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A Lévy process reflected at a Poisson age process

ABSTRACT
We consider a Lévy process with no negative jumps, reflected at a stochastic boundary which is
a positive constant multiple of an age process associated with a Poisson process. We show that
the stability condition for this process is identical to the one for the case of reflection at the
origin. In particular, there exists a unique stationary distribution which is independent of initial
conditions. We identify the Laplace-Stieltjes transform of the stationary distribution and observe
that it satisfies a decomposition property. In fact, it is a sum of two independent random
variables, one of which has the stationary distribution of the process reflected at the origin, and
the other has the stationary distribution of a certain clearing process. The latter is itself
distributed like an infinite sum of independent random variables. Finally, we discuss the tail
behavior of the stationary distribution and in particular observe that the second distribution in
the decomposition always has a light tail.
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A Lévy Process Reflected at a

Poisson Age Process

Offer Kella∗ Onno Boxma† Michel Mandjes‡

Abstract
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1 Introduction

In various fields, like queueing and risk theory, it is natural to study a Lévy process

that is reflected at the origin. In this paper we study a Lévy process with no negative

jumps, that is reflected at a stochastic lower barrier. This barrier is a straight line,

which drops to zero after exponentially distributed time periods, and then increases

again linearly at rate a. Put differently: This barrier is a positive multiple of the

age process of an independent Poisson process. One can also view it as a clearing

process that increases linearly at some fixed rate a and at event epochs of the Poisson

process drops to zero (clears all the content from the system).

Applications where such a reflected Lévy process is natural are models where in

addition to the input and output mechanism there is a constant input which is not

available on liquid basis, but can only be used after some maturity date has been

reached. In our case this maturity date is exponentially distributed. For example,

one considers the combined behavior of two financial accounts, viz., a daily account

and a savings account. The content of the daily account behaves like a Lévy process.

The content of the savings account grows linearly at rate a, and is moved to the

daily account at exponentially distributed intervals. It is not allowed to let the daily

account become negative. The combined level of the two accounts now behaves like

a Lévy process reflected at a stochastic lower barrier. As will be shown, already for

such a “simple” model the analysis is not trivial.

We compute the stationary distribution of such a reflected Lévy process (when it

exists) and observe that it satisfies a decomposition property. That is, it is the dis-

tribution of a sum of two independent random variables. The first has the stationary

distribution of a Lévy process with no negative jumps reflected at the origin and the

second is an independent infinite sum of random variables which also corresponds

to the stationary distribution of a certain clearing process associated with the local

time of the process.

The paper is organized in the following way. In Section 2 we study the process Z,

a Lévy process reflected at the origin, and its local time process L. Using martingale

methods, we derive the joint distribution of Z(T ), L(T ) and T , where T (the clearing

time) is exponentially distributed (Theorem 1). In Section 3 we turn to the Lévy

process W reflected at the above-described stochastic lower barrier, or age process

A: A straight line, which drops to zero at event epochs of a Poisson process and then
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increases again linearly at rate a. We determine necessary and sufficient conditions

for the two-dimensional process (W,A) to have a unique stationary distribution and

a limiting distribution which is independent of initial conditions (Theorem 2). Using

Theorem 1, the stationary distribution of W is derived in Section 4 (Theorem 3);

we show in particular that it satisfies a decomposition property, which is discussed

at length in Section 5. The tail behavior of the stationary distribution of W is

analyzed in Section 6 (Theorem 4), exploiting detailed knowledge of the two parts

of the decomposition.

2 Preliminaries

Let X be a right continuous Lévy process which is not almost surely nondecreasing

(i.e.,not a subordinator) starting at an arbitrary initial value with no negative jumps

and Laplace exponent ϕ(α) = logEe−αX(1). Let L(t) = − inf0≤s≤tX
−(s) and Z(s) =

X(s) + L(s). Letting T ∼ exp(γ), independently of X, we would like to identify

the joint distribution of (Z(T ), L(T ), T ) for any given initial value z ≥ 0. Let Pz
and Ez denote the probability and expected value when X starts from z, that is

Pz[X(·) ∈ A] = P0[z +X(·) ∈ A].

Applying [6] to X +Y where Y (t) = z+ (1 + β/α)L(t), noting that Z(t) = 0 for

points of increase of L, and simplifying, the following is a martingale:

M(t) = ϕ(α)

∫ t

0

e−(αZ(s)+βL(s))ds

+e−αZ(0) − e−(αZ(t)+βL(t)) − (α+ β)

∫ t

0

e−βL(s)dL(s) .

(1)

Clearly, ∫ t

0

e−βL(s)dL(s) =
1− e−βL(t)

β
. (2)

For a bounded jointly measurable process U = {U(t)| t ≥ 0} and T ∼ exp(λ) which

is independent of U ,

λE

∫ T

0

U(s)ds = λE

∫ ∞

0

U(s)1{T>s}ds =

∫ ∞

0

EU(s)λe−λsds = EU(T ) . (3)
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In particular, if T is independent of X (and thus of (Z,L)), it follows that

λEz

∫ T

0

e−(αZ(s)+βL(s))ds = Eze
−(αZ(T )+βL(T )) . (4)

Since EzM(T ∧ t) = 0, where a ∧ b = min(a, b), applying bounded and monotone

convergence theorems in the appropriate places, it follows that EzM(T ) = 0. Thus,

applying (4) to EzM(T ) and simplifying leads to the following identity:

ϕ(α)− λ

λ
Eze

−(αZ(T )+βL(T )) = −e−αz +
α+ β

β

(
1− Eze

−βL(T )
)
. (5)

Noting that ϕ is convex (thus continuous) with ϕ(0) = 0, and recalling that X is not

a subordinator, ϕ(α) →∞ when α→∞, we have that for every positive number x

there is a unique α for which ϕ(α) = x. Let us denote this α by ψ(x). In particular,

for x = λ we obtain that

0 = −e−ψ(λ)z +
ψ(λ) + β

β

(
1− Eze

−βL(T )
)
. (6)

Thus
ϕ(α)− λ

λ
Eze

−(αZ(T )+βL(T )) = −e−αz +
α+ β

ψ(λ) + β
e−ψ(λ)z. (7)

As a consequence we can write

Eze
−(αZ(T )+βL(T )) = e−ψ(λ)z

1− α
ψ(λ)

1− ϕ(α)
λ

ψ(λ)

ψ(λ) + β
+
e−αz − e−ψ(λ)z

1− ϕ(α)
λ

. (8)

Setting z = 0 we have that

E0e
−(αZ(T )+βL(T )) = E0e

−αZ(T )E0e
−βL(T ) =

1− α
ψ(λ)

1− ϕ(α)
λ

ψ(λ)

ψ(λ) + β
. (9)

Note that the distribution of L(T ) and the Laplace-Stieltjes transform (LST) of

Z(T ) for z = 0 can be deduced from Corollary 2 on page 190 and Equation (3) on

page 192 of [3]. We also note that if τ 0 = − inf{t|X(t) = 0}, then Pz[T > τ 0] =

Eze
−λτ0

= e−ψ(λ)z. Recall that when ϕ′(0) < 0, α∗ = ψ(0+) > 0, in which case

Pz[τ
0 = ∞] = 1 − e−α

∗z. It is clear from the memoryless property of T and the

Markovian structure of (X,Z, L) that

Eze
−(αZ(T )+βL(T ))1{T>τ0} = Pz[T > τ 0]E0e

−(αZ(T )+βL(T )) . (10)
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Thus the first term on the right of (8) is the right side of (10).

Now, when T ≤ τ 0, L(T ) = 0, so

Eze
−(αZ(T )+βL(T ))1{T≤τ0} = E0e

−(α(z+X(T ))1{T≤τ0}

= e−αzE0e
−αX(T ) − E0e

−α(z+X(T ))1{T>τ0}

= e−αzE0e
−αX(T ) − P0[T > τ 0]E0e

−αX(T )

= (e−αz − e−ψ(λ)z)E0e
−αX(T ) .

(11)

For values of α for which ϕ(α) < λ,

E0e
−αX(T ) =

∫ ∞

0

eϕ(α)tλe−λtdt =
1

1− ϕ(α)
λ

. (12)

Thus, for small values of α, the rightmost expression of (11) is the second term on

the right of (8). However, we emphasize that this second term also holds for large

values of α. In particular, for α = ψ(λ) we have that

Eze
−(ψ(λ)Z(T )+βL(T )) = e−ψ(λ)z

1
ψ(λ)

ϕ′(ψ(λ))
λ

ψ(λ)

ψ(λ) + β
+
ze−ψ(λ)z

ϕ′(ψ(λ))
λ

= λψ′(λ)e−ψ(λ)z

(
1

ψ(λ) + β
+ z

)
.

(13)

Now, consider the probability measureQγ(A) = Eze
−γT1{A}/Eze

−γT , noting that

Eze
−γT = λ/(λ+γ). It is easy to check that under Qγ, T and X are independent, X

is a Lévy process with the same exponent ϕ and the same initial value as under the

original measure and T ∼ exp(λ + γ). Thus Eze
−(αZ(T )+βL(T )+γT )/Eze

−γT is given

by (8), only that λ is replaced by λ+ γ throughout. As a consequence, we have the

following result.

Theorem 1 Let X be a Lévy process with no negative jumps, which is not a sub-

ordinator, with exponent ϕ and ψ(α0) = inf{α|ϕ(α) > α0} for α0 ≥ 0. Then for
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T ∼ exp(λ) which is independent of X,

Eze
−(αZ(T )+βL(T )+γT )

=

(
e−ψ(λ+γ)z

1− α
ψ(λ+γ)

1− ϕ(α)
λ+γ

ψ(λ+ γ)

ψ(λ+ γ) + β
+
e−αz − e−ψ(λ+γ)z

1− ϕ(α)
λ+γ

)
λ

λ+ γ

(14)

for all nonnegative z, α, β, γ.

3 Stability condition

Consider now our Lévy process which is reflected along a boundary of the form

A(t) = A(0)1{T1>t} + a(t − TN(t)), where a > 0, N is a Poisson process with rate

λ and arrival epochs Tn and is independent of the Lévy process and A(0) is some

nonnegative random variable (possibly zero) which is independent of everything else.

That is, at each point the boundary increases linearly at a rate of a and at the arrival

epochs of the Poisson process it jumps back to zero, but at time zero it may start

at some arbitrary nonnegative value.

The appropriate stability condition for such a Lévy process is that ϕ′(0) > 0. To

see this we observe that the process is of the form W (t) = W (0)+X(t)+L(t) where

L(0) = 0, L is nondecreasing, W (t) ≥ A(t) and L can increase only at points t for

which W (t) = A(t). Thus W (t) − A(t) = W (0) +X(t) − A(t) + L(t) is a reflected

process with driver X(t)− A(t). Therefore

W (t)− A(t) = W (0) +X(t)− A(t)− inf
0≤s≤t

(W (0) +X(s)− A(s)) ∧ 0 . (15)

Since X(t)/t → −ϕ′(0) and A(t)/t → 0, both almost surely, it follows that there

is some finite T > T1 for which W (0) + X(T ) − A(T ) ≤ 0. Hence for t ≥ T the

minimization with 0 can be omitted. After cancelling W (0) on the right side and

A(t) from both sides we have for t > T that

W (t) = X(t)− inf
0≤s≤t

(X(s)− A(s)) . (16)

Also, since X(t) − A(t) → −∞, then for sufficiently large t the infimum depends

on values of s which are larger than T1 and thus for such values of t, (W (t), A(t))
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does not depend on the value of A(0). This means that for any initial W (0) and

A(0) the process (W (t), A(t)) can be coupled with the process which starts with

W (0) = A(0) = 0 and thus if a limiting distribution exists, then it does not depend

on initial conditions.

To show that a limiting distribution exists we start the process withW (0) = A(0)

where A(0) ∼ exp(λ/a). With this choice, A(t) becomes a stationary process. In

fact, A(t)/a is a stationary version of the age process associated with the Poisson

process. Let us first extend both the Lévy process X and A to the whole real line.

Since W (0)− A(0) = 0 we have that

W (t) = X(t)− inf
0≤s≤t

(X(s)− A(s)) = sup
0≤s≤t

(X(t)−X(t− s) + A(t− s)) (17)

and upon shifting by t and recalling the stationarity of A and the (strong) stationary

increments property of X

W (t) ∼ S(t) ≡ sup
0≤s≤t

(−X(−s) + A(−s)) , (18)

and in fact (W (t), A(t)) ∼ (S(t), A(0)). In particular, W (t) is stochastically increas-

ing.

It is well known that {−X(−s)|s ≥ 0} is a (left-continuous) Lévy process with

the same exponent as X and A(−s) is a left-continuous version of the process R(t) =

a(TN(t)+1 − t), where we note that R/a is the residual lifetime process associated

with N . As the supremum does not depend on whether we take the right or left

continuous versions (in particular the end points are a.s. points of continuity), we

see that (W (t), A(t)) has the same distribution as(
sup

0≤s≤t
(X(s) +R(s)), R(0)

)
(19)

where X and R are independent processes. Recalling that X(t)/t→ −ϕ′(0) < 0 and

noting that R(t)/t→ 0 both almost surely, it follows that X(t)+R(t) → −∞ almost

surely and thus W (t) converges in distribution to M(∞) = sups≥0(X(s) + R(s)),

where M(∞) is an almost surely finite random variable.
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In fact, we observe that the process (W ∗, A), in which

W ∗(t) = sup
s≤0

(X(t)−X(t+ s) + A(t+ s))

= X(t)− inf
s≤t

(X(s)− A(s))

= W ∗(0) +X(t)− inf
0≤s≤t

(W ∗(0) +X(s))−,

(20)

is a stationary version of W . Also we observe that if ϕ′(0) ≤ 0, then W is above the

process W (0) +X(t)− inf0≤s≤t(W (0) +X(s))−, which is not positive recurrent and

thus neither is W . Thus, we have shown the following.

Theorem 2 The Markov process {(W (t), A(t))| t ≥ 0} is positive Harris recurrent

(that is, it has a unique stationary distribution and a limiting distribution which is

independent of initial conditions) if and only if ϕ′(0) > 0.

Now let Z(t) = W (t)−at = W (0)+X(t)−at+L(t). Until T1, (Z,L) is a reflected

Lévy process with driving process X(t)−at, having the exponent ϕ̃(α) = ϕ(α)+aα

which satisfies ϕ̃′(0) > a. ThusW (T ) is distributed likeW (0) if and only if Z(T )+aT

is distributed like Z(0) and due to Poisson Arrivals See Time Averages (PASTA)

this would also be the time stationary distribution of W . In the following section we

will find the distribution of Z(0) for which Z(T )+aT ∼ Z(0), relying on Theorem 1.

4 When does Z(0) ∼ Z(T ) + aT?

As described in the previous section, the key to computing the stationary distri-

bution of W is finding an initial distribution such that Z(0) and Z(T ) + aT are

identically distributed. For ease of notation we will use the notation ϕ rather than

ϕ̃, where ϕ̃(α) = ϕ(α) + aα throughout, hence we assume that ϕ′(0) > a. Also here

we let E denote the expectation associated with the initial distribution that we are

seeking.

Set γ = αa and β = 0 in (14) and simplify to obtain the following:

(ϕ(α)− αa)
Ee−αZ(0)

α
= λ

Ee−ψ(λ+αa)Z(0)

ψ(λ+ αa)
, (21)
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and in particular, by taking α ↓ 0,

ϕ′(0)− a = λ
Ee−ψ(λ)Z(0)

ψ(λ)
. (22)

Since the right side is positive, we see that a necessary condition for the existence of

a distribution of Z(0) for which Z(T )+aT ∼ Z(0) is indeed that ϕ′(0) > a. Letting

f(λ, a, α) = Ee−αZ(0), where Z(0) has the stationary distribution that we seek and

noting that ψ′(0) = 1/ϕ′(0), we obtain that

lim
λ↓0

f(λ, a, ψ(λ)) = 1− a

ϕ′(0)
< 1 . (23)

It may seem like (23) implies that P [Z(0) < ∞] < 1, but it does not as the distri-

bution of Z(0) depends on λ.

If we let a = 0 then we obtain

ϕ′(0) =
λ

ψ(λ)
Ee−ψ(λ)Z(0) , (24)

and thus Ee−αZ(0) = ϕ′(0)α/ϕ(α) (generalized Pollaczek-Khinchin formula) as ex-

pected, since then Z is reflected at the origin and in this case the continuous-time

process has the same stationary distribution as the process sampled at Poisson

epochs.

Now, let h(α) = ψ(λ+aα) and assume that ϕ′(0) > a. Then, since ψ is concave,

h′(0) = aψ′(λ) < aψ′(0) = a/ϕ′(0) < 1 and since h is concave, it is Lipshitz

continuous with |h(α) − h(β)| ≤ h′(0)|α − β| and is thus a contraction. Denoting

h0(α) = α and hi+1(α) = h(hi(α)), we thus have that for any α ≥ 0, hi(α) → α∗ as

i → ∞, where α∗ = h(α∗). That is, if we denote by ϕa(α) = ϕ(α) − aα and ψa(β)

is its inverse, then it is easy to check that α∗ = ψa(λ).

With this in mind, (21) may be rewritten as follows

Ee−αZ(0) =
λ

ϕa(α)

αEe−h(α)Z(0)

h(α)
, (25)

which, for n ≥ 1, immediately leads to

Ee−αZ(0) =
λαEe−h

n+1(α)Z(0)

ϕa(α)hn+1(α)

n∏
i=1

λ

ϕa(hi(α))
. (26)
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Upon substituting α = 0, we have that

1 =
λEe−h

n+1(0)Z(0)

ϕ′a(0)h
n+1(0)

n∏
i=1

λ

ϕa(hi(0))
. (27)

Therefore

Ee−αZ(0) =
αϕ′a(0)

ϕa(α)

hn+1(0)Ee−h
n+1(α)Z(0)

hn+1(α)Ee−hn+1(0)Z(0)

n∏
i=1

ϕa(h
i(0))

ϕa(hi(α))
. (28)

Observe that hn+1(α) and hn+1(0) both converge to α∗ = ψa(λ) as n → ∞. Also,

since ϕ′a(0) = ϕ′(0)− a > 0 it holds that ϕa is an increasing function on [0,∞). By

induction, the hi are also increasing and thus, for every i, ϕa(h
i(0))/ϕa(h

i(α)) < 1

for all α > 0. Thus the product converges to a proper limit and we obtain the

following decomposition result.

Theorem 3 For all α ≥ 0,

Ee−αZ(0) =
ϕ′a(0)α

ϕa(α)

∞∏
i=1

ϕa(h
i(0))

ϕa(hi(α))
. (29)

5 Interpretation of the decomposition result

This section is devoted to understanding the right side of the decomposition (29)

in Theorem 3, and in particular to showing that it is the LST of a proper random

variable.

It is easy to check that ϕa(h
i(α)) = λ + (hi−1(α) − hi(α))a and thus, we may

rewrite (29) as

Ee−αZ(0) =
ϕ′a(0)α

ϕa(α)

∞∏
i=1

λ+ (hi−1(0)− hi(0))a

λ+ (hi−1(α)− hi(α))a
. (30)

In particular, recalling that ϕa(α
∗) = λ and hi(α∗) = α∗,

Ee−α
∗Z(0) =

ϕ′a(0)α
∗

λ

∞∏
i=1

(
1 + (hi−1(0)− hi(0))

a

λ

)
. (31)
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Since α < α∗ = ψa(λ) is equivalent to ϕ(α) − aα < λ, which is in turn equivalent

to α < ψ(λ + aα) = h(α), we have that hi(α) is an increasing sequence. Similarly

when α > α∗ it is decreasing.

To show that the right side of (30) is the LST of a proper distribution it suffices

to show that the second term (the product term) converges to one as α ↓ 0. To see

this we first give the following simple lemma.

Lemma 1 Let ai : [0,∞) → [0,∞) be such that ai(α) → 0 as α ↓ 0, ai(α) ≤ aib(α),

where b(α) is bounded in some neighborhood of zero, and
∑∞

i=1 ai <∞. Then

lim
α↓0

∞∏
i=1

1

1 + ai(α)
= 1 . (32)

Proof: For a given ε > 0 choose N such that
∑∞

i=N+1 ai < ε. Since 1 + ai(α) ≤
1 + aib(α) ≤ eaib(α) we have that

∞∏
i=N+1

1

1 + ai(α)
≥ e−b(α)

P∞
i=N+1 ai ≥ e−b(α)ε ≥ 1− b(α)ε . (33)

Clearly

lim
α↓0

N∏
i=1

1

1 + ai(α)
= 1 (34)

for each N and thus, as ε is arbitrary and b is bounded in some neighborhood of

zero, the proof is complete.

Now, observe that if we let

λ+ (hi−1(0)− hi(0))a

λ+ (hi−1(α)− hi(α))a
=

1

1 + ai(α)
, (35)

then

ai(α) =
a
λ
(hi−1(α)− hi−1(0) + hi(0)− hi(α))

1 + a
λ
(hi−1(0)− hi(0))

. (36)

Recall that h is contracting, so that |hn(α) − hn(0)| ≤ ρnα, where ρ = h′(0) =

aψ′(λ) < 1. In particular |hi−1(0)− hi(0)| ≤ ρi−1h(0). Therefore

ai(α) ≤
a
λ
(1 + ρ)ρi−1α

1− a
λ
ρi−1h(0)

. (37)
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Let i0 be such that a
λ
ρi0−1h(0) < 1/2, ai = ρi−1 and

b(α) = 2
(a
λ

(1 + ρ)α
)

max
1≤i<i0

ai(α)

ρi−1
. (38)

Then the conditions of Lemma 1 are satisfied and thus if the right side of (30) is an

LST, it is the LST of a proper distribution.

Let us now argue that it is indeed an LST.

Lemma 2 e−h
n(α)z = Ee−(λξn(z)+αηn(z)) where (ξn, ηn) is a two dimensional nonde-

creasing Lévy process with exponent fn satisfying fn(x, y) = ψ(x + afn−1(x, y)), so

that fn(λ, α) = hn(α). Thus, for every nonnegative random variable ζ,

Ee−h
n(α)ζ

Ee−hn(0)ζ
= E[e−αηn(ζ)|ξn(ζ) < T ] (39)

where T is an independent exponential random variable with rate λ. Therefore, the

left side is an LST for any distribution of ζ.

Proof: Assume that Xi are i.i.d. Lévy processes all distributed like X. For z ≥ 0

let τi(z) = inf{t|Xi(t) + z = 0}. Then it is well known that τi are (independent)

subordinators (nondecreasing Lévy processes) with Ee−ατi(z) = e−ψ(α)z. In particu-

lar,

e−h
1(α)z = e−ψ(λ+aα)z = Ee−(λ+aα)τ1(z), (40)

e−h
2(α)z = e−ψ(λ+ah1(α))z = Ee−(λ+ah1(α))τ2(z) = Ee−(λτ2(z)+(λ+aα)τ1(aτ2(z))); (41)

by induction it is easy to check that

e−h
n(α)z = Ee−(λ

a
ξn(z)+αηn(z)) , (42)

where ηn(z) = ηn−1(aτn(z)) with η0(z) = z and ξn(z) = τn(z) + ξn−1(aτn(z)) with

ξ0(z) = 0. It is easy to check that (η1, . . . , ηn) is a multidimensional Lévy process

and thus (ξn, ηn) is a two-dimensional one. Obtaining the form of the exponent is

straightforward upon observing that fn(λ, α) = hn(α).

Lemma 3 Let g(α) = α − aψ(α) and τ(z) = inf{t| X(t) + z = 0}. Set J(t) =

aτ(t)− t. Then J is a Lévy process having no negative jumps with Laplace exponent

g. If ϕ′(0) > a then g′(0) > 0 and thus Ee−αζ = g′(0)α/g(α) is the LST of the

stationary distribution associated with J reflected at the origin.
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Proof: It is well known that τ(·) is a subordinator with exponent −ψ. Thus the

exponent of J is clearly α − aψ(α) = g(α). Now note that g′(0) = 1 − aψ′(0) =

1 − a/ϕ′(0) > 0 which is the condition under which the generalized Pollaczek-

Khinchin formula for the stationary distribution is valid.

It is now easy to check that ϕa(h
n(α)) = g(λ + ahn−1(α)) for n ≥ 1, where we

recall that h0(α) = α. Thus, we can write

ϕa(h
n(0))

ϕa(hn(α))
=
g(λ+ ahn−1(0))(λ+ ahn−1(α))

g(λ+ ahn−1(α))(λ+ ahn−1(0))
· λ+ ahn−1(0)

λ+ ahn−1(α)
. (43)

Applying Lemma 2 with T = T1 and ζ = aT2 where T1, T2 ∼ exp(λ) are independent,

we have that

λ+ ahn−1(0)

λ+ ahn−1(α)
=
Ee−h

n−1(α)aT2

Ee−hn−1(0)aT2
= E[e−αηn−1(aT2)|ξn−1(aT2) < T1]. (44)

In a similar way it is easy to check that if ζ has the stationary distribution of the

reflected version of J from Lemma 3, then the first term on the right side of (43)

can be written as

Ee−(λ+ahn−1(α))ζ

Ee−(λ+ahn−1(0))ζ
=

Ee−(λ(ζ+ξn−1(aζ))+αηn−1(aζ))

Ee−λ(ζ+ξn−1(aζ))

= E[e−αηn−1(aζ)|ζ + ξn−1(aζ) < T ].

(45)

Therefore, we have the following.

Corollary 1

ϕa(h
n(0))

ϕa(hn(α))
= E[e−αηn−1(aζ)|ζ + ξn−1(aζ) < T ]E[e−αηn−1(aT2)|ξn−1(aT2) < T1] (46)

and is thus the LST of a proper random variable.

There is also a different way to show that ϕa(h
n(0))/ϕa(h

n(α)) is an LST, which

is given as follows.

Lemma 4 If ϕ′a(0) = ϕ′(0)− a > 0, then

ϕa(h
n(0))hn(α)

ϕa(hn(α))hn(0)
(47)

is an LST of a proper distribution on [0,∞).
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Proof: Let Z∗
a be a random variable having the stationary distribution of the re-

flected process Za(t) = X(t)− at− inf0≤s≤t(X(s)− as). Then it is well known (e.g.,

Corollary 3.4 on page 257 of [2]) that

Ee−αZ
∗
a =

ϕ′a(0)α

ϕa(α)
. (48)

Therefore, with the notation from the proof of Lemma 2, assuming that Z∗
a is inde-

pendent of X1, X2, . . ., we have from (42):

Ee−(λ
a
ξn(Z∗a)+αηn(Z∗a)) = Ee−h

n(α)Z∗a =
ϕ′a(0)h

n(α)

ϕa(hn(α))
, (49)

implying that the right side is completely monotone and upon normalization the

result follows.

Lemma 5 hn(0)/hn(α) is the LST of a proper distribution for every n ≥ 1.

Proof: This follows by observing that if Tµ ∼ exp(µ) then

µ+ hn(0)

µ+ hn(α)
=
Ee−h

n(α)Tµ

Ee−hn(0)Tµ
(50)

where the right side is the LST of a proper distribution. Thus letting µ ↓ 0 the

result is immediate.

The following is now evident.

Corollary 2 For every n ≥ 1, ϕa(h
n(0))/ϕa(h

n(α)) is the LST of a proper distri-

bution on [0,∞) and thus, so is

∞∏
n=1

ϕa(h
n(0))

ϕa(hn(α))
. (51)

Since ϕ′a(0)α/ϕa(α) is the LST of the stationary distribution of Za(t) = X(t)−
at− inf0≤s≤t(X(s)− as) (recalling that ϕ′(0) > a) it is now clear that the right side

of (29) is indeed the LST of a proper distribution on [0,∞).

There are, however, alternative ways to interpret the decomposition of Theorem

3. One that adds insight is the following. Apply once again the martingale of [6], and
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observe thatW (t) = at at points of increase of L(t) for 0 ≤ t ≤ T . As a consequence,

with E denoting the expectation associated with the stationary version,

ϕ(α)E

∫ T

0

e−αW (s)ds = Ee−αW (T ) − Ee−αW (0) + αE

∫ T

0

e−αasdL(s) . (52)

Since W (0) ∼ W (T ) and λE
∫ T

0
e−αW (s)ds = Ee−αW (T ) = Ee−αW (0) (see (3)) then

Ee−αW (0) =
λα

ϕ(α)
E

∫ T

0

e−αatdL(t) (53)

and upon setting α = 0 we obtain that EL(T ) = ϕ′(0)/λ and in particular we have

that

Ee−αW (0) =
ϕ′(0)α

ϕ(α)

E
∫ T

0
e−αatdL(t)

EL(T )
(54)

The first term in this decomposition is the generalized Pollaczek-Khinchin for-

mula associated with the stationary distribution of X reflected at the origin. It is

easy to check that the second term in the decomposition on the right is the LST of

the following distribution:

F (x) =
EL(T ∧ x

a
)

EL(T )
, (55)

where the expectation is taken when W is initiated with its stationary distribution.

That is, if one thinks of a clearing process with cycles distributed like T and dur-

ing a clearing cycle the process behaves like L(t) where W (0) has the stationary

distribution, then F (ax) = EL(T ∧ x)/EL(T ) is well known to be the stationary

distribution of this process.

We mention that in [7] related decompositions have been studied. Also in the

framework of that paper (a reflected Lévy process with additional jumps), the sta-

tionary distribution is a convolution of two or more distributions, one of which is

the stationary distribution of the process reflected at the origin.

6 Tail Behavior

In this section we analyze the tail behavior of the distribution with LST (51). More

specifically, we show that this tail is exponential with decay rate λ/a, and we com-

pute the prefactor.
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To obtain the full tail behavior of Z(0), this needs to be combined with the tail

behavior associated with the LST ϕ′a(0)α/ϕa(α), cf. Theorem 3. These asymptotics

have been studied in detail before. For the Cramér case, where the tail is expo-

nential, see in particular [4]. The subexponential case, where the Lévy process is

an independent sum of a Brownian motion and a subordinator, has been studied in

e.g. [1]. Recently [5] produced a more complete study of the tail behavior of the

supremum of a Lévy process. The latter also contains an overview of the related

literature.

Consider the infinite product (51). Since hn(α) = hn−1(h(α)) = hn−1(ψ(λ+aα)),

then hn(α) ≥ hn−1(0) for α ≥ −λ/a. Thus,

∞∏
n=2

ϕa(h
n(0))

ϕa(hn(α))
≤

∞∏
n=2

ϕa(h
n(0))

ϕa(hn−1(0))
=

ϕa(α
∗)

ϕa(ψ(λ))
=

λ

λ− aψ(λ)
, (56)

with equality when α = −λ/a. As for the first term,

ϕa(h(0))

ϕa(h(α))
=

g(λ)

g(λ+ aα)
=

λ

λ+ aα

g(λ)(λ+ aα)

λg(λ+ aα)
, (57)

where due to Lemma 3, the second factor of the rightmost expression is the LST of

a proper random variable. Let V1 ∼ exp(λ/a) and let V2 be independent of V1 with

Ee−αV2 =
g(λ)(λ+ aα)

λg(λ+ aα)

∞∏
n=2

ϕa(h
n(0))

ϕa(hn(α))
. (58)

Then it is easy to check, recalling the right side of (56), that

Ee(λ/a)V2 =
g(λ)

λg′(0)

λ

λ− aψ(λ)
=

1

1− a
ϕ′(0)

. (59)

Therefore, (51) is the LST of V = V1 +V2, where EeβV2 <∞ and V1 ∼ exp(β), with

β = λ/a. Since

P [V2 > t] ≤ e−βtEeβV21{V2>t} , (60)

it follows by dominated convergence that eβtP [V2 > t] → 0 as t→∞. Now,

eβtP [V > t] = eβtEe−β(t−V2)+ = EeβV21{V2≤t} + eβtP [V2 > t] (61)
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and taking t→∞ gives

eβtP [V > t] → EeβV2 . (62)

Thus, in view of (59), as t→∞,

P [V > t] ∼ e−(λ/a)t

1− a
ϕ′(0)

. (63)

Because V1 ∼ exp(β) and P [V2 > t]/P [V1 > t] = eβtP [V2 > t] → 0, (62) is in fact a

special case of Lemma 2.1 of [8].

The above can be summarized as follows.

Theorem 4 Let V be a random variable with LST (51). Then, as t→∞,

P [V > t] ∼ e−(λ/a)t

1− a
ϕ′(0)

. (64)

Denote by V̄ a random variable with LST ϕ′a(0)α/ϕa(α), with V̄ independent of

V , such that Z(0) is distributed as V̄ + V , cf. Theorem 3. Theorem 4 entails that if

V̄ is subexponential, then so is Z(0), with the same tail behavior as V̄ . If the tail of

V̄ is exponential (as in the Cramér case mentioned above), with a decay rate that is

different from λ/a, then the heavier tail dominates, and determines the decay rate

of Z(0); the prefactor can be computed in a similar way as above.
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