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Due to its great efficiency and quantum resistance, public key cryptography based on Ring-LWE
problem has drawn much attention in recent years. A batch of cryptanalysis works provided
ever-improved security estimations for various Ring-LWE schemes, but few works discussed the
security of Ring-LWE cryptography from kleptographic aspect. In this paper, we show how to
embed a backdoor into a classic Ring-LWE encryption scheme so that partial bits of the plain-
text are leaked to the owner of the backdoor. By theoretical analysis and experimental obser-
vations, we argue that the klepto Ring-LWE encryption scheme with such backdoor is feasible

and practical.

Keywords: lattice-based cryptography; kleptography; public key encryption; ring learning with errors

Received 11 January 2018; revised 9 May 2018; editorial decision 11 May 2018
Handling editor: Albert Levi

1. INTRODUCTION

Kleptography, introduced by Young and Yung [1–4], is the
study of exploiting cryptographic backdoors to steal informa-
tion securely and subliminally. A typical klepto scheme is a
black-box implementation whose output should be indistin-
guishable from that of the legitimate cryptosystem for anyone
but the owner of the backdoor key. A klepto scheme can be
designed to leak the message, the private key or the state of the
pseudorandom number generator, and the attacker can decrypt
the leaked information using his backdoor key. After the dra-
matic revelations of Edward Snowden, the cryptographic
research community realized that kleptographic attack indeed
had been deployed and likely used for worldwide surveillance,
which rekindled the interest in kleptography.
With the threat that quantum computers pose to most of the

current cryptosystems, post-quantum cryptography has been
gaining much attention in recent years. Due to the great per-
formance and strong security guarantee, lattice-based cryptog-
raphy is considered as a desirable quantum-safe alternative to
classical schemes based on integer factorization or discrete
logarithms. NTRU and LWE are two most widely used fam-
ilies of lattice-based cryptography. NTRU [5] is one of the
earliest lattice-based schemes and has been standardized by
IEEE. Through more than 20 years’ study, NTRU is believed
very efficient and secure. However, the security of classical
NTRU relies on heuristic arguments and provably secure
NTRU variants [6–8] are impractical. LWE (Learning With
Errors) was introduced by Regev in [9]. In terms of compactness

and efficiency, Ring-LWE [10], an algebraic variant of LWE,
enjoys better popularity than usual LWE in practical applica-
tions. Moreover, Ring-LWE has been proved to be as hard as
certain worst-case problems over ideal lattices, and this provides
a firm theoretical grounding for the security of Ring-LWE
schemes. Therefore, Ring-LWE schemes seem to reach an ideal
balance between efficiency and security.
With the upcoming post-quantum cryptography standardiza-

tion by the NIST, it is pressing to provide a comprehensive
cryptanalysis for lattice-based cryptosystems. From the mathem-
atical and algorithmic aspects, people have developed various
attacks against lattice-based cryptosystems, such as lattice-
reduction attacks [11, 12] and combinatorial attacks [13, 14]. All
these cryptanalysis results seem to form a somewhat systemati-
cal methodology for estimating the security of lattice-based
cryptography. However, from the kleptographic aspect, there are
only few results related to lattice schemes. In [15], the authors
discussed a class of possible backdoors for NewHope, a Ring-
LWE key exchange. As claimed in [15], their backdoors apply
to fixed public parameter and can be prevented by the ‘nothing-
up-my-sleeve’ process which is to choose the public parameter
as the hash of a common universal string. In a very recent paper
[16], Kwant, Lange and Thissen targeted NTRU scheme [5] and
proposed a klepto scheme with an ECC-based backdoor. Also,
they discussed the impact of the NTRU backdoor and counter-
measures against the klepto scheme.
In this paper, we show how to modify a classic Ring-LWE

encryption scheme into a klepto scheme. The backdoor we
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set is also based on Ring-LWE itself which makes the whole
scheme accord with post-quantum setting. Our technical idea
is to ‘encode’ a polynomial of low degree but large coefficients
into a new polynomial of high degree but small coefficients.
Exploiting this idea, we are able to infect the Ring-LWE cipher-
text using a polynomial of small coefficients so that the infected
ciphertext can be translated into a backdoor ciphertext, and at
the same time the decryption would not be affected too much
by this modification. By studying the backdoor theoretically and
experimentally, we claim that such a klepto scheme is practical.
The rest of this paper is organized as follows. After some

preliminaries in Section 2, we introduce our Ring-LWE
encryption backdoor in Section 3. In Section 4, we analysis
the impact and quality of our backdoor theoretically. In
Section 5, we provide experimental results to check the qual-
ity of the backdoor. Finally, we conclude in Section 6.

2. PRELIMINARIES

2.1. Notations

For an integer q 2³ , we identify q with q0, [ ) Ç . The
ring  that we will work with is a power-of-2 cyclotomic
ring, i.e. X X 1n = [ ]/( + ) where n is a power of 2. Let

X X 1q q
n = [ ]/( + ). For any t t Xi

n
i

i
0
1 = å Î=

- , we call
t t, , n

n
0 1 ( ¼ ) Î- the coefficient vector of t . We denote by
t  (resp. t ¥  ) the Euclidean (resp. ℓ¥) norm of the coeffi-
cient vector of t .
A function f n( ) is negligible, if f n o n c( ) = ( )- for any con-

stant c. Generally, we denote by nnegl( ) as a negligible function
with respect to n. We say that a probability is overwhelming if it
is n1 negl- ( ). The notations log( )· and ln( )· represent the
base 2 and natural logarithms, respectively.
We write z D↩ when the random variable z is sampled

from the distribution D, and denote by D x( ) the probability
of z x= . For a finite domain E , letU E( ) be the uniform dis-
tribution over E . For two distributions D1, D2 over a same
discrete domain E , their statistical distance is D D;1 2D( ) =

D x D xx E
1

2 1 2å ( ) - ( )Î ∣ ∣. We say D1 and D2 are statistically
close with respect to n if D D;1 2D( ) is negligible.

2.2. Kleptography

The core of a klepto scheme is a SETUP (Secretly Embedded
Trapdoor with Universal Protection) that was introduced by
Young and Yung in [1].

DEFINITION 2.1 (Adapted from Definition 1 in [1]). Let C be
a publicly known cryptosystem. A SETUP mechanism is an
algorithmic modification made to C to get C¢ such that

• The input of C¢ agrees with the public specifications of
the input of C .

• C¢ computes using the attacker’s public encryption
function E (and possibly other functions as well), con-
tained within C¢.

• The attacker’s private decryption function D is not
contained within C¢ and is known only by the attacker.

• The output of C¢ agrees with the public specifications
of the output of C . At the same time, it contains pub-
lished bits (of the plaintext or user’s secret key) which
are easily derivable by the attacker but are otherwise
hidden.

• Furthermore, the output of C and C¢ are polynomially
indistinguishable to everyone (including those who
have access to the code of C¢) except the attacker.

As explained in [16], the SETUP still works well in prac-
tice even if we use a relaxed Condition 5 in which the output
of C and C¢ are only required to be fairly close rather than
polynomially indistinguishable, because the end user does not
know the code of C¢ and often does not know the distribution
of the output of C exactly. We will follow the relaxed
SETUP setting later.

2.3. Gaussian measures

We denote by Ds the discrete Gaussian distribution over 

with deviation s.1 Let x
x

exp
2

2

2
r

s
( ) =

æ

è
ççç
-

ö

ø
÷÷÷÷s , then the prob-

ability of x Î under Ds is D x x r r( ) = ( )/ ( )s s s where
xx r r( ) = å ( )s sÎ . For X X 1n = [ ]/( + ), let D ,s be

the distribution of v Î where each coefficient of v is
sampled from Ds independently.
For 0 > , let s vmin 0 v s1 2 h r( ) = { > å ( ) £pÎ /( )  ∣

1 + } that actually equals the so-called smoothing para-
meter of n . Now we recall some basic properties of
Gaussian.

LEMMA 2.1 (Adapted from Lemma 3.3 in [17]). Let
X X 1n = [ ]/( + ) and 0, 1 Î ( ). Then h ( ) £

nln 2 1 1  p( ( + / ))/ .

LEMMA 2.2 (Lemma 1.5 in [18]). Let X X 1n = [ ]/( + ).

Let c 1> and C c
c

exp
1

2
1

2
=

æ

è
ççç

- ö

ø
÷÷÷÷
<· . Then

y c n CPry D
n

, s( ³ ) £s  ↩ .

LEMMA 2.3 (Adapted from Lemma 10 in [19]). Let

X X 1n = [ ]/( + ) and
m

0,
1

2 1
 Î

æ
è
ççç +

ö
ø
÷÷÷. For

z z, , m1 ¼ Î and 2s h p³ ( )/ , we have

1Discrete Gaussian is sometimes defined by its width s 2ps= .
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In particular, the above probability is negligible for
t nlogw= ( ).

2.4. Ring-LWE

For s qÎ and y a distribution over , the Ring-LWE dis-
tribution As,y is the distribution over q q ´ obtained by
sampling the pair a as e q, mod( + ) where a U q( )↩ and
e y↩ . The search Ring-LWE problem is to find s given
arbitrarily many independent samples from As,y. The decision
version is defined as follows: given some samples from As,y
where s y↩ and the same number of samples from
U q q ( ´ ), distinguish them with an advantage n1 poly/ ( ).
As shown in [10], for certain parameters and error distribu-
tion y, both search and decision Ring-LWE problems are as
hard as the worst-case approximate shortest vector problem
with polynomial factor over ideal lattices. Currently, it is
believed that Ring-LWE with proper parameters is against
subexponential quantum attacks. We refer to [10, 20] for
more details of Ring-LWE.
The Ring-LWE encryption scheme that we will discuss

later was first described in [10]. The issues of parameter
selection and implementation details were well-studied in
[21]. We denote by RLWEn q, ,s the Ring-LWE encryption
scheme specified by the tuple n q, , s( ) where n is a power of
2, q is the modulus,2 and s is the deviation of the discrete
Gaussian used as Ring-LWE error distribution. We may omit
the subscripts when they are clear from the context. The ring

X X 1n = [ ]/( + ) and the plaintext space is 2 . We list
below three main algorithms, i.e. key generation, encryption
and decryption:

• RLWE-KeyGen: Choose a U q( )↩ and s e D, ,s↩ .
Let b as e q= + Î . The public key is the pair
a b, q q ( ) Î ´ , and the secret key is s Î .

• RLWE-Enc m( ): Choose r e e D, ,1 2 ,s↩ . The cipher-
text is

u v ar e br e
q

m, ,
2

.q q1 2  ( ) =
æ
è
ççç

+ + +
ê

ë
ê
ê

ù

ú
ú
ú

ö
ø
÷÷÷ Î ´

• RLWE-Dec u v,(( )): Calculate m v us qmod= - .
The coefficients of m can be recovered by rounding

the coefficients of m back to either 0 or
q

2

ê

ë
ê
ê

ù

ú
ú
ú
, whichever

is closest modulo q.

For appropriate parameters, it can be shown (see [20]) that
re e e s2 1+ - ¥  would be less than

q

4
with overwhelming

probability. Notice that

v us re e e s
q

m q
2

mod ,2 1- = + - +
ê

ë
ê
ê

ù

ú
ú
ú

thus we know that decryption is correct with overwhelming
probability.
Assuming the hardness of Ring-LWE, it follows that the

Ring-LWE encryption scheme is semantically secure and the
ciphertext is pseudorandom, which was explained in [20].

3. THE BACKDOOR OF RING-LWE ENCRYPTION

In this section, we will propose a modified Ring-LWE
encryption scheme with a backdoor using a SETUP that is
based on a smaller Ring-LWE scheme. By setting different
parameters, the klepto Ring-LWE scheme leaks a different
proportion of the message to the third party owning the back-
door key.
The klepto scheme is specified by two sets of parameters:

the public one is n q, , s( ) determining the Ring-LWE encryp-
tion scheme and the secret one is n q, , ,s t( ¢ ¢ ¢ ) determining
the Ring-LWE-based backdoor with parameter t for adjusting
the proportion of leaked message. To make the backdoor
workable and compact, we set n n¢ < and n nt £ / ¢.
Let X X 1n = [ ]/( + ) and X X 1n ¢ = [ ]/( + )

¢
where

n is a power of 2 and n¢ is a factor of n. We identify a poly-

nomial and its coefficient vector. Let k n n= / ¢, p q k
1

= é
ê
ê ¢

ù
ú
ú and

d 2= t. Now we are to define two maps that will be used in
encryption and decryption algorithms. The first one is that

v v v v v v

:

, , , , , , ,

q p

n n

ext

0 1 1 0 1 1

 q ¢ 

( ¢ ¢ ¼ ¢ ) ( ¼ )

¢

¢- -↦

where v v vik ik ik k1 1( )+ + - is the p-adic expansion of vi¢ for
i n0, 1, , 1= ¼ ¢ - . The second one is that

v v v v v v

:

, , , , , , ,
d

n n

com 2

0 1 1 0 1 1

 q  ¢

( ¼ ) ( ¢ ¢ ¼ ¢ )- ¢-↦

where v v vi i i1 1( )t t t t+ + - is the 2-adic expansion of vi¢ for
i n0, 1, , 1= ¼ ¢ - . It can be observed that extq extends a
polynomial in

q
¢ ¢ to a polynomial in  of bounded infinity

norm and comq compresses the first nt ¢ bits of a binary poly-
nomial in  into a polynomial in d . Furthermore, it is
worth noting that extq is injective and easy-to-invert, and so is

comq restricted to 0, 1 0n n n{ } ´t t¢ - ¢.

2In practice, the modulus q is usually chosen to be a number of special
property, such as a prime congruent to 1 modulo n2 , which leads to a faster
implementation.
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We also introduce a slightly modified Ring-LWE encryp-
tion, denoted by RLWE’n q, , ,s t , whose plaintext space is d .
The key generation algorithm is exactly the same as that of
RLWEn q, ,s. The encryption and decryption algorithms are
listed as follows:

• RLWE’-Enc m( ): Choose r e e D, ,1 2 ,s↩ . The cipher-
text is

u v ar e br e
q

m, ,
2

.q q1 2  ( ) =
æ
è
ççç

+ + +
ê

ë
ê
ê

ù

ú
ú
ú

ö
ø
÷÷÷ Î ´

t

• RLWE’-Dec u v,(( )): Calculate m v us qmod= - .
The coefficients of m can be recovered by rounding

the coefficients of m back to a certain multiple of
q

2

ê

ë
ê
ê

ù

ú
ú
út
,

whichever is closest modulo q.

Intuitively, the modified Ring-LWE scheme works well under
proper parameters like the original Ring-LWE scheme. Further
discussion will be shown in next section. We now describe three
main algorithms of the klepto Ring-LWE scheme.
The public key generation algorithm is totally the same as

that in Ring-LWE encryption. The kleptographic attacker
generated his backdoor Ring-LWE key pair a b s, ,(( ¢ ¢) ¢) and
picked nt ¢⌊ ⌋ bits to locate the leaked message in secret and in
advance. For simplicity, we will only discuss the case where
t is a positive integer and the attacker targeted the first nt ¢
bits of the message.3

The encryption algorithm is changed as follows:

• Klepto-Enc m( ).

(1) Run RLWE Enc mn q, , ( )s- and obtain the ciphertext
u v, q q ( ) Î ´ .

(2) Run RLWE Enc m’n q, , , comq( ( ))s t¢ ¢ ¢ - and obtain the
ciphertext u v,

q q
 ( ¢ ¢) Î ¢ ´ ¢¢ ¢.

(3) Calculate u u pext q = ( ¢) Î and v vextq = ( ¢) Î
p .

(4) Calculate u D Î with all coefficients in
p p2, 2[- / / ) such that u u pmod = where u =

u qmodu+ D ; if such uD does not exist, back to
1. Calculate v D Î with all coefficients in

p p2, 2[- / / ) such that v v pmod = where v =
v qmodv+ D ; if such vD does not exist, back
to 1.

(5) The ciphertext is u v, q q ( ) Î ´ .

There are two different decryption algorithms for the legit-
imate receiver and the attacker. The legitimate receiver uses
his secret key s and follows the original Ring-LWE decryp-
tion. The middle term he calculated is that

v us
v us s

re e e s s
q

m q
2

mod .

v u

v u2 1

-
= + D - - D

= ( + - ) + D - D +
ê

ë
ê
ê

ù

ú
ú
ú

When the magnitude of p q k
1æ

è
ççç=

é
ê
ê ¢

ù
ú
ú
ö
ø
÷÷÷ is significantly less than q,

it would still hold that s re e e s
q

4
v u 2 1D - D + + - <¥ 

with a high probability in practice and thus the receiver
recovers the message correctly in this case.
For the attacker, the decryption algorithm is shown as

follows:

• Klepto-Dec u v,(( )).

(1) Calculate u v u p v p, mod , mod(  ) = ( ) and then
calculate u v,

q
¢ ¢ Î ¢ ¢ such that u u ,extq = ( ¢)

v vextq = ( ¢).
(2) Run RLWE Dec u v’ ,n q, , , (( ¢ ¢))s t¢ ¢ ¢ - and obtain a

middle term m d¢ Î ¢ .
(3) Calculate m 0, 1 0n n nÎ { } ´t t¢ - ¢ such that m¢ =

mcomq ( ). The leaked message is m .

The backdoor discussed in [15] targets a Ring-LWE key
exchange, while ours targets a Ring-LWE encryption scheme.
More importantly, the backdoor in [15] modified the public
parameter a as an NTRU-like public key f g/ where f g, are
small polynomials, while our backdoor is embedded in the
implementation of encryption and never changes the public
key. Indeed, the public key could be generated elsewhere and
chosen to be the hash of a universal string, in which the back-
door in [15] does not work. Compared with the NTRU klepto
scheme [16], our klepto scheme is built on a totally different
cryptosystem and our backdoor follows post-quantum setting
rather than ECC setting. Furthermore, the parameter selection
and analysis of our backdoor are quite different from that in
[16], which is shown in the next section.

4. ANALYSIS OF THE BACKDOOR

In this section, we are to report on the impact and quality of
the backdoor in Ring-LWE encryption. More specifically, we
will discuss how the backdoor parameters affect the decryp-
tion for the attacker and legitimate receiver, how much
infected ciphertexts behave like uninfected ones and how
middle terms in decryption behave different with respect to
infected and uninfected ciphertexts.

4.1. Decryption failures for the attacker

There are two kinds of operations in backdoor decryption:
inversions of extq and comq and a modified Ring-LWE decryp-
tion. The decryption failure of backdoor decryption is3For different targeted bits, we only need to modify the map comq .
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equivalent to the decryption failure of the modified Ring-
LWE scheme. By a routine computation, we have that the
middle term in the modified Ring-LWE decryption is

v u s r e e e s
q

m q
2

mod .2 1¢ - ¢ ¢ = ¢ ¢ + ¢ - ¢ ¢ +
ê

ë
ê
ê
¢ ù

ú
ú
ú

¢ ¢
t

Thus, a successful decryption relies on the fact that r e¢ ¢ +

e e s
q1

2 22 1¢ - ¢ ¢ <
ê

ë
ê
ê
¢ ù

ú
ú
út¥ . It then leads to that the probability of

decryption failure for the attacker is

P r e e e s
q

Pr
1

2 2
attacker 2 1=

æ

è
çççç

¢ ¢ + ¢ - ¢ ¢ ³
ê

ë
ê
ê
¢ ù

ú
ú
ú

ö

ø
÷÷÷÷t¥ 

where r e e e s D, , , ,1 2 ,¢ ¢ ¢ ¢ ¢ s¢ ¢↩ .

We choose nln 2 1 1 2s p¢ ³ ( ¢ ( + / )) /( ) for a small

0,
1

7
 Î

æ
è
ççç

ö
ø
÷÷÷. For t nlog( )w¢ = ¢ , Lemmas 2.1 and 2.2 show

that

s r c n, s¢ ¢ ³ ¢ ¢   

with negligible probability. Combining Lemma 2.3, we have that

r e e e s t n c2 2 1 .2 1
2 2ps s¢ ¢ + ¢ - ¢ ¢ ³ ¢ ¢ ¢ ¢ +¥ 

with negligible probability. Consequently, when

q t n c2 2 2 1 2 , 11 2 2 1ps s¢ > ¢ ¢ ¢ ¢ + + ( )t t+ -

the probability Pattacker is negligible, which implies that the
attacker recovers correctly all targeted bits of message with
overwhelming probability.

4.2. Decryption failures for the legitimate receiver

In the klepto Ring-LWE encryption scheme, the ciphertext is
infected by two extra terms uD and vD , and the middle term
in decryption becomes

v us re e e s s
q

m q
2

mod .v u2 1- = ( + - ) + D - D +
ê

ë
ê
ê

ù

ú
ú
ú

According to the definitions, we know that ,uD ¥ 
p

2
vD £¥  and then

n p

2
uD £  . Thus, the probability of

decryption failure for legitimate receivers is bounded by

P re e e s s
q p

Pr
1

2 2 2
uklepto 2 1£

æ
è
ççç

+ - - D ³
ê

ë
ê
ê

ù

ú
ú
ú
-

ö
ø
÷÷÷¥ 

where r e e e s D, , , ,1 2 ,s↩ .

For t nlogw= ( ), 0,
1

9
 Î

æ
è
ççç

ö
ø
÷÷÷ and s ³

nln 2 1 1 2 p( ( + / )) /( ), by similar arguments shown in
last subsection, we have that when

q t nc
np

p4 2 2 1
4

2 1, 22 2
2

ps s> + + + + ( )

the probability Pklepto is negligible, which implies that legit-
imate receivers can hardly detect the klepto scheme only
from decryption failures.

REMARK 1. Equations (1) and (2) provide quantitative par-
ameter relations to ensure a negligible probability of decryp-
tion failures, which sets a theoretical grounding for backdoor
parameter selection. However, in practice, people may choose
tighter parameters to achieve better efficiency and an accept-
able decryption failure rate.

4.3. Distinctions between infected and uninfected
ciphertexts

Next we are to report on a few distinctions between infected
and uninfected ciphertexts. We follow the notations in
Section 3. Let q lp w= + where l Î and w pÎ . We start
with the following heuristics profiling the distributions of
ciphertexts:

(1) We model the distributions of u v,( ) and u v,( ¢ ¢) as
U q q ( ´ ) andU

q q
 ( ¢ ´ ¢ )¢ ¢ respectively.

(2) We assume that u v,( ) and u v,( ¢ ¢) look like
independent.

The Heuristic 1 can be explained by the pseudorandomness of
Ring-LWE ciphertexts assuming the hardness of Ring-LWE.
The Heuristic 2 is reasonable because the key generation and
encryption of RLWEn q, ,s and RLWen q, , ,¢ s t¢ ¢ ¢ are independent,
despite the fact that two plaintexts that they correspond to are
strongly correlated.
Ciphertexts modulo p: For uninfected ciphertexts u v,( ),

each coefficient of u pmod( ) and v pmod( ) follows the same
distribution D1 over p that

D i

l

q
i w

l

q
i w

1
, ;

, .
1( ) =

ì

í

ïïïïï

î

ïïïïï

+
<

³

However, for infected ciphertexts u v,( ), the ciphertext
modulo p equals an extension (by extq ) of u v,( ¢ ¢) and thus the
distributions of coefficients of u pmod and v pmod could be
different. We denote by ext p

ka( ) Î the p-adic expansion of
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qa Î ¢ and by D k
2
( ) the distribution of ext a( ) over p

k where
U qa ( )¢↩ . Then, for i i, , k p0 1 ¼ Î- , we have

D i i i
q

i p q

i p q

1
, ;

0, .

k
k

j
j

j

j
j

j
2 0 1 1

å

å
( ) =

ì

í

ïïïïï

î

ïïïïï

¢
< ¢

³ ¢
( )

-

Let D k
1 be the distribution over p

k where each coordinate
follows D1 independently. On the one hand, according to the
probability mass functions of D1 and D k

2
( ), we conclude that

D k
1 and D k

2
( ) are indeed different, which may be used to

check the existence of such backdoor. On the other hand,
notice that

D D D U U D

k D U
p q

p

kw p w

pq

p q

p

; ; ;

;

, 3

k k k
p
k

p
k k

p

k

k

k

k

1 2 1 2

1

 



D( ) £ D( ( )) + D( ( ) )

£ D( ( )) +
- ¢

=
( - )

+
- ¢

( )

( ) ( )

·

thus D k
1 and D k

2
( ) could be close when k is small, q p and

q pk¢ » , which implies a way to select parameters for high-
quality backdoors.
Ciphertexts modulo q: In Step 4 of the klepto encryption,

the black-box calculates certain small terms uD and vD accord-
ing to u v,( ) and u v,( ¢ ¢). However, as claimed in the algo-
rithm, such uD and vD do not always exist and thus the black-
box may restart several times, which is different from the case
in [16].
For z qÎ and z p¢ Î , we say z z,( ¢) is a bad pair if and

only if the set z q z pmod modz z{D Î (( + D ) ) = ¢ }∣ ⋂
p p2, 2[- / / ) is empty. The total number of bad pairs is

shown in the following lemma.

LEMMA 4.1. Let q p> and w q pmod p= ( ) Î , then there
are totally w p w( - ) bad pairs.

Proof. Let y z
p

q
2

mod= -
ê

ë
ê
ê

ú

û
ú
ú

, then z z,( ¢) is a bad pair if

and only if x y x q z pmod modp{ Î (( + ) ) = ¢ } = Æ∣ . If
y p q+ £ , the term y x qmod(( + ) ) equals y x+ for
x pÎ . When x runs over p , there is always a unique x0

such that y x z pmod0+ = ¢ . Thus a bad pair z z,( ¢) implies

that y z
p

q p
2

= -
ê

ë
ê
ê

ú

û
ú
ú
> - . Now we are to calculate the num-

ber of y z,( ¢) corresponding to bad pairs.
Let y q p l= - + where p1, 1l Î [ - ], then

S y x q p x

S S

mod mod

,

y p

1 2

= {(( + ) ) Î }

= l l
( ) ( )

∣

⋃

where S q p p q pmod , , 1 mod1 l= {( - + ) ¼ ( - ) }l
( ) and

S 0, 1, , 12 l= { ¼ - }l
( ) . The total number of y z,( ¢) corre-

sponding to bad pairs is

N p S

S S S

p p
S S

1

2
,

y
y

p

p
1

1
1 1 2

1

1
1 2

(

å

å

å

= ( - )

= - )

=
( - )

-

l
l l l

l
l l

=

-
( ) ( ) ( )

=

-
( ) ( )

∣ ∣

⋂

⋂

where S S w w, , 1p
1 1 l= = { ¼ + - }l l
( ) ( )⧹ .

For any i pÎ , if i w0,Î [ ), there are exactly w i( - )
S S1 2
l l
( ) ( )⋂ ’s containing i; if i w p, 1Î [ - ], there are exactly

p i1( - - ) S S1 2
l l
( ) ( )⋂ ’s containing i. Therefore, it leads to that

S S w i p i

w w p w p w

1

1

2

1

2
,

p

i

w

i w

p

1

1
1 2

0

1 1

å å å= ( - ) + ( - - )

=
( - )

+
( - )( - - )

l
l l

=

-
( ) ( )

=

-

=

-

⋂

and we immediately obtain that N w p w= ( - ). We now
complete the proof. □

As a direct corollary, we give the expected number of repe-
titions of the klepto encryption.

COROLLARY 4.1. The expected number of repetitions of klep-
to encryption is (almost)

w p w

pq
1 1,

n2æ

è
ççç -

( - )ö

ø
÷÷÷÷

-
-

if u v,ext extq q( ( ¢) ( ¢)) is (almost) uniform overU p p ( ´ ).

It implies that the klepto encryption terminates after few
repetitions when q is sufficiently large.
Now we are to compare u v,( ) and u v,( ) by studying each

of their coefficients. For i qÎ , let Ni denote the number of
z z,( ¢) such that i z qmodz= + D and i z pmod= ¢ for some

p p2, 2zD Î [- / / ). It is easy to verify the following facts:

• i N p,q i" Î £ ;

• i
p

q
p

N p
2

,
2

,q i" Î
æ
è
çç -

ù

û
ú
ú

=⋂ ;

• N pq w p wi
q

i0
1å = - ( - )=

- . (By Lemma 4.1)

Let Dz and Dz be the distributions of a random coefficient
of u v,( ) and u v,( ), respectively. If we replace u v,(  ) in
Step 4 of the klepto encryption with u v U, p p ( ¢ ¢) ( ´ ) ↩ ,
then we obtain a new pair, denoted by u v,( )  . Let Dz be the
distribution of a random coefficient of u v,( )  , then
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D D D D D D D D; ; ; , ; .z z z z z z z zD( ) Î D( ) + [-D( ) D( )]  

It is easy to check that D D; 0z zD( ) = when q pk¢ = .
Intuitively, D D;z zD( ) is supposed to be small when q pk¢ » .
Moreover, it can be verified that, when q w p w> ( - ),

D i D i
N

pq w p w q

p

pq w p w q q

1

max
1

,
1

,

z z
i( ) - ( ) =

- ( - )
-

£
ì
í
ïï
îïï - ( - )

-
ü
ý
ïï
þïï

∣ ∣

then it follows that when q w p w> ( - ) and q pk¢ » ,

D D D D

p

pq w p w q

N

pq w p w q

q p w p w

q pq w p w

p

q

; ;

1

2

1

1

2

1

2
0,

2
4

z z z z

i I

i I

i

å

å

D( ) » D( )

=
- ( - )

-

+
- ( - )

-

Î
( - ) ( - )
( - ( - ))

+
é

ë
ê
ê

ù

û
ú
ú

( )

Î

Ï



where I
p

q
p

2
,

2
=

æ
è
çç -

ù

û
ú
ú
.

REMARK 2. For an ideal case where w 0= and q pk¢ = , fol-
lowing the deductions of Equations (3) and (4), we know that
to distinguish infected and uninfected ciphertexts modulo q
and p is computationally hard under the assumed hardness of
Ring-LWE. In this case, the SETUP totally follows Definition
2.1. In a real scheme, q is fixed as a public parameter thus the
attacker may not be able to ensure w 0= . However, it is easy
to choose q¢ such that q pk¢ = and w p w pq( - )  , for
which infected and uninfected ciphertexts modulo q and p
also seem to be indistinguishable.

4.4. Middle terms in decryption

In Section 4.3, the decryption key is not involved in distin-
guishing infected and uninfected ciphertexts yet. Indeed, given
a legitimate decryption key, one would be able to know more
information contained in the ciphertexts, for example, the mid-
dle term, i.e.

M v us
q

m
2

q= - -
ê

ë
ê
ê

ù

ú
ú
ú

Î

where s is the secret key and u v,( ) is a ciphertext of the mes-
sage m.

TABLE 1. Experimental measure of decryption failures. DFRR and DFRA are the abbreviations of ‘Decryption failure rate for legitimate recei-
vers’ and ‘Decryption failure rate for attackers’, respectively. We use LMR to denote the proportion of leaked message.

Parameter
q

n
n

é

ê
ê
ê
¢ ù

ú
ú
ú

¢
DFRR (%) DFRA (%) LMR

n q, , s( ) n q, , ,s t( ¢ ¢ ¢ )

512, 12289,
12.18

2p

æ

è
ççç

ö

ø
÷÷÷÷

128, 8 , 11 2 , 14 p( / ) 8 93.82 88.63 0.25
128, 9 , 11 2 , 14 p( / ) 9 92.96 100 0.25
128, 7681, 11 2 , 1p( / ) 10 90.47 100 0.25
128, 9 , 11 2 , 24 p( / ) 9 92.84 38.79 0.5
128, 7681, 11 2 , 2p( / ) 10 90.21 79.15 0.5
128, 9473, 11 2 , 2p( / ) 10 90.27 98.33 0.5
128, 10 , 11 2 , 24 p( / ) 10 91.01 99.15 0.5

1024, 2 1,
8

2
32

p

æ

è
ççç -

ö

ø
÷÷÷÷

256, 7681, 11.31 2 , 1p( / ) 10 100 99.08 0.25
256, 10 , 11.31 2 , 14 p( / ) 10 100 99.99 0.25
512, 12289, 12.18 2 , 1p( / ) 111 100 97.13 0.5
512, 111 , 12.18 2 , 12 p( / ) 111 100 97.31 0.5
256, 11 , 11.31 2 , 24 p( / ) 11 100 97.85 0.5
256, 15361, 11.31 2 , 2p( / ) 12 100 99.12 0.5
512, 160 , 12.18 2 , 22 p( / ) 160 100 98.76 1
512, 25601, 12.18 2 , 2p( / ) 161 100 98.79 1
512, 161 , 12.18 2 , 22 p( / ) 161 100 99.22 1

1024, 12289,
8

2p

æ

è
ççç

ö

ø
÷÷÷÷

256, 7681, 11.31 2 , 1p( / ) 10 100 99.38 0.25
256, 10 , 11.31 2 , 14 p( / ) 10 100 99.99 0.25
256, 13313, 11.31 2 , 2p( / ) 11 99.99 92.91 0.5
256, 11 , 11.31 2 , 24 p( / ) 11 100 98.07 0.5
256, 15361, 11.31 2 , 2p( / ) 12 99.99 99.21 0.5
256, 12 , 11.31 2 , 24 p( / ) 12 100 100 0.5
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As mentioned before, the middle term M equals
re e e s2 1( + - ) for a legitimate ciphertext and re e2( + -

e s sv u1 ) + D - D for an infected ciphertext, where r e, ,

e e D,1 2 ,s↩ and
p

,
2

u vD D £¥ ¥    . For simplicity, we

assume that all coefficients of a middle term independently
follow the same distribution denoted by DM (resp. DM ) for
uninfected ciphertexts (resp. infected ciphertexts). From
the theoretical aspect, we do not prove the statistical or
computational indistinguishability between DM and DM .
Indeed this is a non-trivial problem. A possible solution is
to design delicate perturbations uD and vD . Moreover, one
may be able to give a rigorous proof when smudging tech-
nique [22] or some other ciphertext sanitization technique
[23] is applied. However, under such setting, the schemes
would be impractical. To formally confirm the indistin-
guishability between DM and DM given the decryption key
is left as a future work. From the practical aspect, we will
compare the statistics of DM and DM experimentally in the
next section. Indicated by experimental results, when p is
small, it is not easy to distinguish the middle terms yielded
by infected and uninfected ciphertexts in practice.

5. PRACTICAL IMPLEMENTATION

We implemented the klepto scheme in Sage [24] and ran experi-
ments to observe the impact of the backdoor from the aspects dis-
cussed in Section 4. Three sets of public Ring-LWE parameters
we discussed are n q, , 512, 12289, 12.18 2s p( ) = ( / ),
1024, 2 1, 8 232 p( - / ) and 1024, 12289, 8 2p( / ). The
first two tuples were discussed in [21] and [25], respectively and
claimed to provide at least 128-bits security, and the third one is
adapted from the second one by decreasing the modulus like
[15]. For each public parameter tuple, different backdoor param-
eter tuples n q, , ,s t( ¢ ¢ ¢ ) were discussed and compared. For
each parameter set, we generated 100 random instances and
encrypted 100 random plaintexts for each instance so that
10 000 ciphertexts were collected totally.
Table 1 shows how the backdoor parameter affects decryp-

tion failures for legitimate receivers and attackers. Experimental

results confirm that for fixed n q, , s( ), smaller p q
n
n=

é

ê
ê
ê
¢ ù

ú
ú
ú

¢
leads

to less decryption failures for legitimate receivers. The propor-

tion of leaked message equals
n

n

t ¢
, thus a direct approach to

TABLE 2. Experimental measure of the closeness between infected and uninfected ciphertexts. The comparisons among the distributions over

q are not provided for q 2 132= - , because 2 132 - is too large for us to generate accurate statistics.

Parameter
rk

qD ( )
ru

qD ( )
ku

qD( )
rk

pD ( )
ru

pD ( )
ku

pD( )

n q, , s( ) n q, , ,s t( ¢ ¢ ¢ )

512, 12289,
12.18

2p

æ

è
ççç

ö

ø
÷÷÷÷

128, 7681, 11 2 , 1p( / ) 0.0608 0.0139 0.0600 0.2323 0.0252 0.2319
128, 7681, 11 2 , 2p( / ) 0.0606 0.0138 0.0603 0.2313 0.0252 0.2319
128, 9473, 11 2 , 2p( / ) 0.0251 0.0138 0.0214 0.0668 0.0249 0.0592
128, 8 , 11 2 , 14 p( / ) 0.0184 0.0139 0.0139 0.0227 0.0163 0.0159
128, 9 , 11 2 , 14 p( / ) 0.0184 0.0140 0.0138 0.0285 0.0204 0.0199
128, 9 , 11 2 , 24 p( / ) 0.0184 0.0138 0.0138 0.0289 0.0198 0.0207
128, 10 , 11 2 , 24 p( / ) 0.0187 0.0139 0.0139 0.0353 0.0248 0.0248

1024, 2 1,
8

2
32

p

æ

è
ççç -

ö

ø
÷÷÷÷

256, 7681, 11.31 2 , 1p( / ) 0.2318 0.0177 0.2319
512, 12289, 12.18 2 , 1p( / ) 0.0211 0.0139 0.0152
256, 15361, 11.31 2 , 2p( / ) 0.2591 0.0252 0.2592
512, 25601, 12.18 2 , 2p( / ) 0.0348 0.0201 0.0267
256, 10 , 11.31 2 , 14 p( / ) 0.0249 0.0176 0.0178
512, 111 , 12.18 2 , 12 p( / ) 0.0197 0.0140 0.0140
256, 11 , 11.31 2 , 24 p( / ) 0.0299 0.0212 0.0210
512, 160 , 12.18 2 , 22 p( / ) 0.0284 0.0200 0.0198
512, 161 , 12.18 2 , 22 p( / ) 0.0285 0.0200 0.0201

1024, 12289,
8

2p

æ

è
ççç

ö

ø
÷÷÷÷

256, 7681, 11.31 2 , 1p( / ) 0.0604 0.0098 0.0600 0.2320 0.0177 0.2319
256, 13313, 11.31 2 , 2p( / ) 0.0266 0.0099 0.0246 0.0939 0.0212 0.0915
256, 15361, 11.31 2 , 2p( / ) 0.0654 0.0099 0.0653 0.2592 0.0254 0.2592
256, 10 , 11.31 2 , 14 p( / ) 0.0131 0.0098 0.0098 0.0250 0.0176 0.0178
256, 11 , 11.31 2 , 24 p( / ) 0.0133 0.0098 0.0099 0.0300 0.0215 0.0213
256, 12 , 11.31 2 , 24 p( / ) 0.0131 0.0097 0.0097 0.0357 0.0254 0.0253

1235KLEPTO FOR RING-LWE ENCRYPTION

SECTION D: SECURITY IN COMPUTER SYSTEMS AND NETWORKS
THE COMPUTER JOURNAL, VOL. 61 NO. 8, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/61/8/1228/5035449 by guest on 19 D
ecem

ber 2018



leak more message is to increase t or n¢. For larger t ,
Equation (1) shows that q¢ should be increased accordingly to
ensure correct decryption for attacker, which may weaken the
security of the backdoor scheme, but it does not seem to
increase p too much. For larger n¢, the backdoor seems more
secure, but p would be increased a lot, which significantly
affects the correct decryption for legitimate receivers when q is
not so large. From experimental results, we also conclude that
it is more convenient to add backdoors to Ring-LWE encryp-
tion scheme with very large q, because large q allows more
backdoor parameter tuples for stealing different proportions of
message.
We also measured experimentally the closeness between

infected and uninfected ciphertexts via statistical distances follow-
ing the discussions in Section 4.3. We assume that all coefficients
of uninfected (resp. infected) ciphertexts follow the same distribu-
tion Dz (resp. Dz ), and measure them together to collect more

samples. Let k n n= / ¢ and p q k
1

= é
ê
ê ¢

ù
ú
ú. For a ciphertext u v,( )

where u u u, , n0 1= ( ¼ )- and v v v, , n0 1= ( ¼ )- , we generate
n2 ¢ values a a, , ,n0 1¼ ¢- b b, , n p0 1 k¼ Î¢- where ai =

p u pmodj
k j

ik j0
1å ( )=

-
+ and b p v pmodi j

k j
ik j0

1= å ( )=
-

+ . We also
assume that these n2 ¢ values follow the same distribution
denoted by Dz¢ (resp. Dz¢) when u v,( ) is uninfected (resp.

infected). Let rk
qD =( ) D D;z zD( ) and D D;rk

p
z zD = D( ¢ ¢)( ) .

For better comparisons, we also considered ru
qD =( )

D U;z qD( ( )), ku
qD =( ) D U;z qD( ( )) and D U;ru

p
z pkD = D( ¢ ( ))( )

and D U;ku
p

z pkD = D( ¢ ( ))( ) . All experimental results are listed in

Table 2.
We compare experimental results with our estimations in

Equations (3) and (4). Let
w p w

pq
1d =

( - )
where

w q pmod= ( ) and
p q

p

k

k2d =
- ¢

that are closely related to

statistical distances between ciphertext distributions. We
observe that rk

pD( ) and ku
pD( ) are approximately equal to 2d when

2d is not very small (e.g. 0.182d > ), and these two measures
are less than 0.04 when 02d = . That suggests that to hide the
backdoor well, the attacker should choose parameters such that

02d = or very small. We also notice that ru
pD( ) may exceed the

upper bound implicit in Equation (3), i.e. kru
p

1dD £( ) . There are
two possible causes for this phenomenon: (1) the inherent differ-
ence between Ring-LWE ciphertext distribution and uniform
distribution, and (2) the experimental error. Furthermore, when
q pk¢ ¹ , rk

qD( ) may be relatively larger, which is implicit in the
approximation in Equation (4).
To compare the middle terms with respect to uninfected

and infected ciphertexts, we considered the distributions DM

TABLE 3. Experimental measure of M , M , Ms and Ms .

Parameter
q

n
n

é

ê
ê
ê
¢ ù

ú
ú
ú

¢
M M Ms Ms

n q, , s( ) n q, , ,s t( ¢ ¢ ¢ )

512, 12289,
12.18

2p

æ

è
ççç

ö

ø
÷÷÷÷

128, 8 , 11 2 , 14 p( / ) 8 0.4949 5.2413 752.0630 795.3722
128, 9 , 11 2 , 14 p( / ) 9 0.0578 0.3553 755.5527 806.6366
128, 7681, 11 2 , 1p( / ) 10 0.5509 −2.8801 755.9129 821.8440
128, 9 , 11 2 , 24 p( / ) 9 0.5805 0.5908 757.5418 810.0109
128, 7681, 11 2 , 2p( / ) 10 −0.1230 −0.4453 757.1177 822.7273
128, 9473, 11 2 , 2p( / ) 10 −0.0263 −4.7967 752.7451 818.1350
128, 10 , 11 2 , 24 p( / ) 10 −0.2817 0.9695 755.7126 820.5229

1024, 2 1,
8

2
32

p

æ

è
ççç -

ö

ø
÷÷÷÷

256, 7681, 11.31 2 , 1p( / ) 10 0.1186 −2.3709 461.4615 549.4083
256, 10 , 11.31 2 , 14 p( / ) 10 −0.0850 −0.2645 460.7307 548.3159
512, 12289, 12.18 2 , 1p( / ) 111 −0.0910 −0.1882 461.8267 3312.2316
512, 111 , 12.18 2 , 12 p( / ) 111 0.0283 −0.4126 461.2856 3307.7249
256, 11 , 11.31 2 , 24 p( / ) 11 −0.0428 0.0240 460.8434 562.8343
256, 15361, 11.31 2 , 2p( / ) 12 −0.1359 −1.1515 460.8889 581.9961
512, 160 , 12.18 2 , 22 p( / ) 160 0.2552 1.1382 461.9073 4766.3459
512, 25601, 12.18 2 , 2p( / ) 161 0.1939 −0.1191 461.0203 4755.4355
512, 161 , 12.18 2 , 22 p( / ) 161 0.2985 −0.7573 459.8787 4758.0793

1024, 12289,
8

2p

æ

è
ççç

ö

ø
÷÷÷÷

256, 7681, 11.31 2 , 1p( / ) 10 −0.1168 −1.3590 461.1512 549.2173
256, 10 , 11.31 2 , 14 p( / ) 10 −0.0759 0.0225 460.5395 548.0335
256, 13313, 11.31 2 , 2p( / ) 11 0.1015 0.2012 460.4020 561.4611
256, 11 , 11.31 2 , 24 p( / ) 11 0.1423 −0.0885 459.6836 560.9952
256, 15361, 11.31 2 , 2p( / ) 12 0.1803 −4.6646 459.9769 581.8082
256, 12 , 11.31 2 , 24 p( / ) 12 0.1378 −3.0988 461.2178 583.7178
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and DM that are defined in Section 4.4. First, we experimen-
tally measured the statistics of DM and DM . For X DM↩ and
X DM↩ , let M and M be the expectation of X and X , and

Ms and Ms be the standard deviation, respectively. Table 3
illustrates the experimental results. Since both M and M
are close to 0, coefficients of middle terms should be of sym-
metry. It also can be observed that Ms is usually larger than

Ms and the difference seems to depend on the magnitudes of

,u vD D , i.e. p q
n
n=

é

ê
ê
ê
¢ ù

ú
ú
ú

¢
. For better illustrations, we also plot

Figure 1 to show the comparison between DM and DM corre-
sponding to small and large p respectively. Indeed DM and
DM behave different: the middle term with respect to an
infected ciphertext tends to be of smaller size. However,

(a)

(b)

FIGURE 1. Comparisons between DM and DM for different p’s when n q, , 1024, 2 1, 8 232s p( ) = ( - / ). (a) n q, , ,s t( ¢ ¢ ¢ ) =

256, 10 , 11.31 2 , 14 p( / ), q 10
n
n

é

ê
ê
ê
¢ ù

ú
ú
ú
=

¢
and (b) n q, , , 512, 161 , 12.18 2 , 22s t p( ¢ ¢ ¢ ) = ( / ), q 161

n
n

é

ê
ê
ê
¢ ù

ú
ú
ú
=

¢
.
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as p decreases, DM seems to converge to DM . Thus, when
p is small, to detect the backdoor may still require suffi-
ciently many ciphertexts even though the decryption key is
available.

6. CONCLUSION

In this paper, we propose a construction of backdoor for Ring-
LWE encryption scheme and study it theoretically and experi-
mentally. As indicated by our analysis and experiments, it seems
practical to modify Ring-LWE scheme into a klepto variant in
such a way, especially for the scheme with large modulus.
Therefore, we believe that black-box implementations of Ring-
LWE cryptographic algorithms are potentially dangerous and
not supposed to be accepted easily. Our analysis in Section 4
can be used for detecting such backdoors preliminarily. It would
be meaningful to exploit other cryptanalysis and tools to give an
elaborative backdoor detection. We leave it as future work.
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