since all differences bi,ci,ci—bi have to be different.
Hence m(2d+2m-1) < im(2d+5m-1) from which (i) follows.

Furthermore

m m 3m 3
izl by+(c;=b)+e, = 2 iz c. = 121 (@+i-1) = 3 m(2d+3m-1)

is even, so that 3m(2d+3m-1) = 0 (mod4). This yields (ii). O

1. RESULTS

THEOREM 1. For d = 1,2, or 3 the necessary conditions of proposition 1 are
sufficient to guarantee the existence of a solution to problem II (and a
fortiort to problem I).

PROOF. (i) d = 1.

In this case problem II reduces to Skolem's problem [7]: for what values of
m is it possible to partition the integers {1,2,...,2m} into m pairs {ai,bi}
(i =1,2...,m) such that bi—ai = 1?

But it is well known [4,7] that a solution of Skolem's problem exists iff

m =0 or I (mod4), and thus case (i) is proved. [

REMARK. Recall that a graceful numbering [3] (or B-valuation [6]) of a graph
G with e edges is an assignment of a subset of the numbers {0,1,...,e} to
the vertices of G in such a way that the values of the edges are all the
numbers from 1 to e, where the value of an edge is defined as the absolute
value of the difference between the numbers assigned to its endpoints.

Then in case d = 1 a solution to problem I is equivalent to a grace-
ful numbering of the graph consisting of m triangles having exactly one
vertex in common (this is an easy consequence of the remark in the intro-
duction). The existence of a graceful numbering of such graphs was asked

by C. HOEDE (who called these graphs "mills") at the 5th Hungarian Colloquium



in Keszthely 1976.

(i) a =2

In this case problem II is equivalent to Langford's problem [5]: for what
values of m is it possible to find a sequence of length 2m consisting of 2
occurrences of 1 (1<i<m) such that for each i the two occurrences of i are

separated by i other elements of the sequence?

EXAMPLE. For m = 3 (3,1,2,1,3,2) is a Langford sequence.

If the number i occurs at positions a; and bi in the sequence, then the
pairs {ai’bi} partition {1,2,...,2m} while bi-ai = i+l, i.e. we have a solu-
tion of problem II with d = 2. Conversely any solution to problem II with

d = 2 yields a Langford sequence. But it has been proved by R.O. DAVIES [2]

0 or 3 (mod4), and thus case (ii) 1is

1]

that a Langford sequence exists iff m
proved.
(iii) d = 3

First let m = 4k, k > 1. A solution is given by the following eight groups

of pairs {ai,bi}:

(AG1) aj bi bi—ai

(1 3 4k-3+3 . 4k+2-2] j=1,2,...,k
(2)  ktj 3k-j+3 2k+3-2j j=2,...,k
(3)  k+l 5k+2 4k+1

(4)  2k+1 6k+3 4k+2

(5)  2k+2 6k+1 4k-1

(6)  4k+2 6k+2 2k

(7)  4k+j+2 8k-j+1 4k-23-1 i=1,...,k-1
(8)  5k+j+2 7Tk=j+2 2k-2j i=1,...,k=2

Next let m = 4k+1. k > 1. A solution is given by:



(AG2) aj bj bi—ai

ONE 4k=]+2 Lk=23+2 3= 1,2,...,k
(2) g+ 5k+3 4k+2

(3) kel+j 3k-j+2 2k-2j+1 jo=1,...,k-1
(4) 2k+1 6k+4 4k+3

(5) 2k+2 6k+3 4k+1

(6)  4k+2 6k+2 2k

(7)  4k+2+j 8k-j+3 4k=-23+1 j=1,2,...,k
(8)  5k+3+j 7Tk-j+3 2k-23 jo=1,...,k=2

Finally for m = 5 a solution is given by {1,8}, {4,10}, {2,7}, {5,9}, {3,6}.

REMARK. Another solution for the case m = 4k+] is given in the next theorem.

This completes the proof of theorem 1.

THEOREM 2. Let m = 2d-1 (mod4), m = 2d-1, d =2 2. Then a solution to problem

II exists.

PROOF. We distinguish two cases, according to the parity of d. First let d
be even, and let m = 4t+3.
From d 2 2 and m 2 2d-1 we get id-1 2 0 and t-id+1:> O.

A solution is given by the following ten groups of pairs {pi,qi}:

number

(last (last _ (last arit of
(AEB1) 44 value) Py value) 947Py value)p y pairs
(1)  2t+d+2+3 3t+4d+2 2t+1-j t+id+1  d+1+2j 2t+1 0 t-id+1
(2)  3t+id+3+j 4t+3 t+id-1-j d-1 2t+4+2]  4t-d+4 E t-}d+1
(3)  4t+b+] 4e+jd+2  d-2-] 3d 4t-d+6+2] 4t+2 g -1
(4) 4t+3d+3 2t+3d+1 2t+2 E 1
(5) 4t+id+4+j 4t+d+2  3d-1-] 1 4t+5+27  4t+d+l 0O d-1
(6) St+id+4 t+3d bt+d E 1
(7) 6t+ 6+j 6t+}d+5 2t+d+1-j 2t+}d+2 4t-d+5+2j 4t+3 0 1d
(8) 6t+id+6+j 6t+d+h  2t+id-j  2t+2 4t+6+23  4t+d+2 g a-1
(9) 6t+d+5+j Tt+id+5 6t+5-j 5t+3d+5 d+2j 2t E t-id+1
(10) 7t+id+6+j 8t+6 S5t+3d+3-j 4t+d+3  2t+3+2j 4t=d+3 o t-1d+1

4t+3



Here the variable j ranges from O up to and including n-1, where n is the
number of pairs.

Next, let d be odd, and let m = 4t+1, d = e-1.

From d > 3 and m > 2d-1 we get ie-2 > 0 and t-}e + 1 > O.

A solution is given by the following ten groups of pairs {pi,qi}:

number
(last (last (last of

(AEB2) q; value) Pi value) ;7P value) parity pairs
1) 2t+e+] 3t+ie 2t=j . t+ie e+2] 2t E t-le+l
(2) 3t+ie+tl+j 4t+1 t+ie-2-j e-2 2t+3+2] 4t-e+3 O t-j}e+l
(3)  4t+2+]  bt+le  e-3-j Je-1 ht-e+5+25 4t+l 0 je-1
(4) 4t+ie+] 2t+ie 2t+1 o 1
(5) 4t+le+2+] A4Lt+e-l je-2-3 1 br+4+23 4t+e-2 E  le-2
(6) St+ie+l t+ie-1 bLt+2 E 1
(7)  6t+3+] 6t+le+l 2t+e-1-j 2t+le+l 4t-e+4+2] 4t E le-1
(8) bt+ie+2+j] obt+e 2t+ie-1-7  2t+1  4t+3+2] 4t+e-1 O le-l
(9) bt+e+l+j  Tt+ie+l 6t+2-j St+ie+2 e-1+2j 2t~1 0 t-je+l
(10) 7t+ie+2+j 8t+2 St+ie~j  4t+e 2t+2+2j' 4t-e+2 E  t-}e+l

4t+]

In case m = 0 (mod4) we have a solution for large d:

THEOREM 3. Let m = 4t, d = 2t-e (e20). Then Zf 2d 2 3t+l a solution to
problem II exists.

PROOF. From 2d = 3t+l we get t-2e~1 = 0 so that the following seven groups

of pairs provide a solution:

number
(last (last (last of

(aEB3) % value) Py value) 947Pi  value) pairs
(1) 8t-j Tt+e+l  2t+e+l+j 3t bt-e~1-23 4t+e+l t-e
(2) Tt+e-] 6t+e+1 3t+2e+2+] 4t+2e+l 4t-e-2-2] 2t-e t
(3) 6t+e-2j 6t-e 2t-j 2t-e 4t+e-] 4t e+l
(4) 6t+e—-1-2j 6t-e+l 2t+e—j 2t+1] 4t-1-3 bt-e e
(5) 6t-e-1-j  5t+l 1+] t—e-1 6t-e-2-27] 4t+e+2 t-e~1
(6) 5t-] 4t+2e+2 tHet+l+] 2t-e-1 4t-e-1-2) 2t+3e+3 t-2e-1
) 3t+2e+1-j 3t+l t—e+] t+e 2t+3e+1-2] 2t—-e+] 2e+1

4t



REMARK. This solution was found using certain linear programming techniques;
I do not know whether it can be generalized to m = 0 (mod4) and arbitrary
d (with m>2d). In any case the solutions depicted in tables (AEB1) and (AEB2)
are much more elegant than the above one. Concerning the LP techniques and

the theory of set-addition, these will be the subject of a future paper.
Solutions for small d can be obtained by pasting together other solutions:

PROPOSITION 2. Suppose we have solutions of problem II with (m,d) = (1,d0+a)
and with (m,d) = (a,do). Then a solution with (m,d) = (1+a,d0) exists.

PROOF. Let the first solution consist of the pairs {pi,qi} (1L=1,...,1)
and the second one of the pairs {ai,bi} (i1=1,...,a). Then the collection
of pairs {pi+23,qi+2a} (i=1,...,1) together with {ai,bi} (i=1,...,a)

forms a solution of problem II with (m,d) = (1+a,d0). 0
In particular we get:

THEOREM 4. Let m = O (mod4), m 2 4(2d-1). Then a solution to problem II

exists.

PROOF. Take in the previous proposition do =d, a=2d-1, 1 = 2(d0+a)-1, 1
odd and apply theorems 1 and 2.

Now in order to complete the solution to problem II, we only have to con-
struct a finite number of solutions for any fixed d.
E.g. for d = 4 we have left the cases m = 12,16,20 or 24, and it is easy

to provide an explicit solution:

(1) d =4, m= 12

Take the following pairs:

(5,9}, (19,24}, {4,10}, {6,13}, {15,23}, {12,21}, (8,18}, {11,22}, {2,14},
{7,20}, {3,17}, {1,16}.

(i1) d =4, m =16

Take the following pairs:

(27,31}, {25,30}, {4,10}, {8,15}, {6,14}, {23,32}, {7,17}, {11,22}, {12,24},
{16,29}, {5,19}, {13,28}, {2,18}, {9,26}, {3,21}, {1,20}.



(iii) d = 4, m = 20

Take the following pairs:

{36,40}, {11,16}, {29,35}, {32,39}, {30,38}, {28,37}, {8,18}, {6,17}, {9,21},
{7,20}, {13,27}, {4,19}, {10,263}, {14,31}, {5,23}, {15,34}, {2,22}, {12,33},
13,25}, {1,24}.

(iv) d =4, m= 24

Take the following pairs:

143,47}, {40,45}, {12,18}, {34,41}, {38,461}, {39,48}, {9,19}, {33,44},
{8,20}, {22,35}, {11,115}, {6,21}, {16,32}, {7,24}, {13,31}, {4,23}, {10,301},
{15,36}, {5,27}, {14,37}, {2,26}, {17,42}, {3,29}, {1,28}.

This proves:

THEOREM 5. For d = 4 the necessary conditions of proposition 1 are suffi-—

ctent to guarantee the existence of a solution to problem II.
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