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*) A nonlinear evolution problem arising in the physics of ionized gases 

by 

D. Hilhorst 

ABSTRACT 

We consider a Coulomb gas in a special experimental situation: the 

pre-breakdown gas discharge between two electrodes •. The equation for the 

negative charge density can be formulated as a nonlinear parabolic equation 

degenerate at the origin. We prove the existence and uniqueness of the solu­

tion as well as the asymptotic stability of its unique steady state. Also 

some results are given about the rate of convergence. 

KEY WORDS & PHRASES: nonlinear parabolic equation degenerate at the origin 

in one space dimension; pre-breakdown discharge in an 

ionized gas between two electrodes 

*) This report will be submitted for publication elsewhere. 
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1. INTRODUCTION 

In this paper we study the nonlinear evolution problem, 

{ 
Ut = EXUXX + (g(x)-u)u on D = ( 0, 00) X (0,T) 

X 

p u(o,t) = 0 for t E [0,T] 

u(x,0) = 1/J (x) for X E (0 ,00) • 

where£ is a positive constant, g is a given function which satisfies the 

hypothesis H: g E c2 ([0, 00)); g(0) = 0; g' (x) > 0 and g"(x) < 0 for all g 
x ~ 0 and the initial function 1/J satisfies the hypothesis Hl/J: 

(i) 1/J is continuous, with pie~ewise continuous derivative on [0, 00); 

(ii) 1/J(0) = 0 and 1/)(00) =KE (0,g(00)); 

(iii) there exists a constant Ml/J ~ g' (0) such that O ~ 1/J' (x) ~ Ml/J 

at all points x where 1/J' is defined. 

In section 2, we briefly describe how the problem arises in physics 

and give the derivation of the equations. 

In section 3, we present maximum principles for certain linear and non­

linear problems related to P; the uniqueness of the solution of P follows 

directly from those principles. 

In section 4, we prove that P has a classical solution which satisfies 

furthermore the condition 

(*) u(00 ,t) = K fort E [0,T], T < 00. 

The methods used here are inspired by those 0£ VANDUYN [7],[8] and GILDING 

& PELETIER [13]. We also consider the limit case£~ 0 and prove that u tends 

to the generalized solution of the corresponding hyperbolic problem. 

We then investigate the behaviour of u as t ➔ 00 and prove that it con­

verges towards the unique solution¢ of the problem P0 defined as follows 

£ X ¢" + (g(X)-¢)¢ 1 = Q 

¢(0) = 0 ¢(00) = A =: 
0 

min(max(g(00)-e,0),K) 
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Qualitative properties of 0 have been extensively studied by DIEKMANN, 

HILHORST&PELETIER [6]. Here we analyse its stability. In section 5, follow­

ing a method of ARONSON & WEINBERGER [2] based on the knowledge about lower 

and upper solutions for the steady state problem P0 , we prove that 0 is 

asymptotically stable. 

In section 6 we investigate the rate of convergence of u towards its 

steady state. The function 0 turns out to be exponentially stable when the 

function g grows fast enough to infinity as x ➔ 00 ;.the proof, based on 

constructing upper and lower solutions for the function u- 0, follows the 

same lines as that of FIFE & PELETIER [10]. We also consider the case when 

g increases less fast and show that provided that€< g(00) - Kand that 0 

converges algebraically fast to K as x ➔ 00 , the function u- 0 decays alge­

braically fast; this is done by obtaining first that property for a weighted 

integral of u- 0 according to a method of IL'IN & OLEINIK [14] and VANDUYN 

& PELETIER [9]. Finally we consider the corresponding hyperbolic problem and 

obtain a similar result of algebraic convergence. 

ACKNOWLEDGEMENT. The author wishes to express her thanks to Professor L.A. 

Peletier whose advice has been invaluable for the completion of this work. 

It is a pleasure to acknowledge discussions with o. Diekmann and conversa­

tions with P. Wilders and A.Y. Le Roux concerning the limit€+ 0. 

2. PHYSICAL DERIVATION OF THE EQUATIONS 

The physical context of the present problem has been described in some 

detail by DIEKMANN, HILHORST & PELETIER [6]. Here we shall summarize it 

again and explain how one can obtain the time evolution problem P. 

One considers an ionized gas between two electrodes in which the ions 

and electrons are present with densities n.r±) and n (£.,t) respectively, 
➔ i e ➔ 

where r = (x 1 ,x2 ,x3). The ions are heavy and slow and the density ni(r) may 

therefore be regarded as fixed. The electrons are highly mobile. The problem 
➔ ➔ 

is then to find n (r,t) for given n.(r) and in particular to find out whether 
e i 

given an initial electron distribution the electrons stabilize and if so to 

evaluate the time needed for such a stabilization. 
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A special situation of practical interest is a so-called pre-breakdown 

discharge which spreads out in filamentary form (cf. MARODE [17] and MARODE, 

BASTIEN & BF.JG<ER [18]). In this situation there is cylindrical symmetry 
2 2 ½ 

about the x 3-axis and the particle densities depend on r = (x1 + x 2 ) only. 

We thus have: effectively a two-dimensional Coulomb gas with circular symmetry. 

The startingr equations are 

(2. 1) 

(i) Coulomb's law for the electric field E, 

1 a 
r E 

r ar -c (n -n.) 
d e 1 

where Cd is a fixed constant; 

(ii) a constitutive equation for the electric current j, 

(2.2) j 

in which the first term represents Ohm's law and the second term is due to 

thermal diffusion, µ being the mobility, k Boltzmann's constant and T the 

temperature; and 

(iii) the continuity equation for the electron density, 

(2. 3) 
din 

e 1 cl . 
ot = r 3r rJ • 

If we set 

Ix 

u (x, t) = I n (r,t)r dr 
e 

0 

and 

Ix 

9 (x) = I n. (r) r dr, 
1 

0 

we obtain after redefining the constants the equation 

(2. 4) = Exu + (g(x)-u)u 
XX X 
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where E = 2k.T/(µCd) and the boundary condition 

(2.5) u(O,t) = 0. 

Furthermore one makes the hypothesis that the total charge is positive and 

fixed, that is 

oo, 

J. (n.(r) -n (r,t))rdr=N>O 
1. e 

0 

from which we deduce the boundary condition at infinity, 

(2.6) u(00 ,t) = K := g(00 ) - N. 

Clearly KE (O,g(oo)). 

Equations (2.4) and (2.5) together with the initial condition 

(2. 7) u(x,O) = 1/J(x) 

constitute the mathematical formulation of the problem which we propose to 

study in this paper. Furthermore the condition (2.6) will turn out te be 

satisfied at all finite times t and also, for low enough values of the small 

parameter E, at the time t = 00 • This latter property expresses the fact that 

all the electrons stay attached to the ions at low enough temperature; we 

shall also see that if the temperature rises above a critical value, then 

some of the electrons escape to infinity and if it rises even further above 

a second critical value, then all the electrons escape to infinity. 

3. MAXIMUM PRINCIPLES FOR SOME DEGENERATE PARABOLIC OPERATORS - UNIQUENESS 

THEOREM 

In this section we prove maximum principles for some linear and non­

linear operators which have a degeneracy at the origin; these principles 

hold for functions u E c2 ' 1 (D) n C(D) where c2 ' 1 (D) is the set of continuous 

functions on D with two continuous x-derivatives and one continuous 
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t-derivative. It will follow easily from those maximum principles that P can 

h 1 t . E c 2 ' 1 (D) nc(D) such that u ' b d d. ave at most one sou ion u is oun e in D. 
X 

We begin by defining a linear operator Las follows 

(3.1) Lu = e:xu + b (x ~-:t> u + c (x, t) u - ut 
XX X 

where the functions band care continuous on D and such that the quantities 

b/(l+x) and care bounded on D. First we consider the bounded domain DR:= 

(O,R) x (O,T), where Risa positive constant. In the same way as for a 

uniformly parabolic operator one can prove the following maximum principle 

which holds in fact for a much wider class of degenerate parabolic operators 

(see for example IPPOLITO [15] or COSNER [4]) 

THEOREM 3.1. Suppose c ~ o. Let u E c 2 ' 1 (DR) n C(DR) satisfy Lu~ o on 

(O,R) x (O,T]. Then if u has a positive maximum in DR, that maximum is 

attained on ((O,R) X {O}) u ({O,R} X [O,T]). 

Next following a method due to ARONSON & WEINBERGER [2] we derive a 

comparison theorem for a class of nonlinear evolution problems. 

THEOREM 3.2. Let u and v E c 2 ' 1 (DR) n C(DR) and suppose that either ux or 

vx is bounded on DR. Let u and v satisfy 

Lv-vv ~ Lu-uu 
X X 

on (O,R) X (O,T] 

and let 

0 ~ V ~ u ~ K on (O,R) X {o} and {O,R} X [0,T]. 

Then v ~ u in (O,R) X (O,T]. 

PROOF. Let 

(v-u)e 
-a.t 

w = 

where 
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a= · .max (c(x,t) - u (x,t)) 
- X (x,t) E D 

(in the case where u is bounded). Then w satisfies 
X 

e:xw + (b (x,t) - v)w + (c (x,t) - u - a)w- w ~ O 
XX X X t 

and 

w ~ 0 on (O,R) x {o} and {O,R} x [O,T]. 

Thus we deduce from Theorem 3.1 that 

W ~ 0 in (O,R) x (O,T] 

\•rhich completes the proof of theorem 3. 2. D 

Now let us consider the unbounded domain D. To begin with we present 

a Phragmen-Lindelof principle which is a special case of a theorem due to 

COSNER [4]. 

THEOREM 3.3. Suppose that b/(l+x) and care continuous and bounded in D. 

Let u E c2 ' 1 (D) n C(D) satisfy Lu~ 0 on (0, 00) x (O,T] and the growth 

condition 

(3.2) e -BR [ lim inf max u(R,t)J ~ o 
R + oo O~t~T 

for some positive constant B. If u ~ 0 fort= 0 and on {O} x [O,T], then 

u ~ 0 in (0, 00 ) x (O,T]. 

Making use of Theorem 3.3 one can prove a comparison theorem on the 

unbounded domain D. 

THEOREM 3.4. Let u and v E c2 ' 1 (D) n C(D) be such that either ux and v or 

u and v are bounded on D and that 
X 

B1x 
lu(x,t) I, lv(x,t) I ~ C e 



for some positive constants C and B1 and uniformly in t E [O,T]. Suppose 

that 

LV - vv :2:: Lu - uu 
X X 

on (O,w) x (O,T] 

and that 

on (0, 00 ) x {O} and {O} x [O,T]. 

Then v ~ u in (0, 00 ) x (O,T]. 

Finally let us come to the question of uniqueness of the solution of 

problem P. 

DEFINITION. We shall say that u is a classical solution of Problem P if it 

is such that (i) u E c2 ' 1 (D) n C(D), (ii) u and u are bounded in D, 
X 
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(iii) u satisfies the equation in D,. (iv) u satisfies the initial and bound-

ary conditions. 

THEOREM 3.5. Problem P can have at most one solution. 

PROOF. Apply Theorem 3.4 twice to deduce that if u and v are two such solu­

tions then their difference w = u-v satisfies w :2:: 0 and w ~ 0 and thus 

w = o. □ 

4. EXISTENCE AND REGULARITY OF THE SOLUTION 

In order to be able to prove the existence of a solution of the non­

linear degenerate parabolic problem P, we consider certain related nonlinear 

uniformly parabolic problems on bounded domains and observe that they have a 

unique solution; we then deduce that P has a generalized solution, in a 

certain sense. It finally turns out that this solution is in fact a classi­

cal solution of P and thus the unique solution of P and that it also satis­

fies condition (*). Finally we consider its limiting behaviour as E + 0. 

4.1. Existence 

Let us first introduce some notation. Let D := (0,n) x (0,T). We de­
n 

note by c2+a([0,n]) the space of functions v which are twice differentiable 

and such that v" is Holder continuous on [0,n] with exponent a. We also use 
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the. spaces C0 {Dn), c2+a {Dn) and c2+0 {Dn), defined in FRIEDMAN [11] p. 62 

and 63. 

Consider the problem 

{ 
ut = e{x+l/n)u + {g{x)-u)u in D xx X 

pn u{0,t) = 0 u(n,t) = 

u{x,0) = 1/J {x) n 

with n ~ q~ 1 {K) and where 1/J is such that 
n 

00 

(i) 1/Jn EC ([0, 00]), 

{ii) 1/Jn satisfies Hip, 

K t E 

X E 

{iii) 1/J" (0) = 0 n and 1/Jn(x) = K . for x E [n-1,oo). 

n 

[O,T] 

{O,n). 

In what follows we shall denote by H properties {i) - (iii). The following 
n 

theorem holds: 

THEOREM 4.1. There exists a unique solution un E c2+0 (Dn) of Pn for any 

a E (0,1); furthermore u satisfies the inequalities 
n 

(4. 1) 0 $ u {x,t) $ min (Mip X, K) 
n n 

(4. 2) 0 $ u {x,t) $ Mipn nx 

for all {x,t) E D . n 

PROOF. The existence and uniqueness of u E c2 (D) is a consequence of 
v n +a n 

Theorem 5.2 of LADYZENSKAJA {[16] p. 564-565). The inequalities in {4.1) 

can be deduced by means of a comparison theorem analogous to theorem 3.2. 

From the linear theory {FRIEDMAN [11] p. 72) we deduce that the function 

w := unx E c2+0 (Dn); thus w E c2 ' 1 (Dn) n C{Dn). Furthermore w satisfies 

(4. 3) 

{wt~ c(x+1/n)wxx + (g(x)-un+c)wx + (g'(x)-w)w 

0 $ w(0,t) $ Mip 
n 

0 $ w{n,t) $ Mip 

w(x,0) = 1/J' {x). 
n 

n 



The-bounds on the function w(n,t) follow from the fact that the function 

max(O,M¢ (x-n)+K) is a lower solution of the boundary value problem 
n 

E(x+1/n)¢" + (g(x)-¢)¢' = 0 

¢(0) = 0 ¢(n) = K 

and consequently a lower bound for u. Clearly the set 
n 

{w E C([O,n]) such that Os w(x) s MW} 
n 

is invariant with respect to the problem (4.3) and thus the inequalities 

(4.2) are satisfied. 

9 

Next we deduce from theorem 4.1 the existence of solution of P. We 

begin by approximating the initial function¢ by a sequence of smooth func­

tions {¢ }. 
n 

LEMMA 4.2. Let the function 1/J satisfy Hi/!. Then there exists a sequence {1/Jn} 

which satisfies the properties H given at the beginning of this section 
n 

with Mwn = MW for all n, such that 1/Jn ➔ 1jJ as n ➔ 00 , uniformly on -E0, 00). 

PROOF. Lat n0 ~ g- 1 (K) be such that for all n ~ n0 the point x 1n defined by 

M¢(x 1n-1/n) = ¢(x1n) is such that 1/n < x 1n s n-2 and that the point x2n 

defined by x 2n = n - 2 + (K-i/J(n-2))/Mi/J satisfies n-2 < x2n < n-1. Also 

define 

0 -oo < X s 1/n 

Mi/! (x-1/n) 1/n < X s xln 

* 1/Jn (x) = 1jJ (x) xln < X s n-2 

Mi/J(x-n+2) + ijJ(n-2) n-2 < X s x2n 

K x2n < X < +oo 

Note that for all x 

* 11/Jn (x) - ijJ(x) Is max(Mi/J/n, K - ijJ(n-2)). 
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Next introduce the function 

p(x) = { 0 

C exp ( 1/ ( Ix 1
2 - 1) ) 

if Ix! ;::o: 1 

if Ix I < 1 

where the com,tant C is such that J JR pdx = 1, and let 

po(x) = p(x/o)/o. 

Finally define 

ijJ (x) = 
n I 

JR 

* p O (x-y) ijJ (y) dy 
n n 

x c [O,n] 

with o = min(l/n,x1 -1/n,n-2-x1 ,x2 -n+2,n-1-x2 )/10. We now show that ijJ 
n n n n n n 

00 

has the desired properties. Firstly ijJ EC ([O,n]). The uniform convergence 
n 

* of {ijJ} to ijJ follows from the continuity of ijJ , uniformly inn and in x and 
n n 

* the uniform convergence of 1/Jn to ijJ as n ➔ 00 • Finally properties (ii) and 

(iii) of H can be deduced for 1µ from the fact that ijJ also satisfies them. D 
n n 

Next we prove the following theorem 

THEOREM 4. 3. P has a unique cla·ssical solution. Furthermore this solution 

also satisfies condition (*): 

lim u(x,t) = K 
X -+ oo 

for each t E (O,T]. 

PROOF. We rewrite the parabolic equation of Problem P as 
n 

( 4. 4) 

where 

= E(x+l/n)u + c(x,t)u, 
XX X 

c (x, t) = g(x) - u (x,t). 
n 

From Theorem 4.1 we know that for all (x' ,t), (x",t) E Dn and for all n ;::o: n.0 

(4.5) lu (x' ,t) - u (x" ,t) I s M,1, lx'-x" i. 
n n "' 
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Now.fix I 2 n0 ; (4.4) and (4.5) enable us to apply a theorem of GILDING [12] 

about the Holder continuity of solutions of parabolic equations and we 

obtain 
1 

I u (x t' ) - u (x, t 11 ) I s:; C It' -t 11 1-z 
n ' n 

for all n 2 I and for all (x,t'),(x,t") EDI, with lt'-t"I s:; 1. Here the 
00 

constant C depends on I but not on n. The set {un(x,t)}n=I is bounded and 

equicontinuous in DI and thus there exists a continuous function u1 (x,t) and 

a convergent subsequence {un (x,t)} with nk 2 I such that u (x,t) ➔ u1 (x,t) 
- k nk 

as nk ➔ 00 , uniformly on DI. Then, by a diagonal process, it follows that 

there exists a function u(x,t) defined on D and a convergent subsequence, 

denoted by {u.(x,t)} such that u.(x,t) ➔ u(x,t) as j ➔ 00 , pointwise on D. 
J J 

Since this convergence is uniform on any bounded subset of D, the limit 

function u is continuous on D. 

It remains to show that u is a solution of P; to that purpose we shall 

proceed in two steps: firstly we show that u is a generalized solution of P 

in a certain sense and then we conclude that it is in fact a classical solu­

tion. We shall say that u is a generalized solution of P if it has the fol­

lowing properties: 

(4. 6) 

(i) u is continuous and uniformly bounded in D; 

(ii) u(O,t) = 0 for all t E [O,T]; 

(iii) u has a bounded generalized derivative with respect toxin D; 

(iv) u satisfies the identity 

00 

j'f [uqi - s(xu -u)qi - (g-u/2)uqi - ug'qi]dxdt + f ij;(x)qi(x,0)dx=0 
t X X X 

D 0 

for all qi E c1 (D) which vanish for x = 0, large x and t = T. 

Let us check that u satisfies those properties. 

(i) We already know that u is continuous on D and furthermore, since 

u(x,t) = lim u.(x,t), we have that Os:; us:; K. 
j-+<>> J 

(ii) 'l:'his property follows from a similar boundary condition in P. n 
(iii) Let qi be an admissible test function and let L 2 n0 be such 

that supp qi c D. Since Ju. I is uniformly bounded with respect to j 2 L 
L JX 

for all (x,t) ED, it follows that there exists a subsequence {(uj ) } and 
L k X 
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a bounded function p E L2 (DL) such that 

(u. ) _,._ p 
Jk X 

as jk-+ oo. 

1-
Now let 1'; E Co(DL). Then 

( 4. 7) ( ( UJ, ) t 1';) -+ (pt 1';) 
k X 

➔ 00 

where (.,.) denotes the inner product in L2 (DL). But since u. -+ u as 
Jk 

jk-+ 00 , uniformly on DL, we have 

(4.8) 

Hence combining (4.7) and (4.8) we find that pis the generalized derivative 

of u. 

(iv) 

(4. 9) 

Since u, is a classical solution of P it follows that 
Jk n 

ff [uJ. <Pt-E((x+l/jk)(u.) -UJ· )(jJ - (g-uJ. /2)uJ. <P -uJ. g'(jJ]dxdt 
k Jk X k X k k X k 

D 
L 

L 

+ f 
0 

~j (x)(jJ(x,O)dx = 0 
k 

2 , 2 
The sequences {ujJ and {ujk} converge to u and u, respectively, strongly 

in L2 (DL) as jk-+ 00 • Furthermore since (ujk)X is uniformly bounded we have 

Thus letting jk-+ 00 we obtain (4.6). Because (jJ has been chosen arbitrarily, 

we may conclude that u is indeed a generalized solution of P. 

It remains to show that u is a classical solution of P. One can do it 

by using a classical bootstrap argument (see for example GILDING & PELETIER 

[13]) to show that for whatever n,L > 0 there exists a(n,L) E (0,1) such 

that 

(4.10) UEC2+a ((n,L) x (n,T)) 



where a and llull-- may be estimated independently of T. In particular 
c2+a. 

2 1 
u E C ' (D) n C (D) • 
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Since furthermore u and u are uniformly bounded, u is a classical solution 
X 

of Problem P and by theorem 3.5 it is the unique solution of P. 

Finally let us analyze the behaviour of u for large x; since we have 

0:;:; u:;:; Kand u ::::: 0, u( 00 ,t) = lim u(x,t) is well defined for all t E [O,T] 
X x-+co 

and such that 0:;:; u( 00 ,t) :;:; K. Next we show that u( 00 ,t) = K by constructing 

a time dependent lower solution for P. Consider the problem 

{ 
Ut = EXUXX + 

(4.11) u (xo, t) = 0 

l u(x,0) = ijJ (x) 

Since u ::::: 0 we have that 
X 

(K-u)u 
X 

. XO ::::: 
-1 g (K) 

::::: EXU + (K-u)u -u 
XX X t 

-1 
for all x::::: g (K). 

Thus a lower solution u of (4.11) with u ::::: 0 is also a lower solution of 
X 

Pon [x0 , 00 ) x [O,T]. We search such functions 1-\ which satisfy furthermore 

~(oo,t) = K - k for all t E [O,T] and with k E (0,K). 

':Tri ting 

-v=K-u 

-this comes down to finding an upper solution vk of 

{
Vt= EXV + VV 

XX X 

V ( 00 , t) = 0 

Next we look for such a function vk, also requiring that 
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Setting 

n = x/ (t+l) 

one can easily derive that fk should be an upper solution for the boundary 

value problem 

~ { Enf" + (f+n)f' = o 

f(oo) = 0. 

-1 
Let x0 > max(E,g (K)) and take 

One can check that indeed fk is an upper solution for problem~ and conse­

quently that ~(x,t) = K - fk(x/(t+l)) is a lower solution for Problem P 

on the sector {t ~ O, x ~ x0 (t+1)} provided that x0 is large enough. Since 

k can be chosen arbitrarily in (0,K) it follows that u(00 ,t) = K for all 

t < 00. □ 

4.2. The limiting behaviour as E + O. 

In this section we study the limiting behaviour of the solution u of 

Pas E + O. To begin with we consider the following hyperbolic problem 

ut = (g(x)-u)ux 

u(x,O) = lj,(x) 

in D 

for all XE (0, 00 ) 

and make some heuristic considerations about the solution u of Problem H; 

they are due to WILDERS [23]. One possible configuration of g and 1j, is 

drawn in Figure 1; the corresponding characteristics are represented in 

Figure 2. 
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y 

Fig. 1 

Fig. 2 

Their equations are 

dx 
-= 
dt 

-(g(x)-1/i (x(O))). 

Along thosei characteristics u is constant, i.e. u = iµ (x ( 0) ) . Also since 

iµ(O) = 0 it follows that the line x = 0 is the characteristic passing through 

the point (0,0) and consequently that u automatically satisfies a boundary 

condition of the form u(O,t) = 0. Next we deduce from the fact that iµ is 

nondecreasing that two characteristics do not intersect. Suppose that there 

exist two characteristics, issuing from the points x = a and x = b (a< b) 

* * on the initial line, intersecting each other at the point (x,t) = (x ,t). 

* Then if the~y would intersect transversally, we would have - (g (x ) -iµ (a)) > 

* -(g(x )-iµ(b)) and hence iµ(a) > iµ(b) which is impossible. Now if the charac-

* * teristics would be tangent to each other ,at the point (x ,t) we would have 

* * -(g(x )-iµ(a)) = -(g(x )-1/i(b)) and consequently iµ(a) = iµ(b); both character-
dx 

istics would then be described by the same differential equation dt = 
-(g(x)-iµ(a)I) which, by the standard uniqueness theorem for ordinary differ­

ential equations, implies a= b. Finally we conclude that since the initial 
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condition Wis continuous and nondecreasing, no shock wave can occur and 

u(•,t) is continuous at all times. 

In [19] OLEINIK proved existence and uniqueness of the generalized 

solution of Cauchy problems and boundary value problems related to Problem 

H; but since the boundary line x = 0 is a characteristic for H (which is 

reflected in the relation g(0)-u(0,0) = 0), Problem H does not satisfy all 

the assumptions made in [19]. This leads us to give here a proof of the 

existence of a solution of Problem H, by showing that the solution u of 

Problem P tends to a limit as£+ 0; the uniqueness is a consequence of [19]. 

Following lemmas 18 and 19 from [19] we say that u is a generalized solution 

of H if it satisfies 

(i) u is bounded and measurable in D, -
(ii) 

u(x1 ,t) - u(x2 ,t) 

x1-x2 

(iii) u satisfies the identity 

00 

(4.12) If [u cpt- (g-u/2)ucpx- ug'cp]dxdt + I W(x)cp(x,0)dx = 0 

D 0 

for all cp E: c 1 (D) which vanish for large X and t = T. 

Next we shall prove the tjleorem 

THEOREM 4.4. The solution u(x,t) of P tends uniformly on all compact sub­

domains of D to a limit u as£+ 0, where u is the unique generalized solu­

tion of H. The function u is furthermore continuous, nondecreasing in x at 

all times t E [O,T] and satisfies the boundary conditions u(0,t) = 0 and 

U( 00 ,t) = K. 

Before proving theorem 4.4 let us introduce a class of upper and lower 

solutions for Problem P which depend neither on£ nor on time. They will turn 

out to be very useful both to prove that u(00 ,t) =Kin theorem 4.4 and to 

study the asymptotic behaviour of u as t ➔ 00 in the next sections. Next we 

define 

and 
-v 

:= max(0,A(1-(x/x1) )) 
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where the constants AE [O,K], v > 0 and x 1 > 0 are chosen in the following 

manner: 

(a} if e:·~ g( 00}, we choose x 1 > 0 so that· 

then A> 0 so that 

A< g(x1} - E 

and finally v > 0 so that 

(4.13} 

(b) if E ~ g( 00), we set A= 0, which amounts to settings _ O. 

It is easily seen thats- satisfies the inequality 

for all x E [0, 00)\{x1}, EE (0,E). 

Thus if E < g( 00}, given any X <Ao= min(g( 00 ) - E,K), one can find xl and V 

satisfying (4.13) and such that s-(.,X,i1,v) $~-Applying the comparison 
- - - "" 

theorem 3.4 we deduce that s~(.,A,x1,v) $ u (and thus that AO$ u( 00 ,t) for 

all t $co). Similarly one can check that u $ s+. 

PROOF of Theorem 4.4. The uniqueness of the solution of Problem H can be 

proven along the same lines as in the proof of Theorem 1 and Lemma 21 of 

[19]. Next we show its existence. Fix I~ 1. Since u and u are bounded 
X 

uniformly in Ewe deduce from GILDING [12] that u is equicontinuous on DI; 

thus there exists a subsequence {uEn}:=I of u and a function uI E C(DI), 

such that uEn ➔ uI as En+ 0 uniformly in DI and such that for all A< K, 

one can find x 1 and v satisfying (4.13) and s-(.,A,x1 ,v} $ uI(.,t) $ s+(.). 

Then by a diagonal process, it follows that there exists a bounded continu­

ous function u and a converging subsequence denoted by {uE} such that 
k 

uEk ➔ u as Ek+ 0, pointwise on D and uniformly on all compact subsets of D. 

Since O $ (uEk)x $ M~, u is nondecreasing in the x-direction and satisfies 
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(ii); u£k(O) = 0 implies the same property for u. The boundary condition 

u(00 ,t) = K follows from the inequalities s-(.,A,x1,v) ~ u(.,t) ~ s+(.) for 

all A< K. 

It remains to show that u is a generalized solution of H. Let qi E c1 (D) 

vanish for large x and t = T and let L ~ 1 be such that qi vanishes in the 

neighbourhood of x =Land for x > L. Because the functions u£ are classical 
k 

solutions of P, we have 

L 

+ J 1/J(x)<jl(x,O)dx = 0 

0 

Now letting Ek+ O, we deduce that u satisfies (4.12); because qi has been 

chosen arbitrarily we conclude that u is indeed the generalized solution of 

Hand that {u} converges to u as£+ O. D 
£ 

5. ASYMPTOTIC STABILITY OF THE STEADY STATE 

Adapting a method due to ARONSON & WEINBERGER [2] we investigate the 

stability of the solution 0 of Problem P0 • To that purpose we consider the 

solution u of the corresponding evolution problem P; since its dependence 

on 1/J plays a central role in what follows, we denote this solution by 

u(x,t,1/J). We show that for all the functions 1/J satisfying the hypothesis Hi/J 

given in the introduction we have that 

u(x,t,1/J) ➔ 0(x) as t ➔ 00 • 

To begin with we prove two auxiliary lemmas. 

LEMMA 5.1. 
- - -(i) Let£< g(00 ) and A,x1,v satisfy (4.13). The function 

u(x,t,s-c.,X,x1,v)) is nondecreasing in time and such that 

(5. 1) lim u(x,t,s-(.,~,x1 ,v)) = <i>x(x) 
t➔oo 



where ~X-is the unique solution of 

{ 
e:x~" + (g(x)- ~)~' = 0 

(5. 2) 

~(O) = 0 ~(m) = A 

(ii) The function u(x,t,s+) is nonincreasing in time. Furthermore 

(5.3) lim u(x,t,s+) = 0. 
t-+<x> 
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PROOF. First note th.at it follows from the proofs in section 4 that Problem 

P with initial value s-(x,~ 1x1,v) has a unique classical solution 

u(x,t,s-(.,X,x1,v)) with u( 00 ,t) = X for all t ~ 00 • Applying repeatedly the­

orem 3.4 one can show that u(x,t,s-(.,X,x1,v)) is nondecreasing in time and 

that u (x, t, s+) is nonincreasing in time; it also follows from theorem 3 •. 4 

that 

and that 

u(x,t,s+) ~ 0(x). 

Now for each x, u(x,t,s-(.,X,x1,v)) is nondecreasing int and bounded from 

above. Therefore it has a li~it T-(x) as t + 00 and one can use standard 

arguments (see for example ARONSON & WEINBERGER [2]) to show that 

T- E c2+0 ((O, 00)) n C([O, 00)) and satisfies the differential equation in (5.2) 

and the boundary conditions T-(O) = 0 and T( 00 ) = X. Finally since ~Xis the 

unique solution of Problem (5.2) we have that T- =~~-Similarly one can 

show that u(x,t,s+) converges to a function T+ E c2+0 ((O, 00)) n C([O, 00)) 

which satisfies the steady state equation, the boundary condition T+(o) = 0 

and the condition 0 (00 ) ~ T+(m) ~ K. The fact that T+ (00 ) = 0 (00 ) follows from 

[6, Lemma 5.1]. Consequently T+ = 0. 

LEMMA 5.2. ~Xis an increasing and continuous function of X. More precisely 

if X1 ~ ~2 we have 
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PROOF. Let m = cf,A - 4>x. It satisfies the differential equation 
1 2 

e:xm" + (g-4>- )m' - 4>~ m = 0 
Al A2 

-and the boundary conditions m(O) = 0 and m( 00 ) = Al - A2 ~ O. Suppose that m 

attains a negative minimum at a certain point~ E (O,oo); then m(~) < O, 
I 

m' (~) = 0 and m" (~) ~ 0 which is in contradiction with e:~m" (~) = ct>x2 (~)m(~). 

Thus m ~ 0. In the same way one can show that m cannot attain a positive 

maximum which implies m ~ X1 - X2 • 

Finally we are in a position to prove the following theorem 

THEOREM 5.3. Let 0(x) be the solution of Problem P0 • Suppose~ satisfies the 

hypothesis H~, then for each x ~ 0 

lim u(x,t,~) = 0(x). 
t-+<x> 

I.f e: ~ g( 00 ) - K, the convergence is uniform on [0, 00); if e: > g( 00 ) - K, it 

is uniform on all compact intervals of [0, 00). 

PROOF. Since the functions u and u are bounded uniformly int, we apply the 
X 

Arzela-Ascoli theorem and a diagonal process to deduce that there exists a 

function TE C([0, 00)) and a sequence {u(t )} with u(t) = u(.,t ,~) such 
n n n 

that u(t) + T as t + 00 , uniformly on all compact subsets of [0, 00). Let 
n n 

e: < g( 00); then for each A< AO= min(g(00)-e:,K) one can find v and x1 satis-

fying (4.13) and such that s-(.,X,x1 ,v) ~~-Applying Theorem 3.4 we obtain 

(5.4) u(x,t,s-c.,X,x1,v)) ~ u(x,t,~) ~ u(x,t,s+). 

Letting t + 00 in (5.4) and applying lemma 5.1 we obtain 

4>-A ~ T ~ 0 for all A < AO. 

Next we deduce from lemma 5.2 that 

0- T ~ A - A 
0 

for all A < AO 
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and thus that,= 0. If£~ g(00 ) then the inequalities 

imply 

0 :S: • :S: 0 = 0. 

Thus also in this case we have that,= 0. Finally we conclude that as 

t + 00 , u(.,t,w) converges to 0, uniformly on all compact intervals of [0, 00). 

This convergence result can be made slightly stronger in the case that 

£ :s; g(00 ) - K: since then 0(00)= Kand since u is nondecreasing in x one can 

apply Lemma 2.4 of DIEKMANN [5] to deduce that the convergence is uniform 

on [O , 00 ) • D 

6. RA,TE OF CONVERGENCE OF THE SOLUTION TOWARDS THE STEADY STATE 

In this section we analyse the rate of convergence of the solution u 

of P towards its steady state 0. The results which we are able to derive 

depend strongly on the behaviour of gas x + 00 • If g tends to infinity fast 

enough, we can prove exponential convergence with a certain weighted norm. 

In the more general case when£< g(00 ) - K we find that the solution con­

verges algebraically fast towards its steady state on all finite x-intervals. 

No results are available in the case£~ g(00 ) - K, which coincides with the 

physical situation when some (or all the) electrons escape to infinity. 

We write 

u(x,t,w) = 0(x) + v(x,t). 

Then v satisfies the problem 

{ 
V = £XV + ( g-0) V - 0 1 V - vv 

t xx X X 

(6. 1) v(O~t) = 0 

v(x,O) = w (x) - 0 (x) • 
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Now let us make the change of function 

X 

v(x,t) = exp(- f 
0 

Problem (6.1) becomes 

g (1:;) - !2l (1:;) dz:;) v·(x,t). 
2e: z:; 

(6. 2) 

where 

and 

e:xv - q(x)v + h(x,v,v) 
XX · X 

v(O,t) = 0 

X 

~ ( 0) \(_ f g ( z:; )2-e: ! ( z:;) ) v x, = exp ~-------.,.------- dz:; (1/J (x) - 121 (x)} 

0 

q(x) (g(x) - 121(x}) 2 = _..,. ___ .;._ ______ .;....;.._ 
4e:x 

X 

g' (x} + 121' (x} 
+ 2 

g (x) - 121 (x} 
2x 

h(x,v,v) = -exp(- f g(z:;}-!2l(z:;) dr\ v/v _g(x)-0(x) ~) 
X 2 e: 1:; "') \ X 2 E:X V 1 • 

0 

In particular, there exists M ·> 0 such that 

lh(x,v,v ) I ::; M(llvll 2 + llv II 2) 
X X 

0 < X < 00 

where the notation II ·II indicates the sup-norm. 

In what follows we shall distinguish two cases: (i) the case when 

li~nf q(x) = o > 0: this is so if g(x) ~ c0 Ix for all x ~ x2 for some 

positive constants c0 and x2 ; (ii) the case when lim inf q(x) = O. 

6.1. Case when g tends to infinity at least at fast as Ix for x + 00 

The theorem we give next is very similar in its form and in its proof 

to a theorem of FIFE & PELETIER [10]. 

THEOREM 6.1. Suppose that there exist constants x2 ,c0 > 0 such that 

(6. 3) for all x ~ x 2 , 
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th{,m there exist positive constants o,µ,C such that if 

!exp( I g(r;)-!ll(r;) 
di;) (ljJ - !21) II ~ 0 2£1; 

0 

then 

. 
llexp( I 9: (I;) - !2l (I;) 

dr;) (u(. ,t,ljJ)-!21) II~ Ce -µt 
2 e: r; t 2= 0 

0 

where the notation 11 · 11 indicates the sup-norm. 

PROOF. To begin with we note that with the hypothesis of Theorem 6.1 we have 

that v( 00 ,t) = 0 (since£< g(00 )-K) or equivalently 

X 

lim exp (- I g:(r;;:r;0,(r;) dr;)·v(x,t) = o. 
x~ 

0 

Next let us consider the boundary value problem 

(6. 4) 

where 

£xw" - (q (x) +11.) w = - 8 (!ll' (R) +11.) min (0 (x) , (x/R) -vo ~ (R)) 

w(O) = 0 

!2l (x) 

X 

= exp( I g(l;:) - !ll(r;) dr;) !ll(x). 
2£1; 

0 

The right hand side of the differential equation in (6.4) has been chosen in 

a special manner so that one can exhibit upper and lower solutions for a 

problem closely related to (6.4); more precisely we shall prove in the ap­

pendix that this problem has at least one solution w E c2 ([0, 00)) with w,w' 

and w" bounded such that 

0 < w(x) ~ min(~(x),(x/R)-Vo icR)) 

for all constants v0 > 1 provided that the constants 8 E (0,1), R > 0 and 

A < 0 satisfy certain conditions. We adjust 0 such that llwll + llw' II ~ 1. 

We are now in a position to prove theorem 6.1. Let 

-µt z(x,t) = 8(w(x) + y)e , 
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in which S, y andµ are positive constants still to be determined, and let 

Mz = £xz - q(x)z+ h(x,z,z ) - z . 
XX X t 

(i) The function q is positive for x near zero and, because of con­

dition (6.3), also for large x; thus there exists q 0 > 0 and z; 1 ,z;2 E (0, 00 ) 

such that·q0 == min{q(x): x E [o,z; 1J u [z,; 2 , 00)} is positive; therefore 

-µt - 2 Mz .;; Se ( (:\+µ)w+ y(-q0+µ) + MS(1+y) ) 

Choose 

assume that y is known (we shall specify it later) and choose 

s 
r<cio-µ) 

2 • 
M (l+y) 

Then Mz s O for all x E [O,s1l u [s2, 00 ) and t 2 0. 

(ii) Let sl S x S z; 2; since w(x) > 0 on (0, 00 ) and since w is continu­

ous we have 

m - min{w(x) : s1 s·x s z; 2} > O. 

Therefore 

Mz s Se-µt((A+µ)m+ y(-q+ µ) +M6(1+y) 2) 

where q is an arbitrary constant such that 

q < min{q (x) 

Hence 

Therefore if we choose 

y = 

we have 

Mz so 

A+µ 
-q+q 

0 

X E [0, 00)}. 

m 

for sl S XS s 2 and t 2 0. 
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Thu~ for the above choice of 8, y andµ the function z is an upper solution 

of the equation Mv = 0. Let 

sup v(x,O) :::; o 
[O,oo) 

where o =By.Then 

v (x,O) :::; z (x,O) 

and hence by theorem 3.4 

v(x,t):::; z(x,t) 

for all x E [O,oo) 

for all XE [0, 00), t ~ o. 

In a similar manner one can show that if 

inf v (x, o> ~ -o 
then 

[O,oo) 

v(x, t) ~ -z(x,t) for all XE [0, 00), t ~ o. 
Hence if 

llv(.,O)II :::; 0 

then 

II v (. ,t) II :::; Ce 
-µt 

where we define 

C = 8(1+y) = (1+1/y)o. 0 

6.2. Algebraic decay rate in the case that£< g( 00 ) - K 

Provided that£< g( 00 ) - Kand that the initial function~ converges 

algebraically fast to K as x + 00 , we prove that the solution u of P con­

verges algebraically fast to the steady state solution 0 for all finite 

values of x. To that purpose we show that a certain weighted space integral 

of the function lu-01P, for some integer p ~ 1, decays algebraically in 

time; a similar proof, with exponent p = 1, has been given for example by 

van DUYN & PELETIER [9]. 
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THEOREM 6.2. Provided that e: < g(cx,) - Kand that 1/1;;:: s-(.,K,x1,v> for some 

x1,v satisfying (4.13) with A= K, we have that 
CX) CX) 

(6.5) J (g' (x) + (p-1) 0' (x)) lu(x,t,ij,) - 0 (x) Ip dx ~ [ J ( (s+-0)p 

0 0 

+ (0- s-)P)dx] /t 

for all t > 0 and p = [ 1/ v] + 1. 

PROOF. Since lv(x,t) Ip~ (s+(x) - s-(x,K,x1,v))P, it follows that 

J; (v(x,t))pdx is defined for all t;;:: 0. If p;;:: 2 let us multiply the differ­

ential equation in (6.1) by ~-land integrate with respect to x; we obtain 
CX) 

d~ J 
0 

vP 
-dx 
p 

CX) 

+[gv:J:-J 
p r p ~+1 ]CX) 

(g' + 0' (p-1)) ~ dx- 0 ~ + -- • 
P L P p+l 0 

0 

Since v tends to zero at least as fast as x-v as x + a,, the equation above 

can be written in the simpler form 

00 CX) 

(6.6) 
d~ J ~ dx = f e:xv ~-l]CX) - e:(p-1) J 

P L x- 0 
~-2(v )2dx 

X 

0 
CX) 

- f 
0 

0 

vP 
(g' + 0 I (p-1) )- dx. 

p 

Now let us define the functions v+ and v- as the solutions of (6.1) with 

initial values v+(x,O) = s+(x)- 0(x) and v-(x,O) = s-(x,K,x1,'S')-0(x) re­

spectively. By Theorem 3.4 we know that v+ ~ 0 and v- ~ 0. Furthermore it 

follows from Lemma 5.1 that v+ is nonincreasing in time and v- nondecreas­

ing. Of course both v+ and v- satisfy (6.6) and in order to simplify this 

expression we use the following lemma which we shall prove later. 

LEMMA 6.3. Let e: < g(cx,) - K. Then lim x0' (x) = O. If furtherm::,re 
X+m 

1/1;;:: s-(.,K,x1,v) for some ~ 1,v satisfying (4.13) with A= K (we sup-

pose furthermore that v > 1 if e: < (g(00 ) - K)/2) and 1/1 E c110 ([x3 , 00)) for 
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some a,x3 > 0, then lim xux(x,t) = 0 for all t E (0,oo). 
X-i-<X> 

From Lemma 6.3 and formula (6.6) we deduce that v+ satisfies 

00 00 00 

- -- dx = -e: (p-1) x (v+) (v+) dx -d I (v+l I p-2 2 I 
~ p X 

(g' + 0' (l?-1)) (v+)P dx. 
p 

0 0 0 

If p = 1 similar calculations yield 

Since 0 < 

and thus 

00 00 

d! I v+ dx = - J g•v+ dx. 

0 0 

g' (x) < g' (0) and 0 < 0 I (X) < 0 I (0) we have for all p ~ 1 

00 00 

I (v+(x,t))p dx ~ 1 I (g' (x) g' (0) + (p-1) 0 I (0) 
0 0 

+ (p-1)0' (x)) (v+(x,t) )P dx 

00 00 

J(g'(x)+ (p-1)0'(x))(v+(x,t))P dx::;; 

0 

(g' (0)+(p-1)0' (0)) J (v+(x,O))p dx 

0 
t 00 

- (g' (0) + (p-1)0' (0)) J dT I (g' (x)+(p-1)S' (x)) (v+(x,.))Pdx. 

0 0 

In what follows we apply the following lemma that we shall prove later. 

LEMMA 6.4. Let y E C([0, 00)) with y' E L1 ((0, 00)) and y' ::;; 0 such that 

t 

(6. 7) 0 ::;; y(t) ::;; N- M I y(T)dT 

0 

for some constants N ~ 0, M > 0. Then 

(6. 8) y ( t) :,; N/ (Mt) • 

Since the function J~ (g'(x)+ (p-1)0'(x))(v+(x,t))P dx is continuous and 

nonincreasing (because v+ is nonincreasing), we deduce from Lemma 6.4 that 
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00 00 

f (g' (x) + (p-1)0' (x)) (v+(x,t))Pdx :,; ( I . p \/ {v+(x,0)) dxj t. 

0 0 

Similarly one can show that 

00 00 

f (g' (x) + (p-1) 0' (x) (-v-cx,t))pdx :,; ( f (-v-(x,O))pdx )1 t. 
0 0 

Formula (6.5) is then deduced from the fact that 

PROOF of Lemma 6.3. We first show that lim x0'(x) = 0. Since 
x-+<o 

X 

ex0' (x) = e0(x) - J (g(I;) - 0(1;))0' (l;)dr; :,; EK, 

0 

we have 

0 :,; x0' (x) ::;; K. 

Furthermore 

(x0' > ' = x0" + 0' = - g-0-€ 0' :,; o 
€ 

for x large enough. 

Since the function x0' is bounded and decreasing for large x, we deduce 

that there exists EE [0,K] such that 

lim x¢' (x) = E 
x~ 

which implies 

Since 

0(x) ~ E ln x + c 

lim 0(x) = K 
x-+<o 

we deduce that E = 0. 

as x + 00 • 



Next we show that lim xu = 0 by making use of Bernstein's argument, 
x-+a> X 

in a similar way as in ARONSON [1] and PELETIER & SERRIN [21]. 

Let 

Rn= (n/2, 3n/2) x (O,T], n > 3x3 
and let 

<f,(r) = Nr(4-r)/3 
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where N = s~p u- ~ u. The function <f, increases from O to N as r increases 

from ·o to 1. Note tliat <f,' (r) = 2N (2-r) /3 > 0 and <f," (r) = -2N/3 < 0 and define 

a new function w such that 

u = inf u + <f,(w). 
R 

n 

Then w satisfies the differential equation 

<f,"(w) (w )2+ wt = e:xwxx + e:x <I>, (w) x (g-<f, (w)-inf u)wx. 
~ 

Set p = w and differentiate the last equation with respect to x; we get 
X 

and thus 

(6.9) 

Let R * = n 
(i) 

have 

= <f," 2 <f," 
e:xpxx + e:px + e: ~ p + 2e:x ~ ppx + e:x (<!>")' 3 ·v p 

+ (g-<f,-inf u)p + (g'-<f,'p)p 
-- X 
~ 

<ti" 2 2 + 2e:x ~ p px + (g-4>-inf u+ e:)ppx + g'p • 
Rn 

2 2 2 2 
(3n/4, Sn/4) x (O,T] and let,= 1-4(x-n) /n. Set z =, p. 

If z attains its maximum value at the lower boundary of R we n 

sup z ::;; z (x,O) 
R * 

n 

where x E [n/2,3n/2]. 
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Hence 

sup r; lw I :::; r; (x) lw (x,O) 1. 
R * X X n 

Since 1'; 2: 3/4 in (3n/4,5n/4) and since u = $' (w)w we find 
X X 

lu I <~sup$' I•"'(;) I :::; 8 / su;e x - 3 inf $' "' Mi/J 3. 
R * n 

(ii) If z attains its maximum value at an interior point (i,t) of R 
n 

we have at that point 

(6. 10) { 
z = 21';1'; 1 p2 + 2r;2pp 

X X 

0. e:xz - z :::; xx t 

= 0 

The last inequality can be cast in the more explicit form 

2 2 2 2 2 2 2 1'; (l:!(p )t - e:xpp ) 2: e:x(r;' p + 1';1';"p + 41';1';'pp + r; p). 
XX X X 

Using (6.9), (6.10) and the inequality 

we obtain 

2 -r; e: /,1,11)' 4 ( $" r;2 "'" r;2 ) 3 if-, p :::; 2e:1';1'; 1 + e: -..l'..-. - "'' p \'!' - ~ X <f>' - X 'I' 

Since (f.)' :::; -1/4, this implies 

where the C. 's are positive and depend only on N and n. Since 
l. 
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2 4 c2 2 
~,;;p +--p 

4 

it follows that 

Therefore 

z(x,t) ~ max (z(x,t)) 
R n 

½ max lw I ~ 4 c3 / 3. 
Rn_* X 

Finally, u = $' (w)w and$' ~ 4 N/3 imply that 
X X 

½ 
max lu I ~ 16N c3 /9. 
1f""T X 

n 

Note that N ~ sup(K-s-(x,K,x1,v)) (which behaves as x-v where v > 0 is 
Rn -

furthermore such that v > 1 if£< (g(00)-K)/2). 

Thus 

(6.11) max lu I 
~ X 

n 

~ 16 C~ sup (K-s- (x,K,x1 , v)) / 9. 

Rn 
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If£< (g( 00)-K)/2,c3 is boundetl uniformly inn and we deduce that xux tends to 

zero as x + 00 • If on the other hand (g(00 )-K)/2 ~ £ < g(00)-K, then we only 

have that V > 0 in (6.11) and sup (K- s-cx,K,x1 ,v)) tends to zero as X + 00 

but then C~ tends to zero as % 1/x when x + 00 which also yields the 

result. D 

PROOF of Lemma 6.4. Integrating by parts we get 

t t 

J y(t')dt' 

0 

= ty(t) - J •Y' (t')dt' ~ ty(t). 

0 

Also we deduce from (6.7) that 

t 

J y(t')dt" ~ N/M 

0 

and thus (6.8) follows. D 
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Next we deduce from theorem 6.2 that there is also pointwise conver­

gence. More precisely we prove the following theorem. 

THEOREM 6.5. Provided that E < g( 00)-K and that iJJ ~ s-(.,K,x1 ,v) for some 

x1 ,v satisfyi'.ng (4.13) with :\ = K, we have that 

(6.12) II (g' (.) + (p-1)0' (.)) l/p (u(.,t,iJJ)-0)U for all t > 0 

and p = [ 1 /v J + 1 , where 

00 

(6.13) 

In particular, if E < (g( 00 ) - K)/2 and v > 1, then p = 1 and formulas (6.12) 

and (6.13) simplify as follows 

(6.14) 

where 

119 1 (.} (u(. ,t,1/J) - 0) 11 :<:; c//t 

sup 
XE[0, 00 ) 

for all t > 0 

00 

lg"(x) 1) I (s+(x)- s-(x,K,x1,v))dxf 

0 

PROOF. To prove Theorem 6.5 we need the following auxiliary lemma: 

LEMMA 6. 6. LE~t cp be defined for O :<:; x < 00 and satisfy the conditions 

(i) cp(x) ~ 0 and cp(O) = O; 

(ii) cp is Lipschitz continuous with constant l; 

(iii) J~; cp(x)dx :<:; N, 

then 

sup I cp (x) I :<:; hNl. 
o~;x<00 



We-omit here the demonstration of this lemma since the main ideas of the 

proof are given in the proof of Lemma 3 of PELETIER [20]. 
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Now let us apply Lemma 6.6 to the function (g'+ (p-1)0') lu-0lp; it is 

nonnegative, equal to zero at the origin and its derivative is continuous 

by parts and bounded by 

sup lg" (x) I} 
XE[O , 00 ) 

at all points where it is defined. Finally the bound on its integral is 

given in theorem 6.2. Inequality (6.12) follows. D 

6.3. Asymptotic behaviour of the solution u of the hyperbolic problem H 

as t + 00 

THEOREM 6.7. Let 1jJ satisfy Hip and be such that 1jJ ~ s-(.,K,x1,v> for some· 

x1 > 0, v > 1 satisfying (4.13) with A= Kand define 0(x) = min(g(x) ,K). 

Then 

11 g, c • , cu c • , t, ip, - -w, 11 :;; c; It for all t > 0 

where C is the constant defined in Theorem 6.5. 

PROOF. Let£ E (0, (g( 00 ) - K)/2) + 0 in inequality (6.14), note that the 

constant C does not depend in£ and use the fact that~ converges to 0 
uniformly on [0, 00 ) as£+ 0 (see [6]). 0 

APPENDIX 

In what follows we shall prove the following theorem: 

THEOREM Al. There exists a E (0,1), R > 0 and A< 0 such that the Cauchy 

Dirichlet problem (6.4) has at least one solution w E c2 ([0, 00)) with 

w, w' , w" bounded and 

0 < w (x) :;; min ci (x) ' (x/R) -Vo 0 (R) ) for all XE (0, 00). 
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PROOF. Let n ~ 1 and consider the boundary value problem 

(Al} 

(A2} 

where 

and 

e:(x+ !} w"- (q (x} + A}w = -0(0' (R} + A}min(0 (x}, (x/R)-"O 9f (R)} 
n -n n n 

w(O} = 0 

X 

0 (x} = exp ( J 
2(1';}-0 (I';} 

di';) 0 (x} n 2e:(7;+1/n} 
0 

2 g' (x} +0' (x} 9: (x} -0 (x} 
~(x} = 

(g(x}-0(x}} + -4e: (x+l/n} 2 2(~+1/n} 

v0 > 1 is arbitrary and where the constants e E (0,1), R > 0 and 

A E (-0' (R},O} satisfy some additional -conditions which will be given later. 

Obviously zero is a lower solution for the differential equation in (Al}. 

We shall now construct an upper solution. Firstly we deduce from the asymp­

totic behaviour of g that there exists R1 ~ 1 and q0 > 0 such that ~(x} ~ 

2q0 for x ~ R1• Also if A> max(-q0 ,-0'(R}} and e < (q0+A}/(0'(R}+A}, then 

the function (x/R)-"O ~ (R} is an upper solution of the differential equa-
n 

tion (Al} for x ~ R := max(R1,2e:v0 cv0+1}/q0}. Next we note that ,in is an 

upper solution of (Al} on [o,RJ and thus that min(0n(x},(x/R)-"O jn(R}} is 

an upper solution of (Al} on [0, 00}. Finally we conclude that there exists 
2 . 

at least one solution w EC ([0, 00 }} of (Al}, (A2} [3, Theorem 1.7.1], 
n 

such that 

~ ~ 
which, since 0n s 0, implies that 

1A3} 0 s w (x} s minCiCx}, (x/R)-"O iCR}}. 
n 

Furthermore the inequalities (A3) and 

(A4} I~ ex> I 
2 

s (g-0) 
4e:x 

g'+0' 
+ 2 
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yi~ld, together with (Al), 

lw" (x) I :s; C 
n 

for all x E [O,~) 

where C > 0 is independ,ent of n. Now let us integrate (Al); we get 

X 

(AS) w' (x) -- w' (0) + J 
(g (r,;)+A)w (r,;)-8(0'(R)+1c)min(0 (r,;),(r,;/R)-vO 0 (R)d<,; 

n n .. n n 
n n 

0 
E: ( <,;+1/n) 

and using again (A3) and (A4) we obtain 

lw' (x) I :s; C 
n 

for all x E [O,oo). 

Using the Arzela-Ascoli theorem and a diagonal process, we deduce that there 

exists a function w E c 1([0, 00 )) and a subsequence {wnk} of {wn} such that 

Wnk ➔ was nk ➔ 00 , uniformly in c 1([0, 00 )) on all compact subsets of [0, 00). 

Also setting n = nk in (AS) and letting nk ➔ 00 , we deduce that w satisfies 

the differential equation 

(A6) Exw" - (q (x) +A) w = -8 (0' (R) +A) min (0 (x) , (x/R) -Vo 0 (R)) 

and the boundary condition 

w(O) = 0. 

2 
It follows from (A6) that w EC ((0, 00 )) and since 

limw"1(x) = [ (0' (0) + 1c)w' (0) - 8 (0' (R)+A) 0' (0) ]/E: 
x➔oo 

we deduce that in fact w E c2 ([0, 00)). Finally the strict inequality w > 0 

is proven by means of a maximum principle argument. D 
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