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Abstract: Due to the electric power liberalization, many power producers are entering into the deregulated power market.
Most of the electrical power companies are introducing Renewable Energy Sources (RES), which will increase the power
system uncertainty. Consequently, the underlyng uncertainty imposed by RES will increase the likelihood of voltage
instability and voltage collapse. Also, fluctuations in supply and demand are increased by the introduction of renewable
energies. On the other hand, Demand Response Program (DRP) is one of the potential solutions that reduces the power
fluctuations. In this study, we proposed multi-objective optimal operation based Unit Commitment (UC) considering
voltage stability and demand response. The effectiveness of the proposed method is verified by simulation results using
the MATLAB.
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1. INTRODUCTION

Nowadays Photovoltaic (PV) and Wind Generation
(WG) are becoming very promising since they provide
a lot of benefits to the power system as well as to the en-
vironment. However, Renewable Energy Source (RES)
like PV and WG output power varies according exoge-
nous conditions such as influence from weather. Regard-
ing introducing a significant amount of RES, the elec-
tricity adjustment with thermal power generation facili-
ties is necessary to continuously balancing the electricity
grid. Much attention has been paid to Demand Response
Program (DRP) to solve these problems. DRP can shift
the peaks of demand by adjusting the demand on cus-
tomer’s side and enables the client’s side to obtain mer-
its by this demand adjustment. In addition, the effective
use of the power transmission line is required in future
to facilitate the upcoming electricity deregulation. With
more efficient use of transmission lines, more sections of
the power systems can be operated near voltage stabil-
ity limits. Therefore the likelihood of a drop in a system
voltage and voltage collapse is increased. Unit Commit-
ment (UC) have been proposed operation in consideration
of an Energy Storage System (ESS) and DRP [1–3, 5, 6].
Recently, importance to the economy has been prepared,
but the importance of security is seldom reported. In
the future, the UC in consideration of voltage stability
and transmission network constraints will become nec-
essary because the limitations of the power system will
increase and became complicated by the introduction of
power liberalization. It had been reported that single pur-

pose including the maximization of the profit in conven-
tional UC, but multi-objective optimization was unknown
[16–23].
In this paper, we report multipurpose optimum operation

method that minimizes the operational cost and transmis-
sion loss in the power system by introducing Electric Ve-
hicle (EV), ESS, and DRP. Besides, voltage stability con-
straint was discussed. Our study shows that due to a large
number of penetration of RES, conventional load curve
became curve’s peak load and off peak load which has
been leveled by using the ESS, EV, and DRP. Also, it
will be clear from this research that, the voltage stability
constraints might be considered for maintaining voltage
stability in every time. The MATLAB Optimization Tool-
box is applied for solving the proposed method.

2. POWER SYSTEM MODEL
Assume the power system model shown in Fig. 1 [1].

The demand curve for PV and WG can be predicted accu-
rately. Figure 2 demonstrates the demand for PV and WG
respectively. The WG data make [1] a reference. The pa-
rameters of the generator, transmission line, EV and ESS
are given in Tables 1-5 [1].

3. PROBLEM FORMULATION
In order to make the operative plan of EV, ESS and

DRP in addition to UC at the same time, the number of
the variables and constraints are increased and the scale
of the optimization problem grows big. In this investiga-
tion, the big scale optimization problem is divided into
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Fig. 1 6 bus system.
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Fig. 2 Demand and RES.
Table 1 Parameters from generator

Unit
No.

a
[$/h]

b
[$/MWh]

c
[$/MW2h]

SUC
[$]

Pmax
[MW]

Pmin
[MW]

G1 176.9 13.5 0.0004 10 220 10
G2 129.9 32.6 0.001 200 100 10
G3 137.4 17.6 0.005 100 100 10
Unit
No.

Qmax
[Mvar]

Qmin
[Mvar]

Ini
State[h]

Ton
[h]

Toff
[h]

Ramp
[MW/h]

G1 200 -200 4 4 4 55
G2 70 -70 1 3 2 50
G3 50 -50 -1 1 1 20

Table 2 Transmission line parameters

Line No. r[pu] x[pu] Capacity[MW]

1-2 0.017 0.17 200
1-4 0.0258 0.258 100
2-3 0.0037 0.037 100
2-4 0.0197 0.197 100
3-6 0.0018 0.018 100
4-5 0.0037 0.037 100
5-6 0.0140 0.14 100

the demand management side and the supply manage-
ment side.

Table 3 ESS parameters

Capacity 300MWh
Rated output 30MW
Initial SOC 30%
SOC limits 10%-90%
Effeciency 95%

Table 4 EV parameters

Capacity 30kWh
Rated output 6kW
Initial SOC 30%
SOC limits 10%-90%
Effeciency 95%
Power consumption ratio 120Wh/km
Number of EVs EV1:1,000

EV2:2,000
EV3:2,000

Table 5 EV travel parameters

First Trip Second Trip
EV Depature Arrival Depature Arrival

Time Bus Time Bus Time Bus Time Bus
1 6:00 3 7:00 6 17:00 6 18:00 3
2 6:00 4 7:00 2 17:00 2 18:00 4
3 7:00 5 8:00 1 18:00 1 19:00 5

3.1 Demand management side
The objective function and constraints of demand

management side would be as follows. For the optimiza-
tion of this problem the MATLAB Optimization Toolbox
(internal point method).

3.1.1 Objective function
The objective function of the issue of demand manage-

ment side is to minimize a difference between maximum
power Pmax

D and minimum power Pmin
D of daily load de-

mand.

minimize F1 = Pmax
D − Pmin

D (1)

3.1.2 Constraints
• EV constraints

Cmin
EV ≤ CEV (t) ≤ Cmax

EV (2)
0 ≤ |PEV (t)| ≤ Pmax

EV (3)
CEV (t) =

CEV (t− 1)− PEV (t)

ηEV
, PEV (t) ≥ 0 (4)

CEV (t− 1)− PEV (t)ηEV , PEV (t) < 0 (5)
where, CEV i, PESi and η are the capacity of EV
energy storage system i, the power of EV energy



storage system i and efficiency of EV energy stor-
age system, accordingly. The formulation is differ-
ent according to the charge and discharge. In addi-
tion, ESS uses 3.6kWh per hour during to drive an
EV.

• ESS constraints

Cmin
ESS ≤ CESS(t) ≤ Cmax

ESS (6)
0 ≤ |PESS(t)| ≤ Pmax

ESS (7)
CESS(t) =

CESS(t− 1)− PESS(t)

ηESS
, PESS(t) ≥ 0 (8)

CESS(t− 1)− PESS(t)ηESS , PESS(t) < 0 (9)
where, CESSi, PESSi and η are the capacity of ESS
i, the power of ESS i and efficiency of ESS, accord-
ingly.

• DRP constraints [2, 3]
The load of the consumers before and after DRP are
shown in Fig. 3. The hatched area in Figure 3 illus-
trates the load has moved from another time interval
at time t. The yellow area does not participate in
the DRP at time t, and it also shows that some of
the load have not yet been moved to the other time
interval. The demand D(t) after the application can
formulate DRP as follows.

D(t) = dr(t) + (1−DR(t))D0(t) (10)
Here, in dr(t), in load, DR(t) which moved to t
from other time at the time, participation rate of
DRP in t, Do(t) are load before the DRP applica-
tion in t at the time at the time.

DR(t) ≤ DRmax (11)
Eq. (11) limits the load shifting in every other time.
DRmax shows the biggest participation rate of con-
sumers of DRP. The price elasticity of electricity de-
mand is inelastic [4]. For this reason, DRmax=0.2
is assumed in this article;

|∆D(t)| ≤ DrateD0(t) (12)
∆D(t) = D(t)−D0(t) (13)

where, ∆D is before DRP application, change load
quantity after the DRP application, Drate shows
maximum load regulation. In this article, Drate=0.2
is assumed.

24∑

t=1

dr(t) =
24∑

t=1

DR(t)D0(t) (14)

Eq. (14) indicates that before and after application
of DRP, the total load does not change. Also, it pre-
vents the reduction of income before the introduc-
tion of EV, ESS and DRP.

3.2 Supply management side
The objective function and constraints of supply man-

agement side would be as follows. For the optimiza-
tion of this problem the MATLAB Optimization Toolbox
(GA) was used. The GA can solve mixed integer nonlin-
ear problem that includes a non-linear constraints (e.g.,
voltage stability constraints).

D(t)

(1-DR(t))*D0(t)

dr(t)

D0(t)

DR(t)*D0(t)

∆D(t)

After DRP Before DRP

Fig. 3 Demand response program.
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3.2.1 Objective function
Eq. (15) is the transmission line losses for the one day.

Eq. (16) is the operating cost.

NT∑

t=1

L∑

l=1

LOSSl (15)

NT∑

t=1

NG∑

i=1

FCi(PGi) + SUCi(t) (16)

where, LOSSl, FCi(PGi(t)), SUCi(t), NT , L and
NG are transmission loss of the line i, generation cost for
unit i at time t, start up cost of unit i at time t, number of
scheduling hours, number of transmission lines and num-
ber of generating units, respectively. The cost function
of generating units are shown in Eq. (17).

FCi(PGi(t)) = ai + biPGi(t) + ciPG2
i (t) (17)

where, FCi, PGi, ai, bi and ci are fuel cost for unit i,
active power output for unit i, fuel cost coefficients for
unit i, accordingly.

3.2.2 Constraints
• Generator active/reactive power output constraints

PGmin
i ≤ PGi(t) ≤ PGmax

i (18)



QGmin
i ≤ QGi(t) ≤ QGmax

i (19)
where PGmin

i and PGmax
i are the lower and upper

limits for active power generation unit i, and QGmin
i

and QGmax
i are the lower and upper limits for reac-

tive power generation unit i.
• The Min-up and Min-down time constraints

T on
i ≤ Xon

i (t) (20)
T off
i ≤ Xoff

i (t) (21)
where, T on

i , T off
i , Xon

i (t) and Xoff
i (t) are on- and

off-time limits of unit i, on- and off-time of unit i at
time t.

• AC power flow equation constraints
PGi − PLi

= Vi

N∑

k=1

Vk {Gik cos(θi − θk)

+Bik sin(θi − θk)} (22)
QGi −QLi

= Vi

N∑

k=1

Vk {Gik sin(θi − θk)

−Bik cos(θi − θk)} (23)
where, PGi, QGi, PLi, QLi, θi, Gik and Bik are
active and reactive powers are produced by genera-
tor i, active and reactive powers are consumption by
teh demand i, voltage angle in bus i, real and imagi-
nary parts of the ik elements of the node admittance
matrix, respectively.

• Bus voltage constraints
0.9 pu ≤ Vi(t) ≤ 1.1 pu (24)

The Vi(t) is voltage of bus i at time t.
• Transmission capacity constraints

Sline(t) ≤ Smax
line (25)

The Sline(t) is active power flow of line at time t.
• Voltage stability constraints [10]

0.3 pu ≤ min{∆P (t),∆Q(t)} (26)
where, ∆P and ∆Q are voltage stability indexes.

4. SIMULATION RESULTS
4.1 Simulation result of Demand management side

Simulation results shows a comparison of the system
load which has been described in Table 6. Figure 5 shows
the load demand curve which introduced EV, ESS and
DRP. Figure 6 illustrates the state of charge (SOC) of EV.
Figure 7 shows an electric bill before and after DRP. Also,
Figs. 6-7 are simulation results introduced EV, ESS and
DRP. The electric bill set the price elasticity of demand as
0.2 (Fig. 4). The change of the load demand for the orig-
inal taste that deducted PV, electricity of WG from load
demand than Fig. 4 because PV, WG are introduced in
large quantities grows big. As can be seen from the Fig.
2, due to introducing a large amount of regenerative en-
ergy, the net demand fluctuation is increased. As shown
in Fig. 5, it was found, that to provide a net demand
amount of leveling by introducing EV, ESS and DRP. In-
troducing EV, ESS and DRP leads to suppressing rapid

Table 6 Comparison of system load
Orig. DRP ESS EV All

Revenue[×103$] 805 805 805 813 805
Load factor[%] 72.6 76.1 83.5 83.8 98.5
Peak reduction[%] 0 4.5 13.0 12.4 26.2
Peak-Valley Reduction[%] 0 8.0 30.7 30.1 47.8
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Fig. 5 Demand fluctuations.
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Fig. 6 EV output and SOC.
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variations in loads. Furthermore, a better load shifting
in harmony by controlling the EV, ESS and DRP can be
seen.



Table 7 Simulation conditions
Case Simulation conditions
1 with Voltage stability , w/o Demand management
2 with Voltage stability , with Demand management
3 w/o Voltage stability , with Demand management

 Profit [$/day] ×105
7.34 7.36 7.38 7.4 7.42 7.44 7.46 7.48
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Fig. 8 Pareto front for different cases.

4.2 Simulation result of Supply management side

Table 7 displays the simulation conditions for differ-
ent cases. Figure 8 shows the Pareto optimal solution for
each case. The voltage stability is demonstrated in Fig. 9,
obtained a solution selected from the Pareto optimal so-
lution for each case in Fig. 8. The voltage stability index
shows only an index of the active power because the in-
dex of reactive power became the value that is relatively
larger than 0.3 pu. It confirmed that the demand manage-
ment provided a better Pareto optimum solution in Case
2 are compared to Case 1 in Fig. 8. It also confirmed that
a better Pareto optimum solution in Case 3 was provided
by without voltage stability constraints as compared to
Case 2 in Fig. 8. However, Case 3 in Fig. 9 produces
the time when a voltage stability is low. As can be seen
from Fig. 9, to provide a scheduling maintained voltage
stability, a voltage stability constraints in Case 2 should
be taken into account.

5. CONCLUSION

In this research, we examined a UC in consideration of
a large number of constraints by dividing demand man-
agement side and supply management side. The sudden
variation of a load by mass introduction of RES from sim-
ulation results was possible to be eliminated by demand
management. Furthermore, it was shown that it is fea-
sible to realize the operation of the power system to im-
prove the voltage stability by considering voltage stability
constraints.
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