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The nonexistence of a regular mear hexagon on 1408 points
by

A.E. Brouwer

ABSTRACT

There are three parameter sets of sporadic regular near hexagons with
lines of size 4. The smallest has 1408 vertices and (s,t,tz) = (3,9,1).

Here we show that there is no regular near hexagon with these parameters.

KEY WORDS & PHRASES: near hexagon

*) This report will be submitted for publication elsewhere.



INTRODUCTION

A near hemagon is a partial linear space (X,L) such that
a) For any point p € X and line £ ¢ L there is a unique point on £ nearest p.
b) Every point is on at least one line.
c) The distance between any two points is at most three.
(The distances are measured in the point graph: d(p,q) = 1 iff p and q are
collinear.)
A regular near hexagon with parameters (s,t,tz) is a near hexagon such that
each line contains l+s points, each point is in 1+t lines, and a point at
distance 2 from a fixed point X, is in 1+t2 lines containing a neighbour of
Xy- A sporadic regular near hexagon is one that is not a generalized quad-
rangle, a generalized hexagon, or a dual polar space.
There are exactly 12 regular near hexagons with lines of size 3, two of
which are sporadic (they are connected to the ternary Golay code and the
Witt design S(5,8,24), respectively).
Now looking at sporadic regular near hexagons with s=3 we find (applying
the conditions that the multiplicities of the associated association scheme
are integral, and a few trivial divisibility conditions and inequalities)

exactly three feasible parameter sets, namely

(1) v = 1408, s = 3, t=29, t, = 1,
(1i) v = 20020, s =3, t = 48, t, = 3,
(iii) v = 20608, s = 3, t = 34, t, = 1.

2
E. SHULT (oral communication) excluded possibility (ii). Here we kill case

().
1. COUNTING QUADS

For the definition of a quad and the basic properties of quads see

_ SHULT & YANUSHKA [1]. If H is sporadic, then quads exist, and there exist
points of ovoid type w.r.t. a quad. Now let t2=l. Then a quad is a gener-
alized quadrangle GQ(s,1), i.e., a (s+1)x(s+1) square lattice.

The diagram of H w.r.t. a point is



S | s—1 st 2(5—1) , (S_l)(t+1)

The diagram of H w.r.t. a quad is

N

DI e-2) 2(s+1) 532(S+1)(t—1)(t-2)

(s+1)” s(t-1) 1 s(s+1)” (&~
2s 3s-1

Let QO be a fixed quad. Any quad containing a point at distance two from QO
or contained in PIQO is of one of the following types - a black dot denotes

a point at distance one from QO, an open circle a point in QO.

0. 1. 2. ¢e—o—o—@ 3.

4.0 ¢ 4.1

AL 4,8 L 5.
i

(Type 4.1 has i+l black dots along a transversal, 0 <

< 8.)
Let there be Na quads of type a.
Clearly

1

(1) N, = s+,

Counting pairs (x,{£,£'}) with x € FIQO, 2,0 c TIQO, x on £ and £' we find

2) N+ (s+])2N5 = s(s+1)2(t-1).

. Counting quads containing a line in P]QO we find

(3) N N+ 2(s+1)N5 = 25(s+1) (t-1)2

so that also

0



(34) N2 - 23(s+l)N5 = 2s5(s+1)(t-1) (t-s-2)
and
(3B) 26N, + (s+1)N, = 25 (s+1) 2 (t-1) (£-2).

Counting vertices in P2Q0 and pairs of incident lines both meeting PIQO we

see
2 2 o e 2
sNy + 8N+ Y L(+1N, ; = §s"(s+1) (£-1) (£=2) - (s+1) (28+1)
L) .
so that
S
(4) s'N + ) iaDN, = s26D ) (e-2).

1=1
Similarly, if only one of the two lines meets PIQO we find

s—1
(5) s(s+l)N2 + X 2(i+1)(s-—i)N4 ; = sz(s+l)2(t-l)(t-2)(t—23—1)
i=0 :

and if both lines are contained within PZQO we get

s—1
(6) (S+l)2N3 + 2 (s-i)2N4.i = ész(s_'_l)(t_])(t_z)(t-zzs-l).
i=0

From (3B), (4) and (5) it follows that

S
(7) )) (i+1)N,

i=0 ?

; = 1s (s+1) 2 (£-1) (£-2) (£=3) .

It seems that all other relatiomns be&ween the Nu obtained by counting
various things are a consequence of the above equationms.
2 . .
Put N, = s(s+1)”y, for some rational y. (Below we shall see that in fact

1
Y is an integer.) Then

2
]

9 2s(s+1) ((t-1) (t-2)-sy)

2
I

5 s(t-1-y)



so that 0 < y < t-1.
2. CUBES

Let Eo,ﬂl,ﬂz be three lines through a point X0 and let QO = Q(Kl,lz)
Q1 = Q(KO,ZZ), Q2 = Q(KO,EI) be the three quads spanned by two of these
lines. Suppose that there is a point y adjacent to each of the three quads

but nonadjacent to x.. Then the collection of all such points y together

with the three quadsoforms a set C called a cube with the following proper-—
ties:

lc] = (s+1)3, each point of C is on three lines in C, each line in C is on
two quads in C, C is closed under the formation of quads (i.e., the quad
determined by two intersecting lines or two points at distance two in C is
contained within C)- in particular the distance between two points is the

same measured in C as it was in H.

PROOF. If z is a point adjacent to Qi’ then let ﬂi(z) be its unique neigh-
bour in Qi (i =0,1,2). Let y be a point as in the hypothesis, and put

v, = ﬂl(y), Y, = ﬂz(y). Let m, be the line in Qi passing through v and
meeting KO (1 =1,2). Then m and m, meet KO in the same point z (namely

the point on KO closest to y). Let Q' = Q(ml,mz). Now Q' c PIQO: the set of
points in Q' at distance <1 from QO is line closed and contains YsY sY9s2
hence equals Q'; but Q' cannot intersect Q otherwise Q' n Q0 would be a |
line intersecting YY, OF ¥¥,» say yy;s = but now Y4 has two mneighbours in Q05
a contradiction.

Now let u,v,w be three points on 30,21,22, respectively. We shall show that
there is a unique point x ¢ C such that u,v,w are just the points on KO’KI’KZ
closest to x.

First suppose u = z. Then let v' be the neighbour of v on m, in Q, and w'
the neighbour of w on m, in Ql' There is a unique point x € Q' adjacent to
"v' and w' different from z. Now x € C since d(x,QO) =1,

Since any point of Q'\ml,m can take the rdle of y and the rdles of the Qi

2
can be interchanged this proves everything. [J

Let Q be a quad, and Q' a quad of type 5 w.r.t. Q (i.e. Q' c F]Q).



Then Q and Q' determine a cube C, and C contains s quads of type 5 w.r.t.
Q so that s|N5. From equation (2) we see that s(s+l)2|N1 so that vy is an

integer, as promised.

LEMMA. vy = 0 or vy = s+l1,

PROOF. Let QO be a fixed quad. If x,y are adjacent points in Qo, and £ is
a line meeting Q0 in the point x, then define Txy(ﬂ) to be the line in the
quad Q(£,xy) meeting Q0 in the point y. Suppose that Q0 and £ do not deter-

mine a cube.

CLAIM. If x,y,z,u are four points forming a square in QO (i.e.,

X~y~z~u~%X,x % z) then (TuxoTzuoTyonxy)(z) + L.
For: let x' be a point on £ distinct from x, y' its neighbour on TXy(ﬂ),

z' the neighbour of y' on (Tyzorxy)(ﬂ), u' the common neighbour of u and

zl

distinct from z and x" the common neighbour of u' and x distinct from u.
If x,x",x" are collinear and x' # x" then we have the 5-gon x'y'z'u'x" so
that z' must be collinear with a point of £, impossible.

If x' = x" then the three lines £,xu,xy and the point z' take the place of

£ ,2 ,£., and y in the discussion above so,that £ and Q, determine a cube. [
07172 0

Now fix x,y and consider the s distinct choices for z and u. Now the
line £ and the s lines (1 __eT ot o1  )(£) are pairwise distinct so that
ux zZu yz Xy
there are at least s+1 lines through x that do not determine a cube to-
gether with QO. But vy is exactly the number of lines through a fixed point

of Q0 not in a cube containing QO' O
LEMMA. If v = 0 (for all quads QO) then 3|(t+l).

PROOF. Let xo,x1

lines through X, by calling two lines £,£' adjacent when d(x],Q(Z,Z')) =1,

be two points at distance 3. Define a graph on the t+l

This graph has valency t,+1 = 2, i.e., is a union of polygons.

2
"If £,2',£" are three consecutive lines in one of these polygons and £,£',2"
determine a cube then also £,£" are adjacent and we have a triangle. If

v=0 for all quads then any three lines determine a cube and the graph is a

union of triangles. [J



3. THE NEAR HEXAGON ON 729 POINTS

As an illustration consider the (unique) near hexagon with parameters
(s,t,tz) = (2,11,1). Here one has No = 405, N2 = 1080, N3 = 540, N = 3240,
N5 = 20; the number of points is 729; the number of quads is 5346.

4.1

N1 = N4 0= Na’2 = 0, i.e., any three intersecting lines determine a cube.
{As follows: from geometrical considerations one concludes that N4 0= N4 9 =

= 0; now the equations have a unique solution. For details see [2].}
4. A NEAR HEAXAGON ON 1408 POINTS

Next consider a possible regular near hexagon with parameters

(s,t,t2)= (3,9,1). Our equations are:

NO = 448
N1 = 48y
N, = 24 (56-3y)
N5 = 3(8-y)
OAD)] N4.0 + 2N4_1 + 31\14‘2 + 4N4.3 = 8064
“4") 2N4_] + 6N4.2 + 12N4.3 = 24192 - 432y
(6") 116N3 + 9N4.0 + 4N4.] + N4_2 = 1008.
From geometric considerations we shall see that N4.2 = 0. Using this we

find from (4') and (7') that

Nyot

w| &

N4.1 = 144y,

and comparing with (6'), that 3.144y < 1008, i.e., y < 2. Now the lemma in
the previous section tells us that y=0 so that any three intersecting lines
determine a cube. But 3 I (t+1), contradiction. Hence there is no hexagon
with these parameters,

Remains to show that N4 9 = 0.



Let QO and Ql be two quads such that Q1 is of type 4.2 w.r.t. QO.

u v b

A 0 _
S ull (3 7 Let u, € QO’ v, € Ql’ d(ui,vi) 1

(i=0,1,2).
u2 Vo . .
T T Let a be the point in Q0 such that
a

0

{a,uo,ul,uz} is an ovoid of QO' Then

d(a,Q]) = 2 so that there are four
Qo Q] points in Q, at distance two from a,
forming an ovoid.
At least two of these points are adjacent to two of the v, (note that
d(a,vi) = 3, i(= 0,1,2) - so suppose d(a,b) = 2, b ¢ Ql’ b~ MR Now
d(b,QO) = 2 and b determines an ovoid in QO' This ovoid contains uys Yy and

a hence also u,, but d(b,uz) =1+ d(b,vz) = 3, contradiction.

2’
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ADDED IN PROOF. A nonregular near hexagon on 1408 points.

E. Shult suggested the following description of an association scheme
of which he thought that it would have the same parameters as the association
scheme corresponding to our regular near hexagon on 1408 vertices. (But he
couldn't find the lines of the near hexagon.)

Take the 176 points not lying on a non-degenerate Hermitian quadric in-
PG(4,22). In the graph on these 176 points with orthogonal pairs adjacent,
there are 1408 5-cliques (orthogonal bases).

A given basis intersects itself in 5 points, 30 bases in 2 points, 135
in 1 point and is disjoint from 1242 bases.

Call two bases adjacent if they have 2 points in common. This defines
a structure much resembling the association scheme looked for, but it turns
out to be a 5-class association scheme instead of a 3-class one. Its diagram

is

()18

8
28. 4 (5o)18 4. 18
N/

2B. 21

Given a pair of orthogonal points, it is contained in 4 bases. Call such
quadruples of bases having a pair in common, lines. From the diagram above
it is clear that this gives us a near hexagon with s = 3, t = 9 and t, €
{0,3}. Pairs of bases in relation 2B are joined by a unique path of length
two; pairs of bases in relation.gé determine a generalized quadruple GQ(3,3)
consisting of all 40 bases containing their common point. Thus the quads are
in 1-1 correspondence with the 176 points. Two distinct quads are disjoint
or intersect in a line; this means that all point-quad relations are classi-
~cal. We find the Buekenhout diagram

D
c—/—Oo——=C .

bases orth. points
pairs

(AEB, H.A. Wilbrink, A.M. Cohen - 81 07 15)





