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in an Intelligent CAD Environment 
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P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

The concept of so-called intelligent CAD systems has been paid more and more attention as a promising 
approach toward the next generation integrated engineering environment. In this paper, first we propose 
the concept of Intelligent Integrated Interactive CAD systems. We introduce a language based on 
predicate logic and the object oriented programming paradigm, and describe the mechanisms of the 
system in this language. Then, we discuss the possibility to describe and organize design knowledge 
using this language. From this discussion we will see how design knowledge should be embedded and 
work in an intelligent, integrated, and interactive CAD environment. 
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1. Introduction 

There are two major streams for developing a so-called intelligent CAD (Computer Aided Design) system 
[Ger85. SrA86]. One is to give the system powerful problem solving ability. This can be achieved by 
developing dedicated expert systems for designing in narrow problem domains. The other is to put emphasis 
on understanding the designer's intention in order to assist her/him intelligently. The concept of intelligent 
user interface management can be classified into this type of efforts. 

However, it is becoming clearer that neither of these approaches can by itself be powerful enough to build a 
future CAD system which solves the problems of conventional CAD systems [To Y85]. In fact, what we 
need is developing a general CAD system framework. to support the designer rather than pursuing a 
sophisticated expert system which can solve a design problem or a smart user interface management system. 

Thus, we propose the IIICAD (Intelligent Integrated Interactive CAD) system. It provides an integrated 
infrastructure for those problem solving tools together with a smart user interface. This means, in the 
architecture of IIICAD, the key points are integration of knowledge and intelligent supervisor which controls 
the system based on this integrated knowledge. In the past, there have been many researchers proposing 
integrated knowledge based CAD systems. Some of them (for example, see [RHS85]) can offer a system 
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2 Introduction 

integration environment for existing CAD systems as well as AI tools, such as OPS5 [For81]. However, 
because every system component should understand the designer's semantics (although there are many 
problems in using this word), and· because this understanding should be common to the entire system, we 
need a higher degree of knowledge integration rather than the simple integration of the systems. As a 
consequence of knowledge integration, so-called expert systems will reappear as special knowledge libraries 
which form an integrated part of the total knowledge base. 

In this paper, we consider CAD systems for mechanical engineering as an example and we discuss how the 
concept of ID CAD will be realized, especially, from a viewpoint of integration of design knowledge. In 
CHAPTER 2, we propose the concept and architecture of IIICAD which is derived from a design process 
model. This design process model, called metamodel evolution model, suggests also various important 
concepts for III CAD, such as the supervisor concept among other things. 

IIICAD is integrated by using a common language called IDDL (Integrated Data Description Language) 
which is now under development. The supervisor that plays the most essential role in the IDCAD 
architecture uses scenarios written in IDDL to control the system. Because there are many issues for IDDL 
coming from both theoretical and implementational aspects which cannot all be described in this paper, in 
CHAPTER 3 we define a simple pseudo language which is a subset of IDDL and has similar functions just for 
explanation purpose. 

There arises, then, an interesting question whether or not it is possible to describe design knowledge in IDDL 
under the proposed IIICAD architecture. In CHAPTER 4, we answer to this question and discuss how to 
describe and organize design knowledge in IDDL. We use a design process model which was proposed in 
CHAPTER 2 to derive the architecture of IIICAD. Based on this design process model, we first analyze design 
knowledge for machine design. We then see some example descriptions of design knowledge in the pseudo 
language in a form of scenarios. These examples will show how to describe design knowledge, how to 
realize a flexible interaction between the user and the system, how to provide the metamodel mechanism, 
etc., by using a rather simple mechanism of the pseudo language. From these discussion, we can consider 
the distribution of design knowledge in the architecture of IIICAD. 

2. Intelligent Integrated Interactive CAD (IIlCAD) 

2.1. Concept 

CAD systems have become indispensable tools in various fields of industry. Especially, in mechanical 
engineering, CAD systems have brought about revolutional changes by handling geometric information, 
primarily, due to the progress of computer graphics. However, as systems were penetrating into actual 
applications, it was widely realized that considering geometric information only would be insufficient for 
machine design. For instance, technological information is now placed outside the system [KSH83]. 

In machine design, there are many models which represent a design object, such as a mathematical model for 
control, a kinematic model for evaluation of the mechanism in motion, a finite element model for evaluation 
of the strength, etc. In principle, these models should represent the identical design object. However, there 
is no structure which guarantees their integration, consistency, or completeness. 

The amount of data which is required for three dimensional modeling can be very huge. Various techniques 
to ease inputting the data have been proposed. One of them is intelligent user interface management which 
even allows hand drawings, voice input, etc. [SaW81]. Unfortunately there exists a limit to this idea which 
simply eases to input the data but does not reduce the amount of the data as long as the designer has to feed 
in. Therefore, we have to introduce a new methodology which will allow the system to handle the design 
object from a very early stage of design. This boils down to the system being able to generate models from 
semantic knowledge including previously defined objects. 

The new generation CAD systems should be, therefore, not only intelligent but also integrated and 
interactive so that the abovementioned problems can be solved. The concept of IDCAD is proposed here as 
our solution to those problems. 



Concept 3 

e-------
.· 

·····0···· ... ·· . . ·. M .· 

Metamodel Set 

FIGURE 1. Evolution of Metamodel 

2.2. Design Process Model 

In this section, we propose a model of design processes to derive the architecture of IDCAD in the next 
section. This model is a fundamental concept in this study and will be used also in later discussions in 
CHAPTER.4. 

According to General Design Theory [Yos8l], we can regard a design process as a mapping from the 
function space onto the attribute space. The designer is given a specification written in functional terms and 
has to find or create a solution described in attributes. This mapping from the function space onto the 
attribute space is, however, difficult to describe in a formal way. Thus, instead of having direct mapping, we 
may consider a design process which is of stepwise refinement nature. 

FIGURE 1 illustrates such a design process model called metamodel evolution model [ToY87]. In this model, 
the designer given specifications first picks up or imagines the most appropriate candidate with very rough 
descriptions. This candidate will be detailed during the design process and finally we will get a design 
solution with full descriptions sufficient for manufacturing as the ultimate state of this detailing process. At 
each stage of detailing (or evolution) process, the designer checks whether or not the candidate is fulfilling 
the specification from various aspects. These inspection and evaluation require proper models, such as 
kinematic model, mathematic model, finite element model, etc. 

A metamodel, in this design process model, is a set of descriptions, existing at that moment of designing, 
about the design object (as a candidate for design solution) which is detailed in a design process step by step 
and from which we derive models for evaluation. Designing is, therefore, a collection of small procedures 
for detailing a metamodel. A model for evaluation is created from the metamodel as its partial description. 

This metamodel evolution model explains real design processes very well. For instance, usually the designer 
given the specification may imagine a couple of possibilities without information in detail. During the 
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FIGURE 2. Formalization of Evolution Model 

designing process, this image will grow and get realistic. Therefore, this design process model can be used 
as a basic model for building IDCAD. FIGURE 2 shows a more formalized description of the evolution 
model. It tells several important principles. 

(1) A metamodel, M;, is a set of descriptions about the design object. Tiris means we have a central 
mechanism to store information about design object model. 

(2) Design process knowledge is stored in detailing procedures, or evolution procedures, D;j· Note 
that this process requires feasibility check to see if the candidate can exist as a physically possible 
entity. 

(3) Creating models for various kinds of analyses from a metamodel is done by modeling knowledge, 
dj. 

(4) A model, m;j• created by dj from M;, is used for analyzing the properties of the design candidate 
and to represent in a particular type of information. The result of analysis or evaluation, ej, is used 
to judge whether or not the candidate is appropriate as the design solution. 

(5) There can be three places where heuristic knowledge or so-called expertise is necessary. F'rrst, we 
need such knowledge for planning how to design. 11ris knowledge is used to determine which D,1 
is used from the metamodel state M;. Secondly, if something wrong is found in the feasibility 
check after an evolution procedure, we need to know to which state we make backtrack or how to 
compromise between the specifications and the solution. Tirirdly, the same type of knowledge is 
required after evaluation e1. 
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As mentioned in the previous section, a designer finds or creates a new entity which may never have existed 
in the past given specifications written in terms of functions, and she/he describes it in terms of attributes so 
that one can actually manufacture it. Because it is too optimistic based on the present computer technology 
to ask computers to find or to create a completely new entity, we define a CAD system as a computer system 
which assists the designer in such a way that the designer can utilize his/her maximum ability of creation. 
This means that a CAD system should have model or descriptions concerning the design object which have 
maximum similarity to the designer's own image, and that a future CAD system must be controlled by an 
intelligent supervisor which has knowledge about design processes and objects to get advices. CAD systems 
in general therefore, must have descriptions about the design objects and processes and perform the best in 
computation and reasoning that can be expected by the present computer technology to assist the designer. 

These two components, i.e., the models and the supervisor, will play an important role in the architecture of 
future CAD systems. From the design process model described in the previous section, these two can be 
further elaborated into the requirements following below which could be satisfied by a CAD model 
illustrated in FIGURE 3. 

( l) A mechanism for describing a central model of the design object called metamodel, M. 

(2) A mechanism to describe knowledge about the design process; i.e., knowledge on how to evolve 
models, how to use heuristic knowledge, etc. 

(3) A mechanism and knowledge, d, to derive models, m, from the central model for the various 
technological evaluations. 
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(4) Tools to perform such evaluations, e. 

(5) A mechanism to communicate with the designer in such a way that she/he can recognize various 
aspects of the models. 

(6) A mechanism to give assistance to the designer; i.e., the supervisor. 

The CAD system model in FIGURE 3 can be elaborated and extended to an architecture shown in FIGURE 4. 
In the following section, we explain its elements. 

2.4. System Elements of illCAD 

2.4.1. Supervisor 

The supervisor (SPV) is the kernel of the system and it corresponds to (6) in SECTION 2.3. It watches and 
controls all the information flows in the system, such as user operations, status of the system, etc., and tries to 
understand the intention of the user. 

The control is based on scenarios which describe standard designing procedures. When the user makes an 
obvious mistake, SPV should detect it by comparing the user actions with the scenario. In this way, SPV 
would add intelligence to the system. SPV does not have the initiative for the design process, because the 
final responsibility of design is left with the designer. 

Scenarios are, in other words, descriptions about the design knowledge. They are written in a language 
called IDOL discussed in CHAPTER 3. SPV and scenarios together fulfill requirements (1) to (3) described in 
SECTION 2.3. In CHAPfER 4, we will see how scenario mechanism realize such functions in detail. 
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FIGURE4. Configuration of the IIICAD System 
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2.4.2. Integrated Data Description Schema 

The Integrated Data Description Schema (IDDS) is a gateway to the databases (DB) and knowledge bases 
(KB), which means the user does not have to pay attention to exactly where and how to store and retrieve 
information. All the information comes in and out through IDDS, and therefore, DB and KB are transparent 
to the user. 

IDDS has a language called Integrated Data Description Language (IDOL) spoken by all the system 
elements. IDOL is the language to describe the design knowledge and the design object guaranteeing 
integrated and unified descriptions about the design knowledge. 

2.4.3. Intelligent User Interface 

The interface between IDCAD and the user has relatively complicated structure in order to realize flexible 
and intelligent interaction, and it corresponds to the mechanism (5) in SECTION 2.3. There must be several 
interfacing systems reflecting the necessity to access information from very low level input/output to very 
high abstracted level. 

The highest level interface system is called Intelligent User Interface (IUI) which is driven also by scenarios 
written in IDOL and which accepts messages from SPV or other subsystems and sends them to the lower 
level interface systems, such as the Dialogue Cell system [BKt82, teD84, vat87] and GKS, to control the 
physical device. It accepts a user's input from the dialogue cell system and translates it to semantical 
descriptions in IDOL which in tum will be sent to SPV. 

2.4.4. Application Interface 

The Application Interface (API) accepts a part of the central model descriptions about the design object and 
translates them into an individual model used by an application program which corresponds to (4) in 
SECTION 2.3 and vice versa. This means API should have; 

(1) descriptions about applications, such as their functions, what kind of model description is required, 
what data is returned from applications, etc. 

(2) descriptions about the translation from the central model to the model used in an application 
program. 

(3) descriptions about data requests from applications; i.e., how to request SPV to give a set of data to 
an application program. 

Therefore, API is more or less similar to a run-time system monitor. It should also have scenarios written in 
IDOL to perform its tasks. 

In IDCAD for machine design, as application programs we may expect geometric modeling system, analysis 
systems typically such as finite element analysis systems, expert systems for consultation, etc. 

2.S. System Behavior 

2.S.1. System Cycle 

The illCAD system has a basic cycle as follows. 

(1) Every system component, such as IUI, API, etc., reports its own status or requests to SPV. 
Typically, this report can be a user's request through IUI. 

(2) SPV asks DB/KB whether there is a proper scenario for the situation created by the status reports 
from the subsystems. This can be done also by explicit user commands. 

(3) SPV executes the selected scenario. Execution is done in the following cycle. 

(3-1) Recognition of the situation, i.e., selection of the most matching rule. 

(3-2) Execution of the selected rule. 

(3-3) Ifno rule, stop with this scenario. 

Execution of a rule means passing requests from one subsystem to the most proper one. The 
response from the inquired system will be returned to the system from which the request 
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originated. If it was satisfied by the response, it reports satisfaction to SPV and SPV will proceed 
to the next step. If not, SPV must execute exception handling which might or might not be 
described in the scenario. 

(4) If there is no more rules which can be applied (no-more-rule situation) or SPV encounters an 
explicit end command, it returns the control to the higher scenario. 

2.5.2. Expected Usage of filCAD 

The cycle described in the previous section will make the following usage of the system possible. 

(1) The designer would type in or select from a menu (or by any possible interaction method). 

Design winch 

(2) When IUI gets this command, it creates a request to SPV telling that the designer wants to design 
a winch. 

(3) Receiving this request, SPV asks DB/KB to give him a scenario for designing a winch. If not 
found, something should happen to tell the designer that the system knows nothing about a winch. 
The most reasonable thing SPV could do is probably to ask the designer to select an example 
which is similar to a winch from the system library. 

(4) SPV begins the designing process of a winch based on the selected scenario. It might be 
something like this. 

What is the name of the winch? WINCH 
How much load do you expect for WINCH? JOO 
Do you mean JOOkgf? YES 

(5) The dialogue described here took place in the following way. First, SPV needed to know the 
name of the winch and it sent a message to IUI to ask the designer. IUI, without knowing what in 
fact a winch semantically is, asked the question. Because what IUI needed was a name from the 
user for a winch and because there was knowledge written in the scenario for IUI that a name is 
given by a character string, IUI invoked a graphics system to put a prompt and to fetch the 
designer's input probably from the keyboard. IUI got input from the user and sent it directly to 
SPV. 

(6) If IUI is requested by SPV to get an integer value between 0 and 8, for example, and if the 
designer types a letter key ('s', for instance), this is an obvious error, a mistake, or a 
misunderstanding of the designer. In this case, an error recovery at some level is done by IUI, for 
example, by showing possible input to the designer. However, it must be also reported to SPV 
telling that the designer made an error and this is the fifth of this type and the twenty-eighth in 
total. This information should be used firstly by IUI to control the dialogue dynamically and 
secondly by SPV to judge whether the designer really understands the design process of a winch. 
For instance, if the designer gave an unexpected answer to a question asking the usage of the 
winch, it should be interpreted either as a misunderstanding or as trying to design some new which 
the system does not know, but not as an error because he is a beginner. This is an example of 
SPV's understanding the intent of the designer. 

(7) During the design process, the designer always takes the initiative. Thus, basically he must always 
enter commands to indicate what to do next. If SPV finds a difference between the scenario and 
the designer's action, i.e., SPV cannot find a rule matching to the input, it would be either an error 
of the designer, that the designer does something new, or that the scenario is wrong. In any case, 
SPV must warn the designer. If the designer admitted an error or if he asked a question, SPV must 
give a help, give suggestions, and ask the designer to specify more precisely his intent. 

3. A Pseudo Language for System Description 

For convenience in the further discussion, we introduce a pseudo language for describing behaviors of 
IDCAD as a preliminary version of IDOL (Integrated Data Description Language). IDOL is a language 
used by most of the ID CAD subsystems; for instance, SPV is driven by scenarios which are written in IDOL. 
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In short, IDDL is based on logic programming paradigm with a flavor of object oriented programming 

paradigm. It is stroctured in a way similar to those of a so-called forward reasoning production rule system. 

However, there are many issues which must be taken into consideration to develop IDOL and which cannot 

be described fully here. Because IDDL is still under development, only for explanation purposes we 

introduce the concept of IDOL without giving the syntax. We do not justify why we need such functions, 

either. 

3.1. Constants and Variables 

Constants and variables denote entities. They are both called objects. The syntax follows the convention of 

well-known Prolog [OM81]; i.e., a constant begins with a lower case letter and a variable begins with an 

upper case letter. 

An object can be created either explicitly by scenarios or by assertion of a clause. See SECTION 3.7 for the 

former case and SECTION 3.5 for the latter case. 

3.2. Predicates 

A predicate denotes a relationship among entities and attributes which are expressed by functions. A 
predicate is a character string beginning with a lower case letter followed by a pair of Ifarentheses which 

enclose a list of objects and functions separated by commas. (From now on, sometimes, this list of objects 

will be denoted by list-of-objects.) A predicate preceded by - and % denote negation and unknown, 

respectively. For example, 

-p (A) 

should read "not p (A) , " and, 

%p (A) 

should read "it is unknown about p (A)," or "you cannot decide whether p (A) or - p (A)," because 

here we employ three-valued logic which includes unknown as a logical value besides usual true and false. 

A predicate %p (A) holds, when neither p (A) nor - p (A) is found in DB (database). It does not, when 

either p (A) or - p (A) is found. 

3.3. Functions 

A function represents an attribute of an entity. A function is a character string beginning with a lower case 

letter followed by a pair of brackets which encloses a list of objects, functions, and predicates separated by 

commas. Therefore, 

f[A, b, X], g[p(x), q(y), h[A]] 

are legal expressions of functions. Arithmetic operations, such as +, -, *, /, etc., are predefined 

functions. 

Note that it is possible to define a function even on a set of predicates. This means a function can represent 

an attribute value of a relationship. Suppose we have two points A and B in a three dimensional Euclid 

space as entities. The distance, d [A, B] , between these two points can be defined by 

TABLE 1. Truth Table 

NOT AND OR 

~ T F u ~ T F u 

T F T T F u T T T T 

F T F F F F F T F u 

u u u u F u u T u u 

"' 
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d[A, B] = abs[sqrt[(x[A]-x[B])**+(y[A]-y[B])**+(z[A]-z[B])**]], 

which may naturally be used for defining the length of a line of which end points are A and B. 

Function definition can be done by procedures. This means it is possible to write a function definition like 

f[A, B] = { Xa := g[A], Ya := h[A], 
Xb := g[B], Yb := h[B], 
abs[sqrt[(Xa-Xb])**+(Ya-Yb)**]]}. 

In this case, variables such as xa are local variables and the value of the last statement becomes the value of 
the function. 

3.4. Clauses 

A clause is defined by a list of predicates combined by logical operators such as & (and) and I . (or). 
Parentheses can be used to express the logical priority. The truth value of this clause will be calculated 
following the truth value table shown in TABLE 1. 

3.5. Rules 

A rule has the following syntax: 

clause 1 -> clause 2. 
clause. 
clause 1 <-> clause 2. 

The first rule is intetpreted as "if clause_ l is true, then clause 2 must hold" This is called an 
assertion rule. If in DB clause 1 is found, then clause 2 is asserted. Assertion is done, so that the 
entire clause holds, which does notnecessarily mean all the predicates in the clause hold. If for some reason 
it is impossible to assert the entire clause, the assertion fails. In general, the assertion mechanism is much the 
same as that of forward reasoning production rule systems and an assertion is done by atomic queries which 
result in set operations each of which corresponds to 19gical operation in the clause. The assertion is done 
based on rules described in TABLE 2. 

For example, suppose we have a rule 

pl(X) & p2(X) -> q(X). 

and in DB we have facts, 

pl(a), pl(b), pl(c), p2(a), p2(c). 

Because the left hand side (LHS) is satisfied by instances, a and c, only facts 

q(a), q(c) 

are asserted (i.e., added to DB). In other words, the variable x in this clause is instantiated to constants a 
and c. When this instantiation is done, the system makes a list of a variable and instantiated constants. This 

Database 
before 

Assertion 
p (X) 

p (X) 

TABLE 2. Assertion Rule 

Asserted 

Fact 

Result of 

Assertion 
Success and Returns True 
Assertion fails 
Success and Returns False 
Assertion fails 
Success and Returns True 
Success and Returns False 
Success and Adds this fact 
Success and Adds this fact 
Success and Returns True 
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list, called instantiation pair list, is used for controlling the deduction mechanism (see SECTION 3. 7). 

The second case is a special case of the first one; i.e., this clause is unconditionally asserted. 

The thin1 case is equivalent to the following two rules; 

clause 1 -> clause 2. 
clause 2 -> clause 1. 

11 

However, its semantics is different from that of these two rules in the sense that it works as a watch dog; i.e., 

p(X) <-> q(X) 

works as a kind of constraints (as in deductive databases [Cha78]). This means, whenever this rules finds a 

fact which satisfies p (X), this will be immediately converted to q (X) and vice versa , so that they are 

logically equivalent. 

It sometimes happens that, although we want to assert a clause, we cannot find objects which satisfy that 

clause. In this case, a new object will be created. This object is given a system name rather than a user name 

as a constant. By adding this new predicate, it is possible that DB gets inconsistent. IDDS thinks it is a 

contradiction and the assertion fails. 

Note that there is a difference in assertion of clauses between & (and') and I (or) logical operators. For 

instance, if a clause 

p (X) & q (X) 

is to be asserted and if the assertion of p (X) fails, the assertion of q (X) is not carried out and the entire 

assertion fails. In other words, the assertion of both p (X) and q (X) must succeed. On the other hand, in 

the case of 

p (X) I q (X), 

if the assertion of p (X) succeeds, the assertion of q (X) is not done. If the assertion of p (X) fails, the 

assertion of q (X) is done and the result of the entire assertion is dependent on it. 

3.6. Built-In Predicates 

There are so-called built-in predicates for arithmetic operations, controlling the inference, and for ultra-logic · 

features. Arithmetic predicates include such comparison operators as =, <, and so on. ' 

A built-in predicate success is to terminate the inference with information that the inference was a 

success. In the same way, a built-in predicate fail terminates the inference saying it was a failure. A 

built-in predicate select and use are used in the following syntax: 

select(scenario_name, list_of_objects). 
use(scenario_name, list_of_objects). 

Here, list_of_objects can be omitted. 

A select predicate changes the active scenario to scenario name and restricts the active objects used 

in that scenario to list of objects. In the case list of objects is null, the active objects are 

not restricted. On the other hand, a use predicate adds ~enario name to the active scenario and 

restricts the active objects used to list_of_objects. A use predicate, therefore, increases available 

rules. These two predicates can be true, when the subscenario (see SECTION 3.7) is finished by the execution 

of a success built-in predicate or by no-more-rule situation. They can be false, when the subscenario is 

explicitly terminated by the execution of a fail built-in predicate. 

This means a select predicate switches active scenarios, while a use predicate can show details of the 

presently discussed objects (FIGURE 5) using more dedicated rules. These two predicates are important to 

realize so-called multiworld mechanism (see SECTION 4.3). 

In order to restrict active objects without changing scenarios, we can use also the following two predicates: 

consider(list_of_objects) 
unconsider(list_of_objects) 

A consider predicate restricts the presently active objects to list of objects whereas an 

unconsider predicate makes objects in list_of_objects inactive. - -
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select( scenario _3) 

scenario 1 scenario 3 

Objects 

scenario 2 use( scenario _2) 

FIGURE 5. Multiworld Mechanism of IDDL 

Because in IDOL input and output are described as messages to and from IUI or API, we can regard 
predicates for input and output as a kind of library routines. Therefore, we do not elaborate them particularly 
here. Note that they are in principle somewhat ultra-logic built-in predicates in the sense, for instance, we 
cannot erase all the side effects of those predicates. 

3.7. Scenarios 

3.7.1. Syntax of a Scenario 

A scenario is a set of rules. A scenario set is a set of scenarios. They have the following syntax. 

SCENARIO name (list_of_objects); 
[OBJECT 

{rule;}*] 1 

[FUNCTION 
{function_name =function definition;}*] 

[REPORTED 
{predicate name BY system element;}*] 

[ASK - -

{predicate_name TO system_element;}*] 
BEGIN 

{rule;} 
SCENARIO END; 

SCENARIO SET name (list_of_objects); 
[OBJECT 

{rule;}*] 
[FUNCTION 

{function name function_definition;}*] 
[scenario*] -
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SCENARIO SET END 

A scenario is active when control is passed to it. The argument list of objects defines active objects 
passed by a calling scenario. (More precisely, the instantiation pair liii will be passed.) It may be used also 

for returning objects. 

The object declaration in a scenario set defines global objects which can be used by all the scenarios in that 
scenario set. On the other hand, the object declaration in a scenario defines local objects which will never be 
seen from upper scenarios. At the same time, rules declared there works as constraints for restricting active 
objects as in deductive databases [Cha78] (see SECTION 3.5}. For example, an object declaration, 

OBJECT r(X) <-> q(X); 

implies that, whenever r (X) is asserted, q (X) is automatically asserted. Therefore, this works as a 
conversion rule. When there is no restriction for objects used here, we use special predicate ANY_ OBJECT. 
These features are almost corresponding to the idea of typing in conventional languages. 

The difference between local and global objects is the following. Although both types of objects are stored 
in DB, local objects can be accessed only from the scenario in which they are defined. When the execution 
of that scenario terminates, those local objects are automatically removed from DB. However, global objects 
remain in DB until they are explicitly removed. The function declaration must be written in a pair with an 

object declaration. 

The REPORTED and ASK sections specify from and to which system element the predicate should be 
reported or asked for assertion. For example, 

REPORTED p(X) BY IUI 

means a predicate p (X) can be reported by JUI at any time reported while this scenario is active. When 
p (X) is reported, x must be instantiated. On the other hand, 

ASK q(Y) TO API 

means a predicate q (Y) can be asked to API, if we need to know whether or not this predicate is true. 
Variables in the predicates are used for passing objects. If q (Y) is not instantiated before the assertion, 
q (Y) must be instantiated after assertion. If q (Y) is instantiated before the assertion, the constants which 
are the instances of this variable are passed to APL 

3.7.2. Execution of a ,Scenario 

A scenario will be executed in the following way. First, examining the rules from the top, the first rule of 
which LHS is satisfied is selected. Second, the right hand side (RHS) of this rule is asserted (or, executed}. 

The execution of a rule can terminate either successfully or in failure. If the assertion was successful, search 
for the next matching rule begins from the next of the previously executed rule. If the assertion failed, once 
again search begins and another rule will be selected. In the case the execution terminated successfully, all 
the results will be preserved. On the other hand, in the case of failure, all the results will be removed, which 
means we have a trial-and-error method. 

If the search for the next applicable rule comes back to the most recently executed rule because the search is 
wrapped around, it is judged that there is no more rule applicable and the execution of the entire scenario 
stops (no-more-rule situation). The execution of a scenario can be also stopped by the execution of either 

success or fail built-in predicates. 

When a rule is selected, the instantiation pair list is created. This list is preserved until the end of the 
execution of the entire scenario, so that the same rule will not be applied to the identical objects in the same 

situation. 

4. Organization of Design Knowledge 

In CHAPrER 2, we have proposed the concept of IDCAD to which knowledge engineering is applied. The 
supervisor (SPV) who is controlled by scenarios written in IDDL plays the most important role in a illCAD 

environment. A very interesting question is whether or not it is possible to organize and represent design 

1 The syntax { l * means iteration more than 0 times. 
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knowledge in IDDL which was briefly defined in CHAP:rER 3; and if possible at all, how knowledge written 
in IDDL can contribute to realization of a IDCAD environment described in CHAP:rER 2. 

In SECTION 4.1, we analyze so-called design knowledge based on the model proposed in SECTION 2.2. In the 
succeeding sections, we see how it can be represented by IDDL through a couple of examples. In SECTION 
4.2 we describe how a design task is performed by SPY based on scenarios in the IDCAD architecture and 
how IDCAD realizes a flexible and intelligent user interface. We will, then, see in SECTION 4.3 how simple 
mechanisms of IDDL materialize IDCAD features which are important for designing. By doing this, we 
know what we can do and what we cannot in IDDL. This will be fed back to the discussion in SECTION 4.4 
about distribution of design knowledge in the IIICAD architecture. Because IUI and API have basically the 
same functions as SPY, except for data passing, and are also described by IDDL, they will not be discussed 
here. 

4.1. Design Knowledge 

Here, we analyze so-called design knowledge, so that later we can consider whether it is possible to describe 
it in IDDL. To begin with, we consider designing in mechanical engineering phenomenologically. 

First of all, there are many types of design; completely new design where we must invent the mechanism; 
parametric design where we know already the basic mechanism; combinatory design where we know parts 
and the problem is combination of those parts. New design requires knowledge about basic physical 
phenomena. Parametric design does not require such knowledge, but it requires knowledge about how to 

make the mechanism fit to the specifications. Combinatory design does not require knowledge about entities 
in detail, but it requires knowledge on how to combine existing parts (TABLE 3). This means we need four 
types of knowledge as follows. 

(a) Knowledge on the existing entities. 

(b) Knowledge (on basic principles such as physics) to invent the structure and mechanism of new 
entities. 

(c) Knowledge to operate entities including constraints solving, compromizing and relaxation of the 
specifications, etc. 

(d) Knowledge to combine existing entities without changing their inner structure. 

Designing a product itself contains different kinds of subprocesses where different types of knowledge are 
needed. There are at least three stages in mechanical design; conceptual design, basic design, detail design 
(FIGURE 6). In conceptual design we need knowledge on basic physical phenomena, so that we can think of 
a appropriate mechanism for the specifications. Basic design requires knowledge on how to combine 
existing parts and knowledge to predict the behavior of the candidate as the result of the combining (for 
example, knowledge for technological analyses). In detail design, we need to determine details of parts, just 
like parametric design. In summary, a design process of machine needs the following three types of 
knowledge besides the knowledge about the existing entities (a). 

(b ') Knowledge for determining the structure and the mechanism of an entity, which is typical in 
conceptual design. 

(c') Knowledge to detail existing parts, keeping the constraints (i.e., specifications). 

(d') Knowledge to construct the structure of the design solution using existing entities, keeping the 
constraints. 

TABLE 3. Classification of Design 

Creation of Combination Detailing 
Structure of Structure 

New Design 0 0 0 
Combinatory Design - 0 v 
Parametric Desi1m - - 0 

Q strongly required; V: required;-: not required. 
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The aims of III CAD are to have models of the design object and to check if the design solution satisfies the 
specifications or not (SECTION 2.3 ). This idea resulted in a design process model called metamodel evolution 
model, illustrated in FIGURE 2, which requires knowledge for evaluation in addition to knowledge on design 
object models and their operations. 

( e) Knowledge to select proper evaluations for checking the functions of the design solution. 

(t) Knowledge to create a model for evaluation from the central model. 

(g) Knowledge to perfonn evaluation. 

(h) Knowledge to judge the result of evaluation. (This knowledge can be very heuristic.) 

4.2. Examples of Design Knowledge in IDDL 

This section and the next section deal with IDDL's possibilities to describe design knowledge for machine 
design. In this section, firstly, we see that procedural knowledge can be repre~nted in IDDL. Secondly, as 
an example of non-detenninistic knowledge, how to realize a flexible user interface is shown. 

4.2.1. A Simple Case 

Now, we see how SPY (superVisor) works in general, particularly, in a simple procedural style and how it 
controls the design process. SPY, by definition,· should be able to control the design process by means of 
scenarios. We take an example of the designing of a winch from SECTION 2.5.2. 



16 Organization of Design Knowledge 

The main scenario shown below is used just for selecting the design subject. Note that in this scenario there 
is only one rule which will be unconditionally executed, because its left hand side (LHS) is null. Its right 
hand side (RHS) has two clauses which will be executed sequentially in this order. The variable Subject 
is local and supposed to be instantiated to one of the design subject names. 

OBJECT 
scenario_name(Subject); 

SCENARIO main; 
BEGIN 

select(scenario_select, Subject) & 
select(Subject); 

SCENARIO END; 

The scenario for selecting subscenarios might be coded in a following way. By declaring 
design command predicate at the REPORTED section, IUI is ready for accepting commands from the 
user. (nie actions of IUI for this predicate must be described in detail in a scenario for IUI.) The rule holds, 
only if there is no user input that makes the design_ command predicate either true or false. Because of 
this, unless there is an input of design_ command it tries to get an input from the user. 

SCENARIO scenario_select(Subject); 
REPORTED 

ASK 
design_command() BY IUI; 

accept_design_subject() TO IUI; 
message() TO IUI; 

BEGIN 
%design_command(Subject) -> 

message("What do you want to design?") & 
accept_design_subject(Subject) & 
design_command(Subject); 

SCENARIO END; 

The next one is the main scenario for designing a winch. First, it asks the name of a winch. Then, it asks 
approximate load specification and it decides the winch type. After that, it proceeds to detail designing, such 
as designing of the wire, the gear mechanism, the safety mechanism, and the casing. Note that this rule will 
be executed only once, because at the end there is a success build-in predicate which tenninates the 
execution of this scenario. If we think about iteration of the designing caused by unsatisfaction of the 
specifications, having only this rule is insufficient; we need to have either extra rules for error handling or 
some scenarios which are active when this scenario is used (see SECTION 4.3). 

SCENARIO winch_design(); 
OBJECT 

winch(Winch); 
BEGIN 

select(ask_design_object_name, "winch", Winch) & 
select(ask_approximate_load, Winch) & 
select(decide_winch_type, Winch) & 
select(wire_design, Winch) & 
select(gear_mechanism_design, Winch) & 
select(safety_mechanism_design, Winch) & 
select(casing_design, Winch) & 
success; 

SCENARIO END; 

The next scenario describes how to get a user input. Firstly, it asks the user to give a name of the design 
object by issuing a prompt. It is important that IUI knows only that what is required is a character string. 
Therefore, it can test the input syntactically. This means the semantical check for the input is left to other 
scenarios, although it can reject, for instance, an input of a point from the mouse. Needless to say, IUI 
should have scenarios for mes sage and accept_ string predicates. 
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SCENARIO ask_design_object_name(Name, Object); 
OBJECT 

ANY_OBJECT(Name); 
ANY_OBJECT(Temp); 

FUNCTION 

ASK 
name[Object] =STRING; 

accept_string() TO IUI; 
message() TO IUI; 

BEGIN 
message("What is the name of ", Name, "?") & 
accept_string(Temp) & 
name [Object] := T'emp & 

success; 
SCENARIO END; 

4.2.2. Realization of Flexible User Interface 

17 

As described in SECTION 2.1, illCAD system should realize flexible and intelligent user interface. Here, we 
show how it will be achieved by IDOL. 

Suppose we are going to design a cube shown in FIGURE 7. It has the following attributes and constraints. 

- depth (d > 0) 
- height (h > 0) 
- width (w > 0) 
- volume (v =d* h * w) 
- color (c =one of red, blue, yellow, and black) 
- material (m =one of steel, aluminum, plastic, and wood) 
- unit weight (u =an attribute of the material, > 0) 

h 

, 
, , 

; 

, , 

I 

).. , ... , 
... ... 

FIGURE 7. Design of a Cube 

v 
c 
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wt 
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- weight (wt=u * v) 

The scenario to design this cube can be described as follows. 

OBJECT 
cube(Cube); 
material(steel); material(aluminum); 
material(plastic); material(wood); 
color(red); color(blue); color(yellow); color(black); 

FUNCTION 
w[Cube] REAL; h[Cube] = REAL; d[Cube] = REAL; 
v[Cube] w[Cube} * h[Cube] * d[Cube]; 
m[Cube] SELECTED FROM steel, aluminum, plastic, wood; 
u[Cube] unit_weight[m[Cube]]; 
wt[Cube] = u[Cube] * v[Cube]; 

SCENARIO cube_design(Cube); 
OBJECT 

real_positive_numbe~(X); 

material(M); 
color(C); 

REPORTED 
attribute_input() BY IUI; 

ASK 
attribute_req() TO IUI; 

BEGIN 
%fixed(depth) & attribute_input("Depth", X) -> 

fixed(depth) & d[Cube] := X; 
%fixed(height) & attribute_input("Height", X) -> 

fixed(height) & h[Cube] := X; 
%fixed(width) & attribute_input("Width", X) -> 

fixed(width) & w[Cube] := X; 
%fixed(material) & attribute_input("Material", M) -> 

fixed(material) & m[Cube] := M; 
%fixed(color) & attribute_input("Color", C) -> 

fixed(color) & c[Cube] := C; 
fixed(depth) & fixed(height) & fixed(width) -> 

fixed(volume); 
%fixect·(volume) & attribute_input ("Vs>lume", X) -> 

fixed(volume) & v[Cube] := X; 
fixed(material) & fixed(volume) -> 

fixed(weight); 
%fixed(depth) & fixed(volume) -> 

attribute_req("Depth", v[Cube]/w[Cube]/h[Cube], X) & 
d[Cube] := X & fixed(depth); 

%fixed(width) & fixed(volume) -> 
attribute_req("Width", v[Cube]/d[Cube]/h[Cube], X) & 

w[Cube] := X & fixed(width); 
%fixed(height) & fixed(volume) -> 

attribute_req("Height", v[Cube]/d[Cube]/w[Cube], X) & 
h[Cube] := X & fixed(height); 

fixed(weight) & fixed(color) -> 
success; 

SCENARIO END; 

Using this scenario, now the user can input attributes of a cube, such as the depth, height, width, etc., in any 
order. Note that once an attribute, for example, the height, is fixed, further input concerning the height is 
blocked, because a fact fixed (height) is asserted. (However, at this moment there is no way to change 
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attributes which were once fixed.) The execution of this scenario is completed when both the color and the 
volume is fixed. 

An interesting feature of this scenario is that the user is allowed to input the value of volume independently 
of the width, the depth, and the height in any order. This suggests that it is possible that the volume is 
specified without particular values for the width, the depth, and the height The constraint among these four 
variables will be automatically satisfied by calling a subscenario, attribute req, which is supposed to 

get a value of an attribute from the user showing an expected value in the second argument. 

In case the designer specified a value for the depth, contradictory to the constraint, the assignment 
d [Cube] : = x and hence the rule fail. This causes eventually a no-more-rule situation and the execution 
of scenario terminates. In an upper level scenario which called this scenario this situation can be detected, 
because there will be no fixed (volume) clause asserted in DB. It should be handled by error handling 
facility of the multiworld mechanism (see SECTION 4.3.2). · 

4.3. Multiworld Mechanism 

In this section we discuss an important issue in IDDL, multiworld mechanism. The multiworld mechanism 
(see FIGURE 5 in SECTION 3.6) is useful for having multimodels derived from one central metamodel, 
exception handling (such as errors and user's questions), etc. 

4.3.1. Realization of Multiworld Mechanism 

The use built-in predicate passes control to a subscenario (FIGURE 5). The following scenario shows how 
it is achieved. 

SCENARIO scnl; 
OBJECT 

p(a); 
q(b); 

BEGIN 
p(A) -> r(A); 
q (A) -> s (A) ; 

r(A) -> use(scn2, A); 
SCENARIO END; 

SCENARIO scn2(A); 
OBJECT 

an_object (A); 
BEGIN 

u(A) -> v(A); 
SCENARIO END; 

If in the subscenario scn2 there occurs so-called no-more-rule situation, automatically control is given 
back to the parent scnl. Note that at this moment only objects instantiated to A can be used in scn2. In 
this case, only a is used in scn2. Ifin scn2, either success or fail predicate is asserted, the use 
predicate in scnl itself is regarded as succeeded or/ailed. (See FIGURE 8.) 

This means by using scn2 we can create a different world, w 2 , from that of scnl, Wt· In w2 , we can 
only use an object a. Therefore, there is property inheritance of a from Wt to w2 and vice versa. Note 
that, however, any operations resulting from w2 can be erased in Wt by making the execution of scn2 

failed. 

At the same time, this also means we can write metalevel knowledge for controlling at a global level in the 
parent scenario. Built-in predicates, such as select, use, success, and fail, are originally used for the 
controlling purpose; i.e., they are denoting the metalevel knowledge. By using those predicates, we can 
write reasoning control knowledge in higher level scenarios. This is one of the important features of IDDL. 

Global objects can ·be manipulated in both parent scenarios and subscenarios, while local objects can be 
generated and manipulated only in subscenarios. This means changes of global objects from a subscenario 
are visible to the parent scenario but those of local objects are invisible. Thus, we have now complete 
separation of subworlds in subscenarios from the world of the parent scenario. 
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FIGURE 8. Multiworld Mechanism 

4.3.2. Exception Handling 

Organization of Design Knowledge 
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Control flow 

There can be several possibilities that the system faces an unexpected input from the user; i.e., the system 
cannot find the most appropriate rule from the current scenario. IDDL's multiworld mechanism enables also 
to deal flexibly with such exceptions including errors. It can be also used for handling questions from the 
user. 

These situations can be classified as follows. 

( 1) The user made an error. 

(2) The user is talking about something different, or the system does not know what the user is 
thinking about. 

(3) The user does not know the proper usage of the system. 

( 4) The user asks questions. 

By writing error handling scenarios which can be used commonly by subscenarios in the parent scenario, we 
do not need to write all the exception handling rules in individual scenarios. Suppose the user inputs an 
unexpected command. If the system cannot find the most appropriate rule, it is regarded as a no-more-rule 
situation. In this case, the control is returned to the parent scenario (see FIGURE 8). 

4.3.3. Realization of Metamodel Mechanism 

As pointed out in CHAPrER. 2, one of the key issues of illCAD is a mechanism for describing the central 
model of the design object (metamodel) and for deriving dedicated models for evaluation from it. In this 
section, we discuss how this mechanism is supported in IDOL by the multiworld mechanism. 

Imagine we have a machine part which looks like a triangle [To Y87]. FIGURE 9 (a) is its two dimensional 
representation; in FIGURE 9 (b), one of its corner is chamfered, while in FIGURE 9 (c) it is rounded. From a 
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A 
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FIGURE 9. Three Similar Figures 

view point of a mechanical engineer, we can say that FIGURE 9 (a) is a rough sketch of this part and that 
FIGURE 9 (b) and ( c) are more detailed drawings for manufacturing. This means that these three are basically 
identical and that, if something is changed in FIGURE 9 (a), this change should propagate to other two 
properly and vice versa. In this context, FIGURE 9 (a) is the metamodel and (b) and (c) are models derived 
from (a). 

The following example shows that IDDL allows to have different models derived from the metamodel. (To 
write this example, [ArW87] was a great help.) 

A polygon POLG is generated by the following rules. (In the following scenario, PO.LG means a polygon; 
strings beginning with Land 1 indicate lines; P and p indicate points.) 

OBJECT 
line(L) <-> 

point(Pl) & point(P2) & 
has(L, Pl) & has(L, P2) & 
different(Pl, P2) & 
endpoint(L, Pl, P2); 

SCENARIO create_a_triangle(T); 
OBJECT 

point(P); point(Pl); point(P2); 
line(L); line(Ll); 
integer(M); integer(N); 
ANY_OBJECT(POLG); 

BEGIN 
polygon(T, 3) & success; 
polygon(POLG, N) -> 

startpoint(P) & endpoint(L, P, Pl) & 
M := N - 1 & create(POLG, L, M); 

create(POLG, L, 0) -> 
startpoint(P2) & endpoint(L, Pl, P2) & 
has(POLG, L) & has(POLG, Pl) & has(POLG, P2); 

create(POLG, L, N) -> 
endpoint(L, Pl, P2) & 
has(POLG, L) & has(POLG, Pl) & has(POLG, P2) & 
M := N - 1 & endpoint(Ll, P2, P3) & 

different(L, Ll) & create(POLG, Ll, M); 
SCENARIO END; 

Here, a fact, start point (P) , is used for marking one of the vertices of a polygon, so that we can draw 
edges. A predicate, endpoint (L, Pl, P2), reads a line L has two end points, Pl and P2. A 
predicate, has (A, B), is representing· so-called a part-assembly relationship that A owns B. A predicate, 
different (X, Y), is true when x and Y are referring to different objects; otherwise, false. 
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A triangle t is created by create_a _triangle as follows; 

select(create_a_triangle, t). 

Consequently, the following facts will be asserted and added to DB. 

startpoint(pl). 
has(t, 11). has(t, 12). has(t, 13). 
has (t, pl). has (t, p2). has (t, p3) • 
has(ll, pl). has(ll, p2). has(l2, p2). 
has(l2, p3). has(l3, p3). has(l3, pl). 
point(pl). point(p2). point(p3). 
endpoint(ll, pl, p2). 
endpoint(l2, p2, p3). 
endpoint(l3, p3, pl). 

Now, let us consider rounding the corner p2. (Chamfering is described in the same way.) Fust of all, we 
need knowledge for rounding a comer (FIGURE 10). 

L2 

SCENARIO round_a_corner(P, Ll, L2, A, Q, R, L3, L4); 
OBJECT 

point(P); point(Q); point(R); 
line(Ll); line(L2); line(L3); line(L4); 
circle(C); arc(A); 

BEGIN 
on(Q, Ll) & different(P, Q) & 
on(R, L2) & different(P, R) & 
tangent(Q, C, Ll) & tangent(R, C, L2) & 
endpoint(A, Q, R) & has(C, A) & 
has(A, Q) & has(A, R) & 
endpoint(Ll, S, P) & endpoint(L3, S, Q) & 
tangent(Q, C, L3) & 
endpoint(L2, P, T) & endpoint(L4, T, R) & 
tangent(R, C, L4) & 

Q 

R 

L4 

L3 

(a) Before Rounding (b) After Rounding 

FIGURE 10. Rounding a Corner 

s 
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convex_arc(A, L3, L4) & 
success; 

SCENARIO END; 
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A predicate, on (P, L), holds, when a point P is on a (definite) line L. A predicate, tangent (P, c, 
L), holds, when a line Lis tangent to a circle Cat a point P. A predicate, convex_arc (A, L3, 
L4) , holds, when an arc A form a convex arc comer of L3 and L4. 

Let remove and add predicates be explicit removal and addition of objects to and from DB. Then, we 
can actually round a comer by the following assertion. 

select(round_a_corner, p2, 11, 12, A, R, Q, Ll, L2) & 
remove(p2) & remove(ll) & remove(l2) & 
add(A) & add(R) & add(Q) & add(Ll) & add(L2). 

After this assertion, we have the following facts in DB. 

tangent(q, cir, 11). tangent(r, cir, 12). 
tangent(q, cir, ml). tangent(r, cir, m2). 
circle(cir). has(cir, a). 
convex(a, 13, 14). 
arc(a). 
has(ml, pl). has(ml, q). 
has(m2, p3). has(m2, r). 
endpoint(ml, pl, q). endpoint(m2, p3, r). 
endpoint(a, q, r). 
has(a, q). has(a, r). 
point(q). point(r). 
on(q, 11). on(r, 12). 
start point (pl) • 
has (t, 13) . has (t, pl) . has (t, p3) . 
has(l3, p3). has(l3, pl). 
point(pl). point(p3). endpoint(l3, p3, pl). 

Comparing the state of DB before the rounding and after, we find out the following properties of our 
metamodel mechanism. 

(1) We have obtained complete separation of the states of DB before the rounding and after. This can 
be formalized as follows. Before the rounding operation we had a central model M (i.e., the first 
state of DB), and after the operation it became Mr (i.e., the second state of DB). The transition 
from M to Mr was carried out by rounding operations, R. We can write it as; 

Mr=R(M). 

(2) The fact that M and Mr are separately established in different worlds means we have complete 
separation of models as well as inheritance of attributes and their changes. Changes in Mr can be, 
for instance, propagated to M. Therefore, if we regard M as the central model which is necessary 
for the integration of CAD systems, we can easily obtain different models by having a scenario to 

derive them from M, such as R (see FIGURE 11). (Which objects or predicates can be seen from 
the parent scenario is totally dependent on the declaration of objects, i.e., local or global.) 

(3) The multiworld mechanism provides a try-and-error method. Suppose for some reason the 
procedure to round a comer failed. All the effects of this procedure will be removed, if it has 
failed. 

(4) There were predicates, like on (P, L), which cannot be directly described only by predicate 
logic. This problem is solved by introduction of functions. For instance, a predicate on (P, L) 
is defined by 

on(P, L) = { point(P); 
line(L); 
a[L]*x[P]+b[L]*y[P]+c[L] 0;} 
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Metamodel 

triangle(t) startpoint(p 1) ...... 
M has(t, 11) has(t, 12) ...... 

point(pl) point(p2) ...... 

Ro unding Knowledge round_a_comer(P, LI, L 2, A, Q, R, L3, L4) 
) remove(p2) remove(ll 

R add(A) add(R) 
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tangent(q, cir, 11) ...... 
~ circle{ cir) ...... 

point(pl) point(p3) ...... 
Model 

FIGURE 11. Metamodel and Model 

where x [ P ] and y [ P ] stand for the coordinates of the point P, and a [ L] , b [ L] , and c [ L] 
stand for the coefficients of the line equation of L. 

4.4. Distributing Knowledge in the WCAD Architecture 

4.4.1. Limitation of the Pseudo Language (IDDL) 

In SECTION 4.1 we analyzed design knowledge. We counted up eight categories of design knowledge which 
are shown below. 

(A) Knowledge about existing entities. 

(B) Knowledge to determine the inner structure based on fundamental principles (such as physics) and 
to verify the feasibility of the existence of entities. 

(C) Knowledge to manipulate entities for detailing without changing the inner structure of an entity 
drastically. 

(D) Knowledge to combine existing entities without changing their inner structure. 

(E) Knowledge to select proper evaluation to check the functions of the design solution. 

(F)" Knowledge to derive models from the metamodel. 

(G) Knowledge for evaluation of models. 

(H) Knowledge to judge the result of evaluation. 

Although our pseudo language, or IDOL, is a very simple language, it has several powerful features (see 
CHAPTER 3). 

(1) Representing design objects by means of features to describe objects, predicates, and functions. 
An object corresponds to an entity; a function to an attribute of an entity; a predicate to a 
relationship between entities. 

(2) Representing design processes as scenarios, i.e., sets of rules, based on deductive reasoning. If we 
regard IDOL as a deductive reasoning system, objects, functions, and predicates are axioms and 
scenarios are rules. 

(3) The multiworld mechanism to allow different kinds of views (or models) for various purposes; for 
instance, derivation of different models from the metamodel, implementation of backtracking 
mechanism, etc. 
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However, these features do not necessarily mean that IDOL has capability to describe all the knowledge 

from (A) to (H). Thus, there arises an interesting question, 

"How can we incorporate those different types of knowledge in the l/ICAD architecture?" 

For instance, the analogy in (2) makes us realize that by using IDOL (or similar language) we are not able to 

create what will not be deduced from the axiom and rules defined beforehand. Furthermore, empirical 

knowledge, such as knowledge (H), might be very difficult to describe in a predicate logic based language 

such as IDOL, because that type of knowledge requires dedicated knowledge representation languages if 

possible at all. This suggests, although IDOL is powerful, still we cannot write down everything in it and we 

need to distribute the knowledge in the architecture of ill CAD. Let us examine this issue in more detail here. 

(A) Knowledge about existing entities. An existing entity can be represented as an object in IDOL. Its 

attributes may be described as functions. Predicates denote its relationships between other 

entities. These descriptions are stored in DB through IDDS. Note this type of knowledge can be 

declarative and, in machine design, can be sometimes given even in a form of catalogues. 

(B) Knowledge to determine the inner structure based on fundamental principles and to verify the 
feasibility of the existence of entities. This type of knowledge is rather difficult to describe in 

IDOL, because it may include modification and generation of new objects and predicates, which 

means operations to modify and add descriptions about new entities to knowledge (A). Therefore, 

it will be embedded outside IDDS, for instance, in an external and independent knowledge based 

system, rather than in scenarios. 

(C) Knowledge to manipulate entities for detailing without changing the inner structure of an entity 
drastically. This can be described in IDOL together with knowledge (A), since it is typical design 

process knowledge to which the concept of scenarios especially is appropriate. However, this 
knowledge may include very heuristic or empirical knowledge. 

{D) Knowledge to combine existing entities without changing their inner structure. This type of 

knowledge typically appears in so-called combination design and its considerable part can be 

reduced into constraints solving, optimization, linear programming, etc. Therefore, in case it can 

be represented as routine design process knowledge like knowledge (C), IDOL can be used; 

otherwise, it will be incorporated in external applications. 

(E) Knowledge to select proper evaluation to check the functions of the design solution. In III CAD it 

is written in IDOL and stored in DB as scenarios for SPV and API. Note that to perform such 

evaluations we might need knowledge about the fundamental principle such as physics like 

knowledge (B). 

(F) Knowledge to derive models from the metamodel. This knowledge can be also written in IDOL 

and stored in DB as scenarios like knowledge (C), since we are able to know about evaluation 

methods beforehand. 

(G) Knowledge for evaluation of models. Since application programs for evaluation, such as FEM 

programs, are usually very huge and can be only utilized as external packages, this will be placed 

outside IDOL. 

{H) Knowledge to judge the result of evaluation. This is typically heuristic or empirical knowledge in 

machine design. It might be even inappropriate to leave it with CAD and should be judged by the 

designer. 

Although IDOL is a simple but yet powerful language, it is obviously difficult to write down all the design 

knowledge. There are two reasons for this. 

1. IDDL's scenario mechanism might be suitable to describe procedural knowledge which can be 

nevertheless non-deterministic rather than heuristic one which is not only non-deterministic but 

also hard to formalize. Heuristic knowledge can be implemented, heavily depending on 

backtracking, unification, etc. Although IDOL can support such features, practically its 

performance cannot be so good as that of dedicated reasoning systems tuned for a particular 

problem. 

2. In SECTION 4.3.3 we have seen a predicate on (P, L) is implemented arithmetically rather than 

logically. If we have a predicate that requires much more complicated calculations, the 
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performance of the logical implementation is almost hopeless. We should use applications written 
in conventional languages through API. 

Therefore, these two types of knowledge will be placed outside IDOL in illCAD as external applications. 
This creates, however, another problem, i.e., how to realize communication between knowledge distributed 
in the illCAD architecture from scenarios to applications. The next section deals with this problem. 

4.4.2. Mechanism for Distributing Knowledge 

In SECTION 2.3, we did not particularly specify what kind of applications were necessary for illCAD. We 
assumed, as application programs for machine design, three dimensional modeling system, characteristics 
analysis programs (FEM, etc.), and so-called knowledge based systems for tasks which requires heuristic 
knowledge, etc. Together with knowledge in these applications, knowledge written in scenarios plays an 
important role in IIICAD. In other words, all those subsystems should form special distributed knowledge 
libraries which realize the integration of knowledge. 

The logical connection between applications and IDDS is done by API and an application program is 
regarded as a predicate assertion mechanism. FIGURE 12 illustrates this idea. (Note that this feature does not 
contradict to the definition of the current version ofIDDL defined in CHAPTER 3. Even if the REPORTED or 
ASK section of a scenario specifies the origin or destination of predicate assertion, this mechanism can be 
incorporated.) 

Suppose in a scenario for SPV we need to know whether p ( c) holds or not. Either true, false, or unknown 
is returned to such an inquiry. If true or false is returned, variables in a clause are instantiated. This is first 
asked to DB (arrow 1 in FIGURE 12). DB keeps all the asserted clause, until objects in the clause are 
changed. If for some reason DB does not know it, i.e., if unknown is returned, SPV asks API (arrow 2). 
API, given its own scenario, knows to which application it should ask and invokes that particular application, 
in this case APl (arrow 3). If APl either does not know or fails to answer, SPV asks IUI, i.e., the designer 
(arrow 4). 

p(c)? 
4 

Scenario 

r(Y) -> p(X). 

p(X) -> q(X, Y) & ... 

l p(c)? 

DB 

p(a) 

q(a, b) 

p(c)? 
2 

Scenario 

APl: p(X) 

AP2:q(X, Y) 

AP3: s(X) 

APJ 

FIGURE 12. Knowledge Distribution and Organization by Predicate Assertion Mechanism 
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An important issue here is that, from a viewpoint of SPY, invoking applications, asking DB, and asking IUI 
can be treated equally; they are equal in the sense of being able to confirm a predicate. This usage of 
applications suggests how to develop a IDCAD system; it will not be developed on top of existing CAD 
systems. We must first decompose an existing CAD system into small modules according to their functions. 
Each module becomes a predicate assertion mechanism for a IDCAD system. In this context, such small 
modules form distributed knowledge libraries. 

5. Concluding Remarks 

(1) The concept of IDCAD was proposed. The IDCAD system has intelligent components, such as 
Supervisor (SPY), Application Program Interface (API), and Intelligent User Interface (IUI), and 
Integrated Data Description Scheme (IDDS) for the integration of the design knowledge. It is based 
on a design process model called metamodel evolution model. 

(2) The system is driven by scenarios written in a language called IDOL based on predicate logic and 
object oriented programming paradigm. 

(3) The SPY mechanism was discussed based on scenarios written in IDOL. We could show that illCAD 
would provide a flexible user interface and an integrated environment for describing the design 
knowledge. 

( 4) The multiworld mechanism of scenarios was illustrated. This gives capability of global design process 
control, metamodel description and derivation of models from the metamodel, exception handling, and 
soon. 

(5) Design knowledge was analyzed. There are eight kinds of knowledge. Because it is rather difficult to 
represent all in IDOL, distributing the design knowledge to applications is considered to be optimal. 

(6) A mechanism for organizing distributed design knowledge was illustrated. It will be actualized by a 
simple facility of IDOL. 

Concerning future work, we mention two issues. First, the specifications for IDOL should be further 
elaborated and implemented. We are in the process of developing an experimental version on Smalltalk-80 
[GoR83]. 

Second, much more efforts should be spent on capturing task specific knowledge. In case of machine design, 
there are several studies to represent heuristic knowledge in a more rational way, such as design 
methodology [Rod71]. We need formalization and computerization of that kind of methodology. It is 
pointed out that we need somewhat deeper knowledge [Mac86] to make the system understand the common 
sense knowledge of machine design and to make the system innovative. Qualitative physics [Bob84] is 
regarded as the starting point for this approach. These two views should be taken into consideration when 
we extend the IDOL specifications. 
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