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Abstract

We define the homogeneous spatial immigration-death (HSID) process, a spatial birth-death

process with as building blocks i) an immigration-death (ID) process (a continuous time Markov

chain), and ii) a probability distribution assigning iid spatial locations to all points. For the

ID-process we derive the likelihood function, reduce the likelihood estimation problem to one

dimension, and prove consistency and asymptotic normality for the maximum likelihood estima-

tors (MLEs) under a discrete sampling scheme. We additionally prove consistency for the MLEs

of HSID-processes. In connection to the growth-interaction process, which has a HSID-process

as basis, we also fit HSID-processes to Scots pine data.

Key words: Asymptotic normality, Consistency, Homogenous spatial immigration-death process,

Maximum Likelihood, Spatial birth-death process, Spatio-temporal growth-interaction process

1 Introduction

A classical example of the application of spatial point processes can be found in the area of forestry

and there particular focus has been the modelling of forest stands. This is clearly indicated by

the extensive literature related to the subject (see e.g. (Illian, Penttinen, Stoyan, & Stoyan, 2008;

Stoyan & Penttinen, 2000)). Initially these studies concerned themselves with modelling solely the

spatial locations x1, . . . , xN of all the trees found within a spatial study region W ⊆ R2, at some

particular point in time.

Since e.g. a forest stand is a temporally evolving entity, it may be reasonable to additionally

consider some time horizon [0, T ), T > 0, over which we perform our study. It is thus natural to

connect a temporal event time ti ∈ [0, T ), such as a birth time, to each spatial location xi ∈ W ,

i = 1, . . . , N ≡ N(T,W ). Such a collection may be referred to as a spatio-temporal point process

and for natural reasons there has been a growing interest in specific such models.

Often when dealing with spatio-temporal observations of e.g. a forest stand, we do not actually

possess data sets which have been observed continuously over [0, T ), but rather only a fixed set of

snapshots x1, . . . ,xn ⊆ {xi}Ni=1 of the locations, obtained at a fixed set of sample times T1, . . . , Tn ∈

[0, T ) (assume that x0 = ∅ is the sample at T0 = 0). As a consequence we do not actually have access

to the exact temporal event times ti, but rather only information on which sample interval (Tk−1, Tk]

some observed ti belongs to and, possibly, in which interval the point is removed. Furthermore,
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there likely exist unobserved points (trees) which arrive and disappear within the same unobserved

part (Tk−1, Tk) ⊆ [0, T ), k = 1, . . . , n. Hereby, in order to correctly model such a data set with

some given spatio-temporal model, we need to develop a modelling framework specifically for such

spatio-temporal samples x1, . . . ,xn.

There are different model structures that can be proposed here and one of them is given by spatial

jump processes (Berthelsen & Møller, 2002). These can be described as Markov jump processes

which have quite general structures imposed as state spaces. One possible such structure is the

space of finite point patterns (van Lieshout, 2000; Møller & Waagepetersen, 2004) and here one

particular instance is given by the class of spatial birth-death processes. These have mainly been

used for the purposes of simulating static spatial point patterns {xi}Ni=1. However, these processes

can also be purposefully employed for direct spatio-temporal modelling attempts.

One particular such model, which is the focus of this study, is what we here will refer to as the

homogeneous spatial immigration-death (HSID) process Y (s), s ≥ 0. Here, when points arrive, they

are assigned iid spatial locations in W according to some common predefined spatial distribution.

Its underlying temporal part, which governs the arrival times of new points xi toW and the amount

of time each point spends in W , is given by an immigration-death (ID) process {N(s)}s≥0, often

also referred to as an M/M/∞-queue (Asmussen, 2003; Gani & Swift, 2011; Gillespie & Renshaw,

2005; Grimmett & Stirzaker, 2001). It is a continuous time Markov chain with state space {0, 1, . . .}

and two parameters; an arrival rate α > 0 and a death rate µ > 0.

The main objective here is to correctly derive exact ML-estimators for the parameters α, µ when

{N(s)}s≥0 is sampled at discrete times T1, . . . , Tn. Note that this is different than the scenario

treated in (Gibson & Renshaw, 2001), where it is assumed that the actual death times are observed,

or the scenario in (Bhat & Adke, 1981) where a continuous sampling scheme is applied to the ID-

process. In general, in the case of continuous time Markov chains, the maximum likelihood (ML)

theory based on continuous observations of sample paths has been covered quite extensively in the

literature (see e.g. (Basawa & Prakasa Rao, 1980; Billingsley, 1961; Keiding, 1975); see (Guttorp,

1991) for inference related to branching processes). However, in the case of ML estimation based on

processes sampled according to a discrete sample scheme much less has been done. Regarding the

asymptotic properties of such ML-estimators, in recent years some general results have emerged (e.g

in the context of discretely sampled Markov jump processes – see e.g. (Dehay & Yao, 2007)) and we
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may exploit these to establish properties such as strong consistency and asymptotic normality of the

ML-estimators, in the context of ID-processes. Having obtained such ML-estimators and related

asymptotic results, our further objective here is to extend this discrete sample approach to the full

HSID-process. Due to the imposed lack of dependence between the locations, e.g. consistency is

obtained as a straight forward corollary of the results for {N(s)}s≥0.

The papers is structured as follows. We start by finding the transition probabilities of the ID-

process (Section 2) and the finite dimensional distributions of the HSID-process (Section 3), which

in turn are used to define the corresponding likelihood functions. In Section 4 we give results on

strong consistency and asymptotic normality of the ML-estimators when the ID-process is sampled

at discrete times. Here the consistency is also extended to the HSID-process case and the ID-process

ML-estimators are evaluated numerically. In Section 5 we fit a HSID-process to a collection of forest

plots. Section 6 contains a brief summary and discussion.

2 The immigration-death process

The immigration-death process (ID-process), {N(s)}s≥0, is a time-homogeneous irreducible continu-

ous time Markov chain where the possible states for which transitions i→ j are possible are supplied

by the state space E = N = {0, 1, . . .}. The process is governed by the parameter pair θ = (α, µ),

which we henceforth assume to take values in some parameter space Θ ⊆ R2
+ = (0,∞)× (0,∞).

One way of viewing the ID-process is to treat it as a special case of a birth-death process. Here,

for any h ≥ 0, the infinitesimal transition probabilities of the birth-death process are given by

pij(t; θ) := P (N(h+ t) = j|N(h) = i) =



λit+ o(t) if j = i+ 1

1− (λi + µi)t+ o(t) if j = i

µit+ o(t) if j = i− 1

o(t) if |j − i| > 1,

(2.1)

where the birth rates are given by λi = α, i = 0, 1, . . ., and the death rates are given by µi = iµ,

i = 0, 1, . . ., (see (Grimmett & Stirzaker, 2001)). Within this framework the interpretation of

{N(s)}s≥0 is the following: By letting the arrivals of new individuals to a population occur according

to a Poisson process with intensity α and upon arrival assigning to all individuals independent and

3
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exponentially distributed lifetimes with mean 1/µ, N(s) gives us the number of individuals alive at

time s. Another possibility is to consider the equivalently defined M/M/∞ queuing system; each

customer (arriving according to a Poisson process with intensity α) is being handled by its own

server so that its sojourn time in the system is exponential with intensity µ and independent of all

other customers. We note also that N(s) in fact is a branching process, and as such it is possible

to derive many of the (statistical) results of this paper (see e.g. (Bhat & Adke, 1981)). However,

for reasons related to the temporal Markovianity of HSID-processes, we choose to treat N(s) as a

continuous time Markov process.

We here are interested in the finite dimensional distributions of {N(s)}s≥0, mainly since these

allow us to construct a likelihood structure for our model.

Theorem 1. The transition probabilities of the ID-process are given by convolutions of Poisson

densities and Binomial densities such that

pij(t; θ) =
(
f
Poi(ρ)

∗ f
Bin(i,e−µt)

)(
j
)

=

j∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k) (2.2)

=

i∧j∑
k=0

f
Poi(ρ)

(j − k)f
Bin(i,e−µt)

(k) =
e
−α
µ (1−e−µt)

j!

j∑
k=0

(
α

µ

)k (j
k

)
e−(j−k)µt

(1− e−µt)j−2k−i
i!

(i− (j − k))!
,

where i, j ∈ E = N, θ = (α, µ) ∈ Θ ⊆ R2
+, fPoi(ρ)(·) is the Poisson density with parameter

ρ = α
µ

(
1− e−µt

)
, and f

Bin(i,e−µt)
(·) is the Binomial density with parameters i and e−µt. Note that

pij(t; θ) = 0 if i < 0 or j < 0. Moreover, we have that the probability generating function and the

first two moments of (N(h+ t)|N(h) = i) are given by

Gi (z; θ) =
(
1 + (z − 1) e−µt

)i
eρ(z−1) (2.3)

E[N(h+ t)|N(h) = i] = i e−µt +ρ

E[N2(h+ t)|N(h) = i] = i(i− 1) e−2µt +(1 + 2ρ)i e−µt +ρ2 + ρ.

Proof. Notice first that for any fixed t > 0, N(t) is the result of applying so called p-thinning (see e.g.

(Stoyan, Kendall, & Mecke, 1995)) to a Poisson process with intensity α, using thinning probability

1− p(t), given N(0) = 0. Since an individual’s arrival time, conditioned on the individual’s arrival

4
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during (0, t], is uniformly distributed on (0, t] and its life-time is Exp(µ)-distributed we get that

p(t) = P (An individual arrives during (0, t] and survives time t)

=

∫ t

0

(
1− FExp(µ)(t− x)

)
fUni(0,t)(x)dx =

1

t

∫ t

0
e−µ(t−x) dx =

1− e−µt

µt
.

By the properties of thinned Poisson processes (see e.g. (Stoyan et al., 1995)) we have that N(t) ∼

Poi(αtp(t)) = Poi(ρ), ρ = α
µ

(
1− e−µt

)
.

With the marginal distributions of {N(t)}t≥0 at hand (given N(0) = 0) we now proceed to

finding pij(t; θ). Given that there are i individuals present at a given time h > 0, we denote by X

the number of these individuals who have survived (h, h+ t]. Clearly X is Bin(i, e−µt)-distributed

and by denoting by Y the number of new individuals arriving in (h, h + t], which by the previous

argument is Poi(ρ)-distributed and is independent of X, we obtain pij(t; θ) as the convolution of

the distributions of X and Y , i.e.

pij(t; θ) = P(X + Y = j) =
∞∑
k=0

P(Y = k)P(X = j − k)

=
∞∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k) =

j∑
k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k).

Since the independent random variablesX and Y have probability generating functionsGX(z; t) =(
1 + (z − 1) e−µt

)i and GY (z; t) = eρ(z−1), respectively, we find that the probability generating

function is given by Gi (z; θ) = E[ezN(h+t) |N(h) = i] = E[ez(X+Y )] = GX(z; t)GY (z; t) = (1 + (z −

1) e−µt)i eρ(z−1) .

In the same spirit, we finally find that the first two moments of (N(h+ t)|N(h) = i) are given by

E[N(h+ t)|N(h) = i] = E[X + Y ] = i e−µt +ρ and E[N2(h+ t)|N(h) = i] = E[X2] + 2E[X]E[Y ] +

E[Y 2] = i(i− 1) e−2µt +(1 + 2ρ)i e−µt +ρ2 + ρ.

It should be pointed out that these results also may be obtained in another (less intuitive) way.

From e.g. the infinitesimal probabilities (2.1) we may derive the probability generating function

Gi (z; θ) (see e.g. (Grimmett & Stirzaker, 2001)) and by induction we can derive its jth derivative

5
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(Cronie & Yu, 2010)

G
(j)
i (z) :=

∂jGi(z; θ)

∂zj
= Gi(z)

j∑
k=0

ρk
(
j

k

)
1

(eµt−1 + z)j−k
i!

(i− (j − k))!
, (2.4)

which in turn allows us to retrieve the transition probabilities (2.2) as pij(t; θ) = G
(j)
i (0)/j!. The

first two moments can be obtained through G(1)
i (1−) and G(2)

i (1−).

Note that in practice it is often natural to condition on N(0) = 0 and under this condi-

tion, either from e.g. (Gani & Swift, 2011) or through the proof of Theorem 1, we see that the

marginal distribution of N(s) is given by the Poisson distribution with parameter ρ = α
µ (1− e−µs).

Furthermore, we then have that P(N(s) ∈ ·) → πθ(·) = P(Poi(α/µ) ∈ ·), as s → ∞, since

lims→∞
α
µ (1− e−µs) = α/µ. Extending this, the following theorem, given in (Asmussen, 2003),

establishes the ergodicity of {N(s)}s≥0 (which together with the irreducibility gives us its positive

recurrence) and its invariant distribution.

Theorem 2. The ID-process is ergodic with invariant distribution given by the Poisson distribution

with mean α/µ.

Note that this invariant distribution is unique due to the positive recurrence, and it is also the

same as its asymptotic distribution since every asymptotic distribution is an invariant distribution.

A further important characterisation of {N(s)}s≥0 is its representation as a Markov jump pro-

cess.

Theorem 3. Let θ = (α, µ) ∈ Θ ⊆ R2
+. {N(s)}s≥0 is a Markov jump process with state space E =

N, jump intensity function λ(θ; i) = α+µi, i ∈ E, and transition kernel r(θ; ·) = {r(θ; i, j) : i, j ∈ E},

where r(θ; i, j) = 1
α+µi (α1{j = i+ 1}+ µi1{j = i− 1}) , i, j ∈ E.

Proof of Theorem 3. Let {N(s)}s≥0 be adapted to some filtered probability space
(
Ω,F , {Fs}s≥0 ,P

)
.

A continuous-time Markov chain is by definition a Markov jump process (Kallenberg, 2002, p. 243).

Let 0 = τ0 < τ1 < τ2 < . . . (limn→∞ τn =∞) be the jump-times of N(s) = N(0) +
∑∞

k=1 Yk1{τk ≤

s}, having associated jump-sizes Yk = N(τk)−N(τk−1) ∈ {−1, 1}, k = 1, 2, . . . (we consider a right

continuous version of {N(s)}s≥0). This is the embedded jump chain of {N(s)}s≥0. Since {N(s)}s≥0

is a Markov jump process, each increment τk − τk−1 will be independent of Fτk−1
and, given that

6
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N(τk−1) = i, it holds that τk−τk−1 is Exp (λ(θ; i))-distributed. Noticing that the lifetimes L1, L2, . . .

of all individuals generated by N(s) are iid Exp(µ)-distributed and also that any inter-jump-time τα

of the (Poisson) arrival process is Exp(α)-distributed we find that τk − τk−1
d
= min{τα, L1, . . . , Li}

for i ∈ Z+, and clearly τk−τk−1
d
= τα if i = 0. Since the minimum of n independent exponential ran-

dom variables with parameters λ1, . . . , λn is exponentially distributed with parameter
∑n

i=1 λi, this

implies that the jump intensity function is given by λ(θ; i) =
(
Eθ[τk−τk−1|N(τk−1) = i]

)−1
= α+µi,

i ∈ E, where Eθ[·] denotes expectation under the parameter pair θ = (α, µ). Applying again the

arguments above we find that

r (θ; i, i+ 1) = P (N(τk) = i+ 1|N(τk−1) = i) = P (τα < min (L1, . . . , Li) |N(τk−1) = i)

=

∫ ∞
0

(
1− e−αy

)
fmin(L1,...,Li)|N(τk−1) (y|i) dy

= 1− E
[
e−αmin(L1,...,Li)

∣∣∣N(τk−1) = i
]

= 1−
(

1 +
α

µi

)−1

=
α

α+ µi
,

since a random variable X ∼ Exp(γ) has moment generating function mX(z) = E[ezX ] = (1 −

z/γ)−1. Therefore, since Yk = N(τk)−N(τk−1) ∈ {−1, 1}, k = 1, 2, . . ., the transition kernel of the

Markov jump process, r(θ; ·) = {r(θ; i, j) : i, j ∈ E}, is determined by

r(θ; i, j) = P (N(τk) = j|N(τk−1) = i) = 1{j = i+ 1}P (N(τk) = i+ 1|N(τk−1) = i)

+ 1{j = i− 1, i > 0} (1− P (N(τk) = i+ 1|N(τk−1) = i)) =
α1{j = i+ 1}+ µi1{j = i− 1}

α+ µi
.

3 The homogeneous spatial immigration-death process

Turning to the spatio-temporal framework, we next define what here will be referred to as a

homogeneous spatial immigration-death process (HSID-process). We define it as a spatial jump

process (Berthelsen & Møller, 2002; Møller & Waagepetersen, 2004) Y (s) ∈ Nf , s ≥ 0, where

Nf = {x ⊆ W : |x| < ∞} is the collection of all finite point configurations x = {x1, . . . , xn} con-

tained in some set W ⊆ Rd with Borel sets B. Such a process is specified by two components: a

Markov jump process {N(s)}s≥0 governing the times τ1 < τ2 < . . . at which transitions between

7
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states take place and a transition kernel kx(·), x ∈ Nf , which, given Y (τi) ∈ Nf and the subsequent

jump time τi+1 and state N(τi+1), determines to which state Y will jump at τi+1.

Definition 1. Consider some suitable spatial study region W ⊆ Rd with Borel sets B, some suitable

probability measure P (·) = P (·; θW ), θW ∈ ΘW ⊆ Rm, m ≥ 0, on (W,B) and an ID-process

{N(s)}s≥0. A homogeneous spatial immigration-death process {Y (s)}s≥0 is a spatial jump process

which describes a population where:

1. additions and removals of individuals in the population are determined by N(s),

2. each individual is assigned a spatial location according to the distribution P (·).

Here typical examples of spatial study regions include Euclidean hyper-rectangles or balls W ⊆

Rd, d = 2, 3. Note that the lifetimes of the individuals are determined by the Poisson process

arrival times and the iid Exp(µ)-distributed lifetimes. Moreover, conditionally on the cardinality

|Y (s)| = n, Y (s) simply gives us a collection of iid (hence the name ”homogeneous”) P (·)-distributed

points X1, . . . , Xn ∈W . It can be seen that HSID-processes are special cases of spatial birth-death

processes (see e.g. (Berthelsen & Møller, 2002; Møller & Waagepetersen, 2004)). It should be

pointed out that, although the spatial locations are independent, the HSID-process may serve as a

decent model also when there is spatial dependence present, if we can assume that this dependence

is weak or, possibly, if the points are far apart spatially.

Let Y1, . . . , Yn be an arbitrary collection of (non-random) elements of Nf , i.e. an arbitrary

collection of point configurations. If P (·) has density fW (·) w.r.t. Lebesgue measure ν(·) in Rd, we

obtain the following result.

Theorem 4. Given 0 = T0 < T1 < . . . < Tn and some point configuration Y (0) = Y0 in W , the

joint density of (Y (T1), . . . , Y (Tn)), evaluated at the vector (Y1, . . . , Yn) of elements in Nf , is given

by

fY ((Yk)
n
k=1) =

1

|P|
∏

ξ∈
⋃n
k=1 Yk

fW (ξ)

n∏
k=1

pNk−1Nk(∆Tk−1;α, µ),

where |P| ∈ Z+, which is given in expression (3.1), depends on N1 = |Y1|, . . . , Nn = |Yn| and

m = |
⋃n
k=1 Yk| ∈ N, and 2/mn(n+ 1) ≤ 1/|P| ≤ 1.

8

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 1
7:

53
 2

1 
M

ar
ch

 2
01

6 



Proof. LetM = |
⋃n
k=1 Y (Tk)| ∈ N denote the total number of distinct points observed at T1, . . . , Tn

and label the locations of the M points as X1, . . . , XM ∈ W (in some suitable fashion). Define

additionally the index sets Ω(Tk) = {i ∈ Z+ : Xi ∈ Y (Tk)}, k = 1, . . . , n.

Now, based on the observed sets Y1, . . . , Yn, letm, x1, . . . , xm ∈W , and ωk = {i ∈ Z+ : xi ∈ Yk},

k = 1, . . . , n, be the observed counterparts of M , X1, . . . , XM and Ω(Tk), k = 1, . . . , n, respectively.

Since the locations X1, . . . , XM are iid with density fW (·), clearly we may now write the joint

density of (Y (T1), . . . , Y (Tn)) as

fY ((Yk)
n
k=1) = fΩ(ω1, . . . , ωn)fX(x1, . . . , xm) = fΩ(ω1, . . . , ωn)

∏
ξ∈
⋃n
k=1 Yk

fW (ξ)

where fΩ(ω1, . . . , ωn) is the joint density of (Ω(T1), . . . ,Ω(Tn)), evaluated at (ω1, . . . , ωn), and

fX(x1, . . . , xm) = fY ((Yk)
n
k=1|Ω(T1), . . . ,Ω(Tn)) is the joint density of (X1, . . . , Xm), evaluated

at (x1, . . . , xm). Note that the density fΩ(ω1, . . . , ωn) controls two main pieces of information: (i)

the cardinality N(Tk) = |Y (Tk)| = |Ω(Tk)| (whence it controls M) and the labelling/order of the

N(Tk) points in each Y (Tk), k = 1, . . . , n (which makes them distinct). The (conditional) density

fX(x1, . . . , xm), on the other hand, controls only the spatial locations of the M points in W .

By denoting the joint density of (N(T1), . . . , N(Tn)) = (|Ω(T1)|, . . . , |Ω(Tn)|), evaluated at

(N1, . . . , Nn) = (|ω1|, . . . , |ωn|), by fN ((|ωk|)nk=1) it is clear that

fΩ(ω1, . . . , ωn) = fO((ωk)
n
k=1)fN ((|ωk|)nk=1) = fO((ωk)

n
k=1)

n∏
k=1

pNk−1Nk(∆Tk−1;α, µ),

where fO((ωk)
n
k=1) is a density which determines the order in which the M points arrive to W and

pNk−1Nk(∆Tk−1;α, µ), k = 1,, is the transition probability of the ID-process.

Since we have already accounted for the number of points present at T1, . . . , Tn and the locations

X1, . . . , XM , it now only remains to determine fO((ωk)
n
k=1). It follows that fO((ωk)

n
k=1) = 1/|P|,

where

P =

{
(ω1, . . . , ωn) : ω1, . . . , ωn ⊆ {1, . . . ,m}; |ω1| = n1, . . . , |ωn| = nn; (3.1)

i ∈ ωk−1, i /∈ ωk ⇒ i /∈ ωk+1 for any k = 2, . . . , n− 1

}
.
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This can be seen by considering the matrix A = [ai,k]i=1,...,m; k=1,...,n, which has entries ai,k =

1Ω(Tk)(i). When we condition on (N(Tk))
n
k=1 = (Nk)

n
k=1 we only specify that the column-sums of

A are given by N1, . . . , Nn, whence we still have to determine what the probability is of A being

observed as the matrix Ā with entries āi,k = 1ωk(i). It may be seen that the sample space of the

conditional random matrix A|{(N(Tk))
n
k=1 = (Nk)

n
k=1} is given by the m× n-matrices which have

0-1 entries, column-sums d1, . . . , dn and all 1’s in each row connected (this follows since an indexed

point cannot return again once it has been removed); when n = 5, say, a row can be given by

e.g. (0, 1, 1, 0, 0) or (1, 1, 1, 1, 0). To obtain a bound for |P| we find that the number of matrices

which have rows with connected 1’s is given by m
∑n

j=1(n − (j − 1)) = mn(n + 1)/2, whereby

2/mn(n+ 1) ≤ 1/|P| ≤ 1.

A simple example here is to letW be bounded and fW (·) = 1/ν(W ), so that P (B) =
∫
B 1/ν(W )ν(dx) =

ν(B)/ν(W ), i.e. the spatial locations are Uni(W )-distributed. This is the form employed in the

growth-interaction process (see Section 5).

4 Maximum likelihood estimation

Assume now that we sample {N(s)}s≥0 as N1, . . . , Nn at the respective times T1 < . . . < Tn (we

write 0 = T0 < T1). Since the likelihood function for θ = (α, µ) ∈ Θ, Ln(θ), is given by the joint

density of the distribution of (N(T1), . . . , N(Tn)), by the Markov property of N(s) it can be fac-

torised into a product of transition probabilities, Ln(θ) = P(N(T1) = N1)
∏n
k=2 pNk−1Nk

(∆Tk−1; θ),

where ∆Tk−1 = Tk − Tk−1. Since by assumption we condition on N(T0) = 0, the log-likelihood will

be given by

ln(θ) = ln(θ;N1, . . . , Nn) =
n∑
k=1

log pNk−1Nk
(∆Tk−1; θ). (4.1)

In the case of equidistant sampling, i.e. ∆Tk−1 = t for each k = 1, . . . , n, the log-likelihood takes

the form

ln(θ) =
∑
i,j∈E

Nn(i, j) log pij(t; θ), (4.2)
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where Nn(i, j) =
∑n

k=1 1 {(Nk−1, Nk) = (i, j)}. Hereby, for each of the sampling schemes, the

likelihood estimator of θ = (α, µ) ∈ Θ (obtained by replacing Nk by N(Tk), k = 0, 1, . . ., in

expressions (4.1) and (4.2)) will be defined as

θ̂n = (α̂n, µ̂n) = arg max
θ∈Θ

ln(θ). (4.3)

Since the system of equations



0 = ∂
∂α ln(θ) =

∑
i,j∈E Nn(i, j) ∂

∂α log pij(t; θ) =
∑

i,j∈E Nn(i, j) 1
α

(
pij(t;θ)k
pij(t;θ)

− ρ
)

0 = ∂
∂µ ln(θ) =

∑
i,j∈E Nn(i, j) ∂

∂µ log pij(t; θ)

=
∑

i,j∈E Nn(i, j) ρτ
(1−e−µt)µ −

(j−i e−µt)µt
(1−e−µt)µ −

τ−µt
(1−e−µt)µ

pij(t;θ)k
pij(t;θ)

,

pij(t; θ)k :=
∑j

k=0 kfPoi(ρ)(k)f
Bin(i,e−µt)

(j − k) = ρpi(j−1)(t; θ),

(4.4)

where ρ = α
µ

(
1− e−µt

)
and τ = 1 − e−µt−µt e−µt, has no known closed form solution, numerical

methods have to be employed in order to obtain the ML-estimates. However, as unfortunate as

this may be, as we can see from the result below, it is still possible to express the estimator of

α as a function of the parameter µ (and the sample), hence reducing the maximisation to a one

dimensional problem.

Proposition 1. The ML-estimator is found by maximising ln(α̂n(µ), µ) over Θµ ⊆ R+ (the projec-

tion of Θ onto the µ-axis); µ̂n = arg maxµ∈Θ2 ln(α̂(µ), µ), α̂n = α̂n (µ̂n) , and

α̂n(µ) :=

µ
(1−e−µt)

1
n

∑
i,j∈E Nn(i, j)(j − i e−µt)

2
(

1−e−µt

µt − e−µt
)
− 1

=
µ 1
n

(
e−µtNn−N0

1−e−µt +
∑n

k=0Nk

)
2
(

1−e−µt

µt − e−µt
)
− 1

. (4.5)

Proof. Since
∑

i,j∈E Nn(i, j) = n, through (4.4) we obtain
∑

i,j∈E Nn(i, j)
pij(t;θ)k
pij(t;θ)

= α
µ

(
1− e−µt

)
n

and
∑

i,j∈E Nn(i, j)
pij(t;θ)k
pij(t;θ)

=
ρτn−µt

∑
i,j∈E Nn(i,j)(j−i e−µt)

µt−τ . By combining these two expressions we

obtain the desired result.
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Turning to the HSID-process, through Theorem 4 we obtain the log-likelihood function

lYn (θ, θW ) = lYn (θ, θW ;Y1, . . . , Yn) = log fY ((Yk)
n
k=1) = − log(|P|) + lWn (θW ) + ln(θ),

lWn (θW ) =
∑

ξ∈
⋃n
k=1 Yk

log fW (ξ; θW ), (4.6)

whereby the ML-estimator will be given by

θ̂Yn = (α̂n, µ̂n, θ̂
W
n ) = arg max

θ∈Θ
lYn (θ, θW ). (4.7)

Note here that the full set of ML-estimates (α̂n, µ̂n, θ̂
W
n ) may be obtained by in (4.4) additionally

differentiating lWn (θW ) w.r.t. θW and setting the derivative equal to zero.

4.1 Asymptotic properties of the ID-process ML-estimators

We now wish to establish the consistency and the asymptotic normality of the sequence of estimators

(4.3) under an equidistant sampling scheme.

More specifically we assume now that we sample N(s) at the times Tn = nt, n ∈ N, t > 0, and

from the Markov property of N(s) the observation chain Z = (Zn)∞n=1 ≡ (N(Tn))∞n=1 will also be a

Markov chain, having transition kernel

q(θ; ·) = {q(θ; i, j) : i, j ∈ E} = {P(X(Tn) = j|X(Tn−1) = i; θ) : i, j ∈ E} , E = N.

Given Z0 = X(0), the log-likelihood generated by (Z1, . . . , Zn) is given by

ln(θ) =

n∑
k=1

log q(θ;Zk−1, Zk) =
∑
i,j∈E

Nn(i, j) log q(θ; i, j),

where Nn(i, j) =
∑n

k=1 1 {(Zk−1, Zk) = (i, j)}. Throughout we denote by θ0 = (α0, µ0) ∈ Θ the

actual underlying parameter pair.

In order to prove consistency (Theorem 5) and asymptotic normality (Theorem 6) of θ̂n, we

must ensure that identifiability holds.

Lemma 1. For any θ 6= θ0, q(θ; ·) 6= q(θ0; ·).
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Proof. Recall from expression (2.3) the p.g.f. Gi (z; θ) of (N(h+ t)|N(h) = i), θ ∈ Θ. It is sufficient

to show that

1 =
Gi (z; θ0)

Gi (z; θ)
=

(
1 + (z − 1) e−µ0 t

1 + (z − 1) e−µt

)i
exp

{
(z − 1)

(
α0

µ0
(1− e−µ0 t)− α

µ
(1− e−µt)

)}
= a1a2

is cannot hold for θ 6= θ0 and z 6= 1. We first see that a1 = 1 iff µ0 = µ or i = 0. Hence,

when µ = µ0, a2 = e(α0−α)(z−1)(1−e−µt)/µ equals 1 iff α0 = α. When µ0 6= µ and α0 6= α,

a2 = e
αt(z−1)( 1−e

−µ0 t
µ0t

− 1−e−µt
µt

)
, which holds iff µ0 = µ, since (1 − e−x)/x is strictly decreasing.

Assuming that α 6= α0 and µ 6= µ0, we obtain a2 = e
(z−1)(

α0
µ0

(1−e−µ0 t)−α
µ

(1−e−µt))
. If α0

µ0
= α

µ , by

the monotonicity of 1 − e−x we find that a2 = 0 iff µ = µ0 and if 1 − e−µt = η(1 − e−µ0t), where

η = α0µ
αµ0

> 0, we must require that µ = µ0.

We now arrive at the consistency result.

Theorem 5. Let Θ be any compact subset of R2
+. The maximum likelihood estimator satisfies

(α̂n, µ̂n)
a.s.−→ (α0, µ0), as n→∞.

Proof. Treated as a Markov jump process, the consistency may be obtained by showing that the

generic conditions for Markov jump processes in (Dehay & Yao, 2007) are satisfied.

Through Theorem 3 we find that the jump intensity is positive and the transition kernel is

irreducible. Furthermore, by Theorem 2, under θ0 the Markov chain (Zn)n∈N has a unique invariant

probability measure πθ0 = Poi(α0/µ0), with moments of all orders a ≥ 1, i.e.
∑

i∈E |i|aπθ0(i) <

∞. Furthermore, due to the positive recurrence of {N(s)}s≥0 (provided by Theorem 2), by an

ergodic theorem (e.g. (Norris, 1997, Theorem 1.10.2)), for any πθ0-integrable function φ : E → R,
1
n

∑n
k=1 φ(Zk)

a.s.−→
∑

i∈E φ(i)πθ0(i), as n→∞.

By choosing C = maxi,j∈{0,1} | log q(θ0; i, j)| <∞, we can find a ∈ N such that | log q(θ0; i, j)| ≤

C(1 + |i|a/2 + |j|a/2) since the free choice of a ∈ N allows us to create an arbitrary large bound

(1 + |i|a/2 + |j|a/2) for | log q(θ0; i, j)| when i, j ∈ {2, 3, . . .}.

By the compactness of Θ = Θα × Θµ ⊆ R2
+ we have that αmin := inf Θα > 0, αmax :=

sup Θα < ∞, µmin := inf Θµ > 0 and µmax := sup Θµ < ∞. Recalling (4.4), it can easily

be verified that | ∂∂α log q(θ; i, j)| < t + j
αmin

< ∞ and | ∂∂µ log q(θ; i, j)| < αmaxt2+(3j+i)t
1−e−µmint

< ∞.
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Furthermore, by the mean value theorem and the Schwarz-inequality, for θ, θ′ ∈ Θ, it can be

verified that | log q(θ; i, j) − log q(θ
′
; i, j)| < (t + j

αmin
+ αmaxt2+(3j+i)t

1−e−µmint
)|θ − θ′ |(1 + |i|a/2 + |j|a/2).

By setting γ(x) = (t + 1
αmin

+ αmaxt2+4t
1−e−µmint

)x, x ≥ 0, we find that γ(·) is a continuity modulus such

that, for all i, j ∈ E and θ, θ
′ ∈ Θ, | log q(θ; i, j) − log q(θ

′
; i, j)| ≤ γ(|θ − θ′ |)(1 + |i|a/2 + |j|a/2),

since we may choose a ∈ N freely. Given the above, there exists a strong law of large numbers for

Un(θ) = ln(θ0)− ln(θ).

By recalling Lemma 1, we now conclude, by an appeal to (Dehay & Yao, 2007, Theorem 2),

that (α̂n, µ̂n)
a.s.−→ (α0, µ0), as n→∞.

Having proved the consistency, we next turn to the asymptotic normality and in order to prove

it we need the following technical lemma.

Lemma 2. The transition probabilities satisfy the recursive relation

pi(j−1)(t; θ)

pij(t; θ)
=

(j + 1)(eµt−1)

ρ

pi(j+1)(t; θ)

pij(t; θ)
+
j − i
ρ
− eµt +1,

where i, j ∈ E = N and ρ = α
µ

(
1− e−µt

)
. Note that pij(t; θ) = 0 if i < 0 or j < 0.

Proof. Recalling the probability generating function and (2.4), by utilising that pij(t; θ) = G
(j)
i (0)/j!

and letting a(z) = eµt−1 + z, we obtain

G
(j+1)
i (z) =

(
i− j
a(z)

+ ρ

)
G

(j)
i (z) +

j!

a(z)

Gi(z)

j!

j∑
k=0

kρk
(
j

k

)
1

a(z)j−k
i!

(i− (j − k))!

and through (4.4) we obtain

pi(j+1)(t; θ)

pij(t; θ)
=

j!

(j + 1)!

G
(j+1)
i (0)

G
(j)
i (0)

=
1

j + 1

(
i− j

eµt−1
+ ρ+

j!

G
(j)
i (0)(eµt−1)

pij(t; θ)k

)

=
ρ

(j + 1)(eµt−1)

(
i− j
ρ

+ eµt−1 +
pi(j−1)(t; θ)

pij(t; θ)

)
.

Theorem 6. Let θ0 = (α0, µ0) be an interior point of the compact parameter space Θ ⊆ R2
+. Fur-

thermore, assume that (log(α0 +µ0)− log(α0))/µ0 ≥ 2t. Then, as n→∞,
√
n ((α̂n, µ̂n)− (α0, µ0))
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converges in distribution to the two-dimensional zero-mean Gaussian distribution with covariance

matrix

I(θ0)−1 =
µ0

t ((1 + e−µ0t) ρ0(Ξ− 1)− 1)
× (4.8)

×


ρ0(2τ0−µ0t(1−e−µ0t))+

ρ20
µ0t

(Ξ−1)(τ0−µ0t)2

(1−e−µ0t)
2 1 + ρ0

µ0t
(Ξ− 1)(τ0 − µ0t)

1 + ρ0
µ0t

(Ξ− 1)(τ0 − µ0t)
1
µ0t

(Ξ− 1)
(
1− e−µ0t

)2
 ,

where Ξ =
∑

i,j∈E
(pi(j−1)(t;θ0))

2

pij(t;θ0) πθ0(i), πθ0(·) = P(Poi(α0/µ0) ∈ ·) is the invariant distribution

evaluated at θ0, ρ0 = α0
µ0

(1− e−µ0t) and τ0 = 1− e−µ0t−µ0t e−µ0t.

Proof. Given the properties shown in Theorem 5, in order to prove the asymptotic normality we show

that some additional conditions are satisfied and once again appeal to (Dehay & Yao, 2007). Here

we denote the partial derivatives of a function ψ(·) of θ by Duψ = ∂ψ/∂θu and D2
uvψ = ∂2ψ/∂θu∂θv,

u, v = 1, 2, and let Λθ0 ⊆ Θ denote some neighbourhood of θ0.

We first show that log q(θ; i, j) and its derivatives are sufficiently well-behaved, which is needed to

ensure that there exists a strong law of large numbers for functions which involve first/second order

derivatives of g(θ; i, j) := log q(θ0; i, j)− log q(θ; i, j). Since the expression for q(θ; i, j) contains the

term e
−α
µ (1−e−µt), the mapping θ 7→ g(θ; i, j) is (at least) twice continuously differentiable for all θ ∈

Λθ0 . Recalling from the proof of Theorem 5 the definitions of αmin, αmax, µmin and µmax, it can be

shown that (see (Cronie & Yu, 2010) for details) max(i,j)∈{0,1}2 |D1 log q(θ0; i, j)| < 1
αmin

+t =: C1 <

∞, max(i,j)∈{0,1}2 |D2 log q(θ0; i, j)| < αmaxt2+4t
1−e−µmint

=: C2 < ∞, max(i,j)∈{0,1}2
∣∣D2

11 log q(θ; i, j)
∣∣ <

1+2(1+αmaxt)2

α2
min

=: C11 <∞,

max
(i,j)∈{0,1}2

∣∣D2
12 log q(θ; i, j)

∣∣ <
<

2t

αmin
+ αmaxt

3 +
2t

(1− e−µmint)αmin
+ 2t2 +

2

µmin
t+

(1 + αmaxt)(4 + αmaxt)

(1− e−µmint)αmin
t =: C12 <∞,

max
(i,j)∈{0,1}2

∣∣D2
22 log q(θ; i, j)

∣∣ <
<

(
αmaxt

2 + 4t

1− e−µmint

)2

+ t2
(
6 + 10αmaxt+ α2

maxt
2 + µ2

maxt
2(6 + 3αmaxt)

)
=: C22 <∞.

By choosing C = max{C1, C2, C11, C12, C22}, due to the free choice of moment order a of the
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invariant distribution, we find that max
{
|Du log q(θ0; i, j)|, |D2

uv log q(θ0; i, j)|
}
< C(1 + |i|a/2 +

|j|a/2), for all u, v = 1, 2 and all (i, j) ∈ E2. Furthermore, by the mean value theorem and the

Schwarz-inequality we obtain that

∣∣D2
uv log q(θ; i, j)−D2

uv log q(θ0; i, j)
∣∣

|θ − θ0|
≤
∣∣∇D2

uv log q ((1− c)θ + cθ0; i, j)
∣∣

≤ |D1D
2
uv log q((1− c)θ + cθ0; i, j)|+ |D2D

2
uv log q((1− c)θ + cθ0; i, j)|

for some 0 < c < 1, where θ and θ0 are in some open subset of R2 (in particular θ, θ0 ∈ Λθ0). Now,

by consulting the bounds in expressions (A.1), (A.2), (A.3), (A.4) and choosing

σ11(x) = max
(i,j)∈{0,1}2

(
sup
µ∈Θµ

sup
α∈Θα

B111(α, µ, t, j, i) + sup
µ∈Θµ

sup
α∈Θα

B112(α, µ, t, j, i)

)
x

σ12(x) = σ21(x) = max
(i,j)∈{0,1}2

(
sup
µ∈Θµ

sup
α∈Θα

B112(α, µ, t, j, i) + sup
µ∈Θµ

sup
α∈Θα

B122(α, µ, t, j, i)

)
x

σ22(x) = max
(i,j)∈{0,1}2

(
sup
µ∈Θµ

sup
α∈Θα

B122(α, µ, t, j, i) + sup
µ∈Θµ

sup
α∈Θα

B222(α, µ, t, j, i)

)
x

we conclude that, for each pair u, v = 1, 2, there exists a continuity modulus σuv(x) such that, for

θ ∈ Λθ0 , (i, j) ∈ E2, |D2
uv log q(θ0; i, j)−D2

uv log q(θ; i, j)| ≤ σuv(|θ0 − θ|)(1 + |i|a/2 + |j|a/2).

We next turn to regularity conditions related to the Fisher information. Note that since

(D1 log q(θ0; i, j))q(θ0; i, j) =
ρ0(pi(j−1)(t;θ0)−pij(t;θ0))

α0
, (D2 log q(θ0; i, j))q(θ0; i, j) =

ρ0τ0(pij(t;θ0)−pi(j−1)(t;θ0))

(1−e−µ0t)µ0
−

(j−i e−µ0t)t
1−e−µ0t

pij(t; θ0)+ ρ0t
1−e−µ0t

pi(j−1)(t; θ0) and
∑∞

j=0 pij(t; θ0) =
∑∞

j=0 pi(j−1)(t; θ0) =
∑∞

j=0 pi(j−2)(t; θ0) =

1, it follows that
∑

j∈E (Du log q(θ0; i, j)) q(θ0; i, j) = 0 for all u, v = 1, 2 and every i ∈ E. Addi-

tionally, through expressions (A.5), (A.6), (A.7) we obtain that
∑

j∈E D
2
uvq(θ0; i, j) = 0 for all

u, v = 1, 2 and every i ∈ E, which is equivalent to having −
∑

j∈E
(
D2
uv log q(θ0; i, j)

)
q(θ0; i, j) =∑

j∈E (Du log q(θ0; i, j)) (Dv log q(θ0; i, j)) q(θ0; i, j) = Iuv(θ0; i).

Turning to its structure, it can readily be shown (Cronie & Yu, 2010) that the Fisher in-

formation matrix I(θ0; i) = (Iuv(θ0; i))u,v=1,2 at θ0, associated with the family of distributions
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{q(θ; i, ·) : θ ∈ Λθ0}, is given by I(θ0; i) = A(θ0) +B(θ0)i+ C(θ0)(
∑∞

j=0
pi(j−1)(t;θ)

2

pij(t;θ)
− 1), where

A(θ0) =

 0 − t
µ0

− t
µ0

α2
0µ0t(2τ0−µ0t)

ρ0µ40

 , B(θ0) =

0 0

0 α0t2 e−µ0t

µ0ρ0

 ,C(θ0) =

 ρ20
α2
0

ρ0(µ0t−τ0)
µ20

ρ0(µ0t−τ0)
µ20

α2
0(τ0−µ0t)2

µ40

 .

This implies that the (asymptotic) Fisher information I(θ0) =
∑

i∈E I(θ0; i)πθ0(i) of (Zn)n∈N is

I(θ0) = A(θ0) +B(θ0)
∑
i∈E

iπθ0(i) + C(θ0)

∑
i,j∈E

(
pi(j−1)(t; θ0)

)2
pij0(t; θ)

πθ0(i)− 1


= A(θ0) +

α0

µ0
B(θ0) + (Ξ− 1)C(θ0),

where Ξ =
∑

i,j∈E
(pi(j−1)(t;θ0))

2

pij(t;θ0) πθ0(i). The next step is to show that I(θ0) is invertible, and this

holds iff the determinant det(I(θ0)) = t2

µ20

(
ρ0(1 + e−µ0t) (Ξ− 1)− 1

)
is non-zero, which is to say

that Ξ 6= 1+ρ0(1+e−µ0t)
ρ0(1+e−µ0t)

. Through Lemma 2 we have that

Ξ =
∑
i,j∈E

(
(j + 1)
α0
µ0

e−µ0t
pi(j+1)(t; θ0)

pij(t; θ0)
+
j − i
ρ0
− (eµ0t−1)

)
pi(j−1)(t; θ0)πθ0(i)

=
1

α0
µ0

e−µ0t

∑
i,j∈E

(j + 2)
pi(j+2)(t; θ0)

pi(j+1)(t; θ0)
pij(t; θ0)πθ0(i) + (1− eµ0t)

∞∑
j=0

∞∑
i=0

pij(t; θ0)πθ0(i)

+
1

ρ0

∞∑
i=0

∞∑
j=0

(j + 1− i)pij(t; θ0)πθ0(i) =: S1 + S2 + S3.

Since πθ0(·) = P(Poi(α0/µ0) ∈ ·) is the invariant distribution under θ0, we have that S2 = (1 −

eµ0t)
∑∞

j=0

∑∞
i=0 pij(t; θ0)πθ0(i) =

∑∞
j=0 πθ0(j) = 1−eµ0t and S3 = 1

ρ0
(1+

∑∞
j=0 j

∑∞
i=0 pij(t; θ0)πθ0(i)−∑∞

i=0 iπθ0(i)
∑∞

j=0 pij(t; θ0)) = 1
ρ0

so that Ξ = S1+1−eµ0t + 1
ρ0

= S1+ 1+e−µ0t +ρ0(e−µ0t− eµ0t)
ρ0(1+e−µ0t)

. Hereby

the invertibility condition is translated into

0 6= S1 −
1 + ρ0(1 + e−µ0t)− (1 + e−µ0t +ρ0(e−µ0t− eµ0t))

ρ0(1 + e−µ0t)
= S1 +

e−µ0t−ρ0(1 + eµ0t)

ρ0(1 + e−µ0t)
. (4.9)

Clearly S1 > 0 and since ρ0(1 + e−µ0t) > 0 we have that the right hand side of (4.9) is positive if

e−µ0t ≥ ρ0(1 + eµ0t) = α0
µ0

(eµ0t− e−µ0t), which can be expressed as e−2µ0t(α0 +µ0) ≥ α0. By taking

logarithms on both sides of the latter inequality we end up with (log(α0 + µ0)− log(α0))/µ0 ≥ 2t,
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which holds by assumption. This implies that I(θ0) is invertible, with inverse given by (4.8), and by

an appeal to (Dehay & Yao, 2007) we obtain
√
n ((α̂n, µ̂n)− (α0, µ0))

d→ N
(
0, I(θ0)−1

)
, as n→∞.

Regarding the invertibility condition C(α0, µ0) := (log(α0 + µ0)− log(α0))/µ0 ≥ 2t in Theorem

6, by the mean value theorem we have that 1/(α0 + µ0) < C(α0, µ0) < 1/α0. This means that

the condition will be satisfied if 2t(α0 + µ0) ≤ 1, which is to say that we may sample the process

relatively sparsely when both α0 and µ0 are small and, conversely, we have to follow a tight sampling

scheme when max(α0, µ0) becomes large. In other words, if there is a lot of activity going on in the

process we need to monitor it more frequently, compared to when arrivals and deaths occur rarely,

in order to ascertain that the condition is fulfilled. Note further that when α0 increases, with µ0

kept fixed, we are required to sample the process more densely in order for the condition to hold

(limα0→∞C(α0, µ0) = 0) and when we decrease α0, with µ0 fixed, it is more likely that the condition

is fulfilled (limα0→0C(α0, µ0) =∞). Furthermore, when we let µ0 increase while keeping α0 fixed,

we move towards a situation where the condition will not be fulfilled (limµ0→∞C(α0, µ0) = 0).

When we decrease µ0, with α0 fixed, so that N(s) is approaching a Poisson process, we get that

limµ0→0C(α0, µ0) = 1/α0 so that the condition will be fulfilled provided that α0 is not too big (note,

however, that when N(s) is a Poisson process, by exploiting its Lévy process properties and the

central limit theorem, one can easily show that the ML-estimator α̂n is asymptotically Gaussian).

Note that the results in these theorems still may hold for N(s) under a different sampling scheme

than equidistant sampling, although the approach used to prove the results may be different.

4.1.1 Numerical evaluations

Consider now two different sets of parameter pairs, (α0, µ0) = (2, 0.05) and (α0, µ0) = (0.4, 0.01),

each from which we simulate 50 independent sample paths of N(s) on [0, T ], T = 150, N(0) = 0.

Thereafter we sample each at times Tk = kt, t = 1, k = 1, . . . , 150, and based on these discrete

observations, for each we estimate (α0, µ0) three times; up to time 50, up to time 100 and up to time

150. Table 1 and Table 2 display the estimated means, biases, standard errors (S.E.), skewnesses

(the skewness of a normal distribution is 0) and kurtoses (the kurtosis of a normal distribution is

3) for each parameter pair, (α0, µ0), based on its 50 discretely sampled sample paths.
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Table 1: Estimated moments of the estimator for (α0, µ0) = (2, 0.05), based on the 50 sample paths
sampled at times Tk = kt, t = 1, k = 1, . . . , T .

Mean Bias (%) S.E. Skewness Kurtosis
T = 50: α̂T 2.0305 1.5 0.4406 1.3284 5.0738

µ̂T 0.0503 0.6 0.0175 1.1350 4.4391
T = 100: α̂T 2.0605 3.0 0.3729 0.4076 2.6461

µ̂T 0.0511 2.2 0.0112 0.5632 2.6832
T = 150: α̂T 2.0640 3.2 0.2667 0.1881 2.4832

µ̂T 0.0517 3.4 0.0081 0.4088 2.2849

We can see how the skewness of the data goes through a stepwise reduction for every additional

50 time units we utilise in the estimation (Table 1). As a measure of the heaviness of the tails

we consider the kurtosis estimates given in Table 1; we see a strong reduction after the first 50

time units, going from something fairly heavy tailed to something a bit more light tailed than

a Gaussian distribution (note that there are robustness issues with kurtosis estimators based on

sample fourth moment estimators). From Table 1 we also see that already after 50 sampled time

units the biases are quite small. Hence, the consistency of the estimator (α̂n, µ̂n) becomes clear

quite quickly and although the parameter pair (α0, µ0) = (2, 0.05) does not fulfil the invertibility

condition (log(α0 + µ0) − log(α0))/µ0 ≥ 2t = 2 of Theorem 6, it asymptotically seems to behave

Gaussian, thus indicating that the invertibility condition (log(α0 + µ0)− log(α0))/µ0 ≥ 2t may be

improved.

Table 2: Estimated moments of the estimator for (α0, µ0) = (0.4, 0.01), based on the 50 sample
paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .

Mean Bias (%) S.E. Skewness Kurtosis
T = 50: α̂T 0.4751 18.8 0.1372 -0.1604 2.1189

µ̂T 0.0137 37.0 0.0080 0.4021 2.3971
T = 100: α̂T 0.4251 5.4 0.1412 1.1873 4.4208

µ̂T 0.0126 26.0 0.0057 0.6537 3.2866
T = 150: α̂T 0.4166 4.2 0.1314 0.1742 2.9146

µ̂T 0.0123 23.0 0.0064 0.6493 2.8343

As opposed to the previous choice of parameters, (α0, µ0) = (0.4, 0.01) does fulfil the invertibility

condition of Theorem 6. From the estimated means/biases and kurtoses in Table 2 we can verify that

also here the tails of the empirical distribution approach those of a normal distribution. Regarding

the skewness of the estimates, we see from Table 2 that we end up at values fairly close to 0, i.e. close

to that of a Gaussian distribution. Hence, as expected, also here we see that (α̂n, µ̂n) approaches
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the actual parameter pair and at T = 150 we have strong indications of approximate Gaussianity

of (α̂n, µ̂n).

4.2 Asymptotic properties of the HSID-process ML-estimators

Turning now to the HSID-process Y (s), consider sampling it at times Tn = nt, n ∈ N, t > 0, and

estimating its parameters with the ML-estimator (4.7). We denote by θ0
W ∈ Θ0

W ⊆ Rm, m ≥ 1, the

parameter of the underlying spatial distribution PW (·) and by Eθ0W [·] expectation under θ0
W . Here

consistency is readily obtained if we impose certain conditions on fW (·; θW ).

Corollary 1. Assume that both Θ and ΘW are compact. Assume further that i) fW (·; θW ) is

identifiable, ii) log fW (ξ; θW ) is upper semi-continuous in θW for all ξ ∈ W , iii) there exists

a function K(ξ) such that Eθ0W [|K(ξ)|] < ∞ (for a random spatial location ξ ∼ PW (·)) and

log fW (ξ; θW ) − log fW (ξ; θ0
W ) ≤ K(ξ) for all ξ ∈ W and θW ∈ ΘW , and iv) for all θW ∈ ΘW

and ρ > 0 sufficiently small, supθW :|θW−θ0W |<ρ
fW (ξ; θW ) is measurable in ξ. Then the estimator

(4.7) is strongly consistent, i.e. (α̂n, µ̂n, θ̂
W
n )

a.s.−→ (α0, µ0, θ
0
W ), as n→∞.

Proof. Since N(s) is a positively recurrent Markov process, the total number M(n) = |
⋃n
k=1 Y (Tk)|

of distinct points ξ observed in W over the sample grid T1, . . . , Tn a.s. tends to infinity as n→∞.

Under the conditions imposed on fW , the log-likelihood function lWn (θ) in (4.6) gives rise to a

strongly consistent estimator, i.e. θ̂WM(n)
a.s.−→ θ0

W , as n → ∞ (see e.g. (Ferguson, 1996, Theorem

17)). We combine this convergence with the a.s. convergence obtained in Theorem 5 by appealing

to Slutsky’s theorem (Ferguson, 1996, Theorem 6’).

5 Forest stand data

Given some spatio-temporal point process, we may further assign a mark (additional feature) mi to

each of its points. This results in a marked spatio-temporal point process. One particular marked

spatio-temporal point process, which is the underlying motivation for this study, is the so-called

growth-interaction process (Cronie & Särkkä, 2011; Renshaw, Comas, & Mateu, 2009; Särkkä &

Renshaw, 2006). It has mainly been used for spatio-temporal modelling of forest stands and it is
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constructed by assigning a set of dynamic marks mi = {mi(s)}s≥0, i = 1, . . . , N , to the points of a

HSID-process Y (s) with P (·) = P(Uni(W ) ∈ ·). Here the purpose of mi(s) is to describe the radius

of the ith tree at time s or, equivalently, the space B[xi,mi(s)] = {x ∈ R2 : ‖x − xi‖ ≤ mi(s)}

occupied by the ith tree at time s.

We here consider four plots j = 1, . . . , 4 from the Swedish National Forest Inventory, all measured

in the years 1985, 1990, 1996 and 2005 within a circular region W of radius 10 m. Although the

years of measurement are the same for all of the plots, the ages (sample times) Tj,1, Tj,2, Tj,3, Tj,4,

j = 1, . . . , 4, of the plots at the measurement times 1985, 1990, 1996, 2005 are different. Each plot

consists of at least 90% Scots pines (we have chosen to not remove the non-Scots pine trees in the

data set) and only trees with a radius at breast height (1.3 m above ground), rbh, of at least 0.05

m are considered. Given some sample time Tj,k, k = 1, . . . , 4, the two features measured are the

location xi and the rbh mik of each tree present at Tj,k. As a result, each data set is represented by

Xj = (Xj,k)4
k=1 = ({(xi,mik) : i ∈ Ωj,k})4

k=1, Ωj,k = {i : tree i is alive/visible at time Tj,k}, where

nTj,k = |Ωj,k| is the number of trees present at time Tj,k.

Assuming that we want to model each Xj by means of the growth-interaction process, we need

to fit to each a HSID-process with P (·) = P(Uni(W ) ∈ ·). Since W is known, we may ignore the

spatial uniform distribution part, whereby this amounts to fitting ID-processes to the data in Table

3. Note that for each of these processes we have that N(Tj,0) = 0. For each j = 1, . . . , 4, we here

choose to generate estimates of α and µ (see Table 3) based on Tj,1, Tj,2, Tj,3 and then use the data

from Tj,4 as reference, in order to evaluate whether the parameter estimates may be used to predict

the actual population sizes nTj,4 (Table 4).

Table 3: Information about the data sets Xj (j = 1, . . . , 4): Tj,k (k = 1, 2, 3) is the kth inventory
time (stand age) and nTj,k is the number of distinct trees observed at Tj,k. α̂ and µ̂ are estimated
arrival- and death rates.

j Tj,1 Tj,2 Tj,3 nTj,1 nTj,2 nTj,3 α̂ µ̂

1 22 27 33 13 26 43 0.1944 2.3488
2 32 37 43 24 36 48 0.4958 4.3264
3 23 28 34 40 51 53 0.4191 2.5816
4 45 50 56 9 15 15 0.1344 2.8145

Regarding the predictions in Table 4, both Tj,4 and ∆Tj,4 = Tj,4 − Tj,3 are fairly large for all

of the data sets. Hereby, by exploiting equation (2.3), we may predict the number of trees present
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at time Tj,4 by N̂(Tj,4) = Ê[N(Tj,4) | N(Tj,3) = nTj,3 ] = nTj,3 e−µ̂∆Tj,4 +ρ̂ ≈ ρ̂ = Ê[N(Tj,4)]. The

related prediction error (PE) and standard deviation (SD) are given by PE = N̂(Tj,4) − nTj,4 ,

SD = V̂ar(N(Tj,4) | N(Tj,3) = nTj,3) = nTj,3(nTj,3 − 1) e−2µ̂∆Tj,4 +(1 + 2ρ̂)nTj,3 e−µ̂∆Tj,4 +ρ̂2 + ρ̂ −

(nTj,3 e−µ̂∆Tj,4 +ρ̂)2 ≈ ρ̂ = V̂ar(N(Tj,4)). Also SD is a consequence of equation (2.3). The obtained

results may be found in Table 4. Note that Ê[N(Tj,4)] = α̂ν(W )(1− e−µ̂Tj,4)/µ̂ ≈ α̂ν(W )/µ̂, where

ν(W ) = 102π ≈ 314 is the size of the study region.

Table 4: Observed and expected number (with PE and SD) of alive trees, as well as stand ages, for
the plots at the fourth inventory occasion.

j 1 2 3 4
Tj,4 42 52 43 65
nTj,4 52 54 36 16
N̂(Tj,4) 26.6569 35.9840 50.9751 14.9944
PE (%) -25.3432 (51.26%) -18.0160 (33.36%) 14.9751 (41.60%) -1.0057 (-6.29%)
SD 5.1630 5.9987 7.1397 3.8723

From Table 4 we see that the very few sample times give rise to a PE which, in most cases,

becomes quite extensive. Note, however, that the large sample times for j = 4 seem to decrease

PE substantially. Also SD seems to be decreased by larger sample times. It is clear here that, in

general, one should have access to data sets which have been been sampled more extensively.

6 Discussion

In this paper we have considered the ML-estimation for the ID-process and the HSID-process.

In particular, under an equidistant sampling scheme, Tk = kt, t > 0, k = 1, . . . , n, for the ID-

process both consistency and asymptotic normality have been proved and for the HSID-process

consistency has been obtained. The empirical distribution of the estimates of the ID-process show

strong indications of Gaussianity, even when the imposed invertibility condition of Theorem 6 is

not fulfilled. In addition, in connection to the growth-interaction process, we fit a HSID-process

(with uniform spatial distribution kernel) to four different forest stands, primarily consisting of

Scots pines.

Regarding possible future work, our main interests are related to the HSID-process. Note that

one could consider some more sophisticated spatial distribution P (·) and obtain a more general

definition of a spatial immigration-death process. For instance, we could let the spatial distribution
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of a newcomer depend on the locations of the individuals already present. If we additionally put a

spatial Markov structure (see e.g. (van Lieshout, 2000)) on the distribution of a newcomer (through

a symmetric, reflexive neighbourhood relation on W ), we would obtain one possible definition of a

Markov spatial immigration-death process. Such processes naturally have interesting properties and

spatial statistical applications, as they may be useful tools for modelling many different kinds of

spatio-temporal dynamics (e.g. the spatio-temporal development of a forest stand). Additionally we

may also consider marked versions of these models (see e.g. (van Lieshout, 2000)) and we may for

instance construct spatio-temporal Boolean models by marking each point with a disk/ball (see e.g.

(Stoyan et al., 1995)). One further aim here is to further develop a (pseudo)likelihood estimation

scheme based on discretely sampled HSID-process with general spatial kernels, in particular, and

for discretely sampled general spatial birth-death processes in general.
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Appendices

A Bounds and conditions

The following bounds and regularity conditions (derived in (Cronie & Yu, 2010)) are exploited in

Theorem 6. Note that here the order of differentiation is irrelevant, i.e. for exampleD3
112 log q(θ; i, j) =

D3
121 log q(θ; i, j) = D3

211 log q(θ; i, j).

∣∣D3
111 log q(θ; i, j)

∣∣ ≤ ∣∣D3
111q(θ; i, j)

∣∣
q(θ; i, j)

+
3
∣∣D2

11q(θ; i, j)
∣∣ |D1 log q(θ; i, j)|

q(θ; i, j)
(A.1)

+ |D1 log q(θ; i, j)|3

<
j + (j + αt)2

α
t+

j

α

(
j − 1

α2
+

(
j − 1

α
+ t

)2
)

+ 3
j + (j + αt)2

α2

(
j

α
+ t

)
+

(
j

α
+ t

)3

=: B111(α, µ, t, j, i),
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∣∣D3
112 log q(θ; i, j)

∣∣ ≤ (A.2)

≤
∣∣D3

112q(θ; i, j)
∣∣

q(θ; i, j)
+ 2

∣∣D2
12q(θ; i, j)

∣∣ |D1 log q(θ; i, j)|
q(θ; i, j)

+ |D2 log q(θ; i, j)|
∣∣∣(D1 log q(θ; i, j))2 −D2

11 log q(θ; i, j)
∣∣∣

< 2
t2

α

(
αt+

µ(j2 + j)

α(1− e−µt)
+ 2j

)
+ t2

(
αt+

(j + i+ 1)t

1− e−µt
+ j

)
+
j2 + j

α2

(
αt+

(j + i− 1)t

1− e−µt
+ j − 2

)
+ 2t

j

α

(
αt+

(j + i)t

1− e−µt
+ j − 1

)
+ 2

(
j

α
+ t

)(
(j2 + j)t

α
+ αt3 +

j(j + i)t+ (j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

+ t2(1 + j) +
j + i

µ
t

)
+
αt2 + (3j + i)t

1− e−µt

(
j

α2
+ 2

(
j

α
+ t

)2
)

=: B112(α, µ, t, j, i)
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∣∣D3
122 log q(θ; i, j)

∣∣ ≤ (A.3)

≤
∣∣D3

122q(θ; i, j)
∣∣

q(θ; i, j)
+ 2

∣∣D2
12q(θ; i, j)

∣∣ |D2 log q(θ; i, j)|
q(θ; i, j)

+ |D1 log q(θ; i, j)|
(

(D2 log q(θ; i, j))2 +D2
22 log q(θ; i, j)

)
<

2 + e−µt

1− e−µt
t2
(
j

α
+ t

)
+
j

α
t2

(
(j − 1)2 + 2(j + i− 1)(j − 1) +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
(j − 1)

+ α2t2 + αt(µ2t2 + 2) + (j + i− 1)2µ2t2 + 2αt(j + i− 1) + (j + i− 1)µ2t2

)

+ 2
αt2 + (3j + i)t

1− e−µt

(
(j2 + j)t

α
+ αt3 +

j(j + i)t

(1− e−µt)α
+ t2(1 + j) +

j + i

µ
t

+
(j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

)
+ 2

(
j

α
+ t

)(
αt2 + (3j + i)t

1− e−µt

)2

+ t2
(
j

α
+ 2t

)(
j2 + 2(j + i)j +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2

)
=: B122(α, µ, t, j, i),

∣∣D3
222 log q(θ; i, j)

∣∣ ≤ (A.4)

≤
∣∣D3

222q(θ; i, j)
∣∣

q(θ; i, j)
+ |D2 log q(θ; i, j)|

(
(D2 log q(θ; i, j))2 + 3

∣∣D2
22 log q(θ; i, j)

∣∣)
< A

1
pij(t;θ)

∣∣∣∣ ∂3pij(t;θ)∂µ3

∣∣∣∣ + 4

(
αt2 + (3j + i)t

1− e−µt

)3

+ 3t2
(
αt2 + (3j + i)t

1− e−µt

)
×

×

(
j2 + 2(j + i)j +

(
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

)
j + α2t2 + αt(µ2t2 + 2)

+(j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2

)
=: B222(α, µ, t, j, i),

where
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∣∣D3
222q(θ; i, j)

∣∣
q(θ; i, j)

<

<

[
6

µ2
+

8t

µ
+

6t2

(1− e−µt)2

] [
j2 + 2(j + i)j +

(
4αt+ 1 + 2µ2t2(1 + αt)

)
j

+α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
]
t2

+

[
2t3(µt+ 1) + t2(1 + µt)2

(
αt2 +

(3j + i)t

1− e−µt

)]
j2

+t2
[
2µt(j + i) + 4αt+ 1 + 2µ2t2(1 + αt+ j + i)

] [
αt2 +

(3j + i)t

1− e−µt

]
j

+2t3
[
(j + i)(1 + 3µt) + iµt(1 + µt) + (1 + µt)2 + α

(
1 + (µt)2 + µ2t3

)]
j

+t2
[
(j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2 + α2 + αt(µ2t2 + 2)

] [
αt2 +

(3j + i)t

1− e−µt

]
+t3

(
2(µt+ (αt+ αt(µt)2))(j + i) + 2µti(µt+ αt+ 1) + j(2 + µt)µt

+2
α(1 + αt)

µ2t
+ αµt2

(
3 + 4αt+ 2µt+ 3(µt)2

))
=: A

1
pij(t;θ)

∣∣∣∣ ∂3pij(t;θ)∂µ3

∣∣∣∣.

∞∑
j=0

D2
11q(θ0; i, j) =

ρ2

α2

 ∞∑
j=0

pi(j−2)(t; θ)− 2
∞∑
j=0

pi(j−1)(t; θ) +
∞∑
j=0

pij(t; θ)

 = 0 (A.5)
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∞∑
j=0

D2
12q(θ0; i, j) =

ρ(τ − µt)
(1− e−µt)αµ

 ∞∑
j=0

pij(t; θ)−
∞∑
j=0

pi(j−1)(t; θ)

 (A.6)

+
ρ2(τ − µt)

(1− e−µt)αµ

 ∞∑
j=0

pi(j−1)(t; θ)−
∞∑
j=0

pi(j−2)(t; θ)


+

ρ2τ

(1− e−µt)αµ

 ∞∑
j=0

pi(j−1)(t; θ)−
∞∑
j=0

pij(t; θ)


− ρµti e−µt

(1− e−µt)αµ

 ∞∑
j=0

pij(t; θ)−
∞∑
j=0

pi(j−1)(t; θ)


+

ρµt

(1− e−µt)αµ

∞∑
j=0

pij(t; θ)

+
ρµt

(1− e−µt)αµ

( ∞∑
j=0

jpij(t; θ)︸ ︷︷ ︸
=E[N(h+t)|N(h)=i]

−
∞∑
j=0

jpi(j−1)(t; θ)︸ ︷︷ ︸
=1+E[N(h+t)|N(h)=i]

)
= 0,

α2

ρ2

∞∑
j=0

D2
22q(θ0; i, j) = (τ − µt)2

∞∑
j=0

(
ρpi(j−1)(t; θ) + ρ2pi(j−2)(t; θ)

)
(A.7)

+ 2µt (τ − µt) ρ
(
E[N(h+ t)|N(h) = i] + 1− i e−µt

)︸ ︷︷ ︸
(2.3)
= ρ(i e−µt +ρ+1−i e−µt)=ρ(ρ+1)

+ ρ
(
−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

)
+ ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt−2τ)

+ µ2t2 E
[
N(h+ t)2 − 2x e−µtN(h+ t) + i2 e−2µt |N(h) = i

]︸ ︷︷ ︸
(2.3)
= i(i−1) e−2µt +(1+2ρ)i e−µt +ρ2+ρ−2x e−µt(i e−µt +ρ)+i2 e−2µt

=(1−e−µt)i e−µt +ρ(ρ+1)

+ − 2ρµtτ
(
E[N(h+ t)|N(h) = i]− i e−µt

)︸ ︷︷ ︸
(2.3)
= i e−µt +ρ−i e−µt=ρ

+ µ2t2 e−µt
(
E[N(h+ t)|N(h) = i]− i

)︸ ︷︷ ︸
(2.3)
= i e−µt +ρ−i=ρ−i(1−e−µt)

= ρ
(
1− e−µt−µt e−µt +2µt

(
ρ+ e−µt

)
− τ
) (

1− e−µt−µt e−µt−τ
)

= ρ
(
τ + 2µt

(
ρ+ e−µt

)
− τ
)

(τ − τ) = 0.
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