
Iguana: A Practical Data-Dependent Parsing Framework

Ali Afroozeh Anastasia Izmaylova
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

{ali.afroozeh, anastasia.izmaylova}@cwi.nl

Abstract

Data-dependent grammars extend context-free grammars with arbi-
trary computation, variable binding, and constraints. These features
provide the user with the freedom and power to express syntactic
constructs outside the realm of context-free grammars, e.g., inden-
tation rules in Haskell and type definitions in C. Data-dependent
grammars have been recently presented by Jim et al. as a grammar
formalism that enables construction of parsers from a rich format
specification. Although some features of data-dependent grammars
are available in current parsing tools, e.g., semantic predicates in
ANTLR, data-dependent grammars have not yet fully found their
way into practice.

In this paper we present Iguana, a data-dependent parsing
framework, implemented on top of the GLL parsing algorithm. In
addition to basic features of data-dependent grammars, Iguana also
provides high-level syntactic constructs, e.g., for operator prece-
dence and indentation rules, which are implemented as desugaring
to data-dependent grammars. These high-level constructs enable a
concise and declarative way to define the syntax of programming
languages. Moreover, Iguana’s extensible data-dependent gram-
mar API allows the user to easily add new high-level constructs or
modify existing ones. We have used Iguana to parse various real
programming languages, such as OCaml, Haskell, Java, and C#. In
this paper we describe the architecture and features of Iguana, and
report on its current implementation status.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Parsing

Keywords Data-dependent grammars, GLL, disambiguation

1. Introduction

Parsing is the first step in many tasks, such as compiler construction
and static analysis, that deal with source code. When building a
(domain-specific) programming language, it is desirable to quickly
build a parser and spend most of the effort in other phases such
as name resolution and type checking. Despite the long investment
in theory and practice of parsing, constructing parsers remains a
difficult task, often left to the experts. Syntax of most programming
languages cannot be directly expressed using current parsing tools
that are based on pure (deterministic) context-free grammars, and

Core Data-dependent Grammars

Data-dependent ATNs

Data-dependent GLL Parsing

High-level constructs

R
un

tim
e

D
at

a-
de

pe
nd

en
t

gr
am

m
ar

s
Te

xt
ua

l
 sy

nt
ax

3rd party syntaxReference syntax

Figure 1. The architecture of Iguana.

there is a need for (manual) grammar modification, and various
hacks in the lexer and parser [2].

We advocate a declarative approach [5] to syntax definition,
where the user defines the syntax as a context-free grammar,
and uses disambiguation constructs to specify (un)desired parse
trees. In our earlier work [2] we described our vision of a parsing
framework that can deal with many challenges of parsing pro-
gramming languages. We base our parsing framework on data-
dependent grammars [4], instead of pure context-free grammars.
Data-dependent grammars extend context-free grammars with ar-
bitrary computation, variable binding and constraints. In essence,
these features allow the user to simulate handwritten parsers. Our
data-dependent grammars are implemented on top of the General-
ized LL (GLL) parsing algorithm [6]. In particular, we extended
the original GLL algorithm to support environment manipulation
and return values [2].

Data-dependent grammars are a rich format specification for
building parsers. However, for expressing many aspects of pro-
gramming languages, they are rather low-level. In our previous
work [2], we proposed to use data-dependent grammars as an in-
termediate layer for parser-independent implementation of disam-
biguation mechanisms. We demonstrated how several high-level
syntactic constructs, e.g., operator precedence and indentation-
sensitive constructs [2, 3], can be desugared to data-dependent
grammars. This provides a uniform view on various disambiguation
mechanisms, and allows the user to add new syntactic constructs
without the need to modify the machinery of a parsing algorithm.

In this paper we present Iguana, our data-dependent parsing
framework. Iguana has been developed during the last two years
and been used in evaluating our recent work [1–3] using grammars
of real programming languages. We present the architecture and
features of Iguana, and discuss its current implementation status.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

CC’16, March 17–18, 2016, Barcelona, Spain
ACM. 978-1-4503-4241-4/16/03...$15.00
http://dx.doi.org/10.1145/2892208.2892234

267

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301652947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Architecture

We designed Iguana to be extensible and flexible to serve as a
standalone tool, and also as a parsing library for different language
design and implementation tools. Figure 1 shows the architecture
of Iguana, which consists of the following three layers:

Runtime Iguana is implemented on top of our version of GLL
parsing. In our previous work [1], we proposed a modification to
the Graph Structured Stack (GSS) of the original GLL algorithm,
and showed that the new GSS makes GLL parsers significantly
faster. To implement data-dependent features, we presented an ex-
tension of GLL that supports environment manipulation and re-
turn values [2]. Moreover, Iguana uses an interpretive version of
GLL which operates on an in-memory representation of a grammar
(data-dependent ATNs [2]). This eliminates the need for code gen-
eration and compilation cycles after every change to the grammar.

Data-dependent grammars This layer provides a data type and
API to construct an abstract representation of a data-dependent
grammar. A data-dependent grammar can be directly defined using
this API and later transformed to a data-dependent ATN to be inter-
preted. This layer also provides an API for transformation of data-
dependent grammars, for example, EBNF-to-BNF transformation.
Our data-dependent grammars support all the features of the origi-
nal data-dependent grammars [4], and some useful extensions such
as return values [2]. We call these features the core features. In
addition, we provide a set of high-level syntactic constructs, e.g.,
for operator precedence and indentation rules, and transformations
that desugar them to the core data-dependent grammars. Our pars-
ing framework is extensible: the language engineer can add new
high-level constructs, by using our API and providing the neces-
sary desugaring to data-dependent grammars.

Textual syntax This layer provides a textual (concrete) syntax for
defining data-dependent grammars. Our textual syntax is faithful
to the original syntax of data-dependent grammars and provides a
grammar-centric, clean way of defining data-dependent grammars.
Tool builders who wish to design their own syntax for grammar
definition can integrate Iguana into their tool, as a parsing backend
for syntax definition, using our abstract representation of data-
dependent grammars. Iguana will also be used in the future as the
parsing library for the Rascal meta-programming language1.

3. Features

Full context-free grammars Iguana supports all context-free
grammars. This frees the user from the expressivity limitations
of a deterministic parsing technique, such as LL(k), and enables
modularity and composability.

Data-dependent grammars Iguana supports the following core
features of data-dependent grammars: parametrized nonterminals,
variable binding, and constraints. In addition, Iguana supports la-
beled symbols and return values.

Single-phase parsing Iguana employs a single-phase parsing
strategy [2], in which there is no separate lexing phase. Using
Iguana, terminals can be defined to the level of characters or using
regular expressions, providing scannerless parsing [8] or context-
aware scanning [7], respectively. Single-phase parsing effectively
presents the parsing context to the lexing phase, avoiding the prob-
lems of a separate lexer in determining the type of tokens that have
different meanings in different contexts.

High-level disambiguation constructs Iguana supports the fol-
lowing high-level (disambiguation) constructs that are imple-
mented as desugaring to data-dependent grammars [2]: (1) lexical

1 http://www.rascal-mpl.org

disambiguation filters, such as follow and precede restrictions and
keyword exclusion; (2) operator precedence and associativity con-
structs, such as >, left, right, and nonassoc; and (3) indentation
sensitive constructs, such as offside, align and ignore.

Other features Iguana also supports some other useful features,
such as global variables. For example, to deal with type definitions
in C, which require maintaining a map of definitions during pars-
ing, it is more convenient to define a global variable, rather than
passing and returning values to/from all reachable nonterminals.
We also demonstrated how data dependency can be used to deal
with C# conditional directives during parsing, without the need for
a separate preprocessor. All of these features are implemented via
desugaring to the core data-dependent grammars [2].

4. Implementation Status and Future Work

Iguana has been our research platform for the last two years, and
is under active development. Iguana is implemented mainly in
Java, and partly in Scala, for the parts that require transformation
and traversal, e.g., grammars and parse trees. The core part of
Iguana (data-dependent GLL parsing) is stable, and most effort
are now put in developing an IntelliJ plugin. Iguana is available as
an open source project at http://iguana-parser.github.io, with
documentation, links to the Github repositories and grammars.

Grammars We have written Iguana grammars for some major
programming languages (from their reference manuals), such as
Java, C#, C, OCaml, Haskell, and XML. We used these grammars
in the evaluation of our previous work [1–3]. The grammars are
written in the Rascal front-end (we implemented the first textual
front-end for Iguana as an extension of Rascal), and we are gradu-
ally converting them to the reference syntax as well.

Performance The results of running Iguana on grammars of real
programming languages are shown in our previous work [1–3].
Iguana runs nearly linearly on grammars of programming lan-
guages, and keeps the cubic bound on highly ambiguous grammars.

Tool support We are developing an IntelliJ plugin to facilitate the
development of Iguana grammars. The plugin provides common
features such as syntax highlighting, navigation, outline views,
basic refactoring and some static grammar validation.

Future work Currently Iguana reports the source location of a
parse error, but does not provide error recovery facilities. Error
recovery is future work. We also plan to work on an incremental
version of Iguana, especially for use in an interactive grammar
development environment.

References

[1] A. Afroozeh and A. Izmaylova. Faster, Practical GLL Parsing. In
Compiler Construction, CC’15, pages 89–108. Springer, 2015.

[2] A. Afroozeh and A. Izmaylova. One Parser to Rule Them All. In
Onward! 15, pages 151–170. ACM, 2015.

[3] A. Afroozeh and A. Izmaylova. Operator Precedence for Data-
Dependent Grammars. In PEPM’16, pages 13–24. ACM, 2016.

[4] T. Jim, Y. Mandelbaum, and D. Walker. Semantics and Algorithms for
Data-dependent Grammars. In POPL’10, pages 417–430, 2010.

[5] L. C. Kats, E. Visser, and G. Wachsmuth. Pure and Declarative Syntax
Definition: Paradise Lost and Regained. In OOPSLA’10, pages 918–
932. ACM, 2010.

[6] E. Scott and A. Johnstone. GLL Parse-tree Generation. Science of
Computer Programming, 78(10):1828–1844, Oct. 2013.

[7] E. R. Van Wyk and A. C. Schwerdfeger. Context-aware Scanning for
Parsing Extensible Languages. GPCE ’07, pages 63–72. ACM, 2007.

[8] E. Visser. Scannerless Generalized-LR Parsing. Technical report,
University of Amsterdam, 1997.

268

