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On a generic class of Lévy-driven vacation models

ABSTRACT
This paper analyzes a generic class of queueing systems with server vacation. The special
feature of the models considered is that the duration of the vacations explicitly depends on the
buffer content evolution during the previous active period (i.e., the time elapsed since the
previous vacation). During both active periods and vacations the buffer content evolves as a
Lévy process. For two specific classes of models the Laplace-Stieltjes transform of the buffer
content distribution at switching epochs between successive vacations and active periods, and
in steady state, is derived.
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On a generic class of Lévy-driven vacation models

Onno Boxma∗ Offer Kella† Michel Mandjes‡

Abstract

This paper analyzes a generic class of queueing systems with server vacation. The special
feature of the models considered is that the duration of the vacations explicitly depends
on the buffer content evolution during the previous active period (i.e., the time elapsed
since the previous vacation). During both active periods and vacations the buffer content
evolves as a Lévy process. For two specific classes of models the Laplace-Stieltjes trans-
form of the buffer content distribution at switching epochs between successive vacations
and active periods, and in steady state, is derived.

Keywords: Lévy process, storage process, queues with server vacations
AMS Subject Classification: Primary 60K05; Secondary 60K25

1 Introduction

Motivated by problems arising in the areas of computer, communication, and production
systems, over the past decades substantial attention has been paid to the analysis of vaca-
tion models. These are queueing models in which the server alternates between active and
passive modes; passive periods, i.e., periods in which the server does not work, are referred
to as ‘vacations’. It is commonly assumed that the durations of the vacations constitute a
sequence of independent, identically distributed random variables, where this sequence is
also assumed to be independent of the past evolution of the queueing system. For extensive
surveys on this type of vacation queues we refer to [3, 4], and the book [8].
In [2] we have departed from the independence assumptions mentioned above, and explic-
itly model positive correlation between subsequent active and passive periods. Notice that
in many situations there is such a positive correlation; an example is provided by a queue
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in a two-queue polling system, in which the intervals in which the other queue are served
are identified with server vacations. In the setup of [2] it is assumed that the buffer content
during both the active periods and the passive periods evolves as a Lévy process (which is
assumed to have no negative jumps during the active periods, and to be a subordinator dur-
ing the vacations). We refer to [2] for additional references on vacation models with some
form of dependence. See also [6], where another form of correlation between active periods
and vacations is considered, with special attention for the interesting phenomenon of a pos-
sible explosion of an infinite number of active periods and vacation periods in a finite time
interval.

In the present paper we analyze a model similar to the one in [2], but we allow the nature
of the dependence between the active and passive periods to be more general. To explain
the model, we first consider the following elementary system. Focus on the start of an active
period; let τ be the time until the buffer is empty, and let T be an independent exponential
clock. Then we sample the length of the next vacation as a random variable S1 if T is smaller
than τ , and as S2 otherwise. It is clear that this model is rather flexible, as it allows for
a broad range of possible correlations (both positive and negative) between the active and
passive periods.
In the paper we study two generalizations of the above model. In the first, which we will
refer to as Model 1 and which is treated in Section 2, we have d exponential clocks (whose
means are not necessarily identical). If the set of clocks that is still active at time τ is A ⊆
{1, . . . , d}, then the duration of the next vacation is distributed as a random variable SA. In
Model 2, which is addressed in Section 3, there is just one clock, but this clock has a phase-
type distribution. The distribution of the next vacation then depends on whether the clock
is still active at τ or not.
For both models we compute the Laplace-Stieltjes transform of the steady-state storage level.
We do so by first analyzing the storage level at ‘switch epochs’, that is, epochs at which there
is a transition from the passive to the active mode. Then we use an ‘averaging procedure’ to
translate the results for the embedded epochs into time-average results. We are also able to
explicitly characterize the correlation between subsequent active and passive periods.

2 Model 1: vacation determined by multiple exponential clocks

Consider the following model of a storage system that alternates between service periods (or:
active periods) and vacations (or: passive periods). Its dynamics are described as follows.

• Suppose the storage level is z ≥ 0 at the beginning of a service period. Then the storage
level evolves as a Lévy process X(·) (which is assumed to have no negative jumps). It
has a drift downwards, that is, %X := −E[X(1)] is positive (and finite). Observe that
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the process will actually attain level 0, say at time τ ≡ τ(z):

τ(z) := inf{t ≥ 0 : z +X(t) = 0}. (1)

Let us introduce some additional notation. The Laplace exponent of X(·) is given by
ϕ(α) := log E[exp(−αX(1))], and hence E[exp(−αX(t))] = eϕ(α)t and %X = ϕ′(0). Also,
ψ(·) denotes the inverse of ϕ(·). It is well-known that for any Lévy process that has no
negative jumps, τ(·) is a Lévy process itself, with Laplace exponent −ψ(α), that is

E[e−ατ(z)] = e−ψ(α)z, (2)

see, for instance, Thm. 46.3 in [7]. Notice that, for α ≥ 0, ψ(α) is uniquely defined as
the inverse of ϕ(·), as ϕ(·) increases on [0,∞).

• At the beginning of the service period, we initiate d ∈ N independent exponential
clocks, say, T1, . . . , Td; define Nd := {1, . . . , d}. Let A(t) be the set of clocks which are
still active at time t ≥ 0:

A(t) := {i ∈ Nd : Ti > t}. (3)

For any A ⊆ Nd we define a nonnegative random variable SA with Laplace-Stieltjes
transform (LST)

βA(α) := E[e−αSA ], (4)

with mean µA = −β′A(0) <∞. To ensure a nontrivial model, it is assumed that µNd
> 0,

though it could be the case that µA = 0 for strict subsets A of Nd.

If, at the end of the service period the set of active clocks is A, i.e., A(τ(z)) = A, then
the next vacation is distributed as SA. During this vacation, traffic is generated ac-
cording to a nondecreasing Lévy process (i.e., a subordinator) Y (·) with Laplace expo-
nent −η(α) := log E[exp(−αY (1))]. The corresponding (positive) drift is denoted by
%Y := η′(0) = E[Y (1)] <∞.

In the sequel, we refer to a consecutive active period and passive period as a ‘cycle’.
Let Zn be the storage level at the end of the n-th cycle. It is straightforward to derive
that after the first cycle the storage level has LST (in the sequel, Ez and Pz denote means
and probabilities conditional on the process starting in z at time 0):

Ez[e−αZ1 ] =
∑
A⊆Nd

Pz(A(τ) = A)βA(η(α)). (5)

• Then a new service period starts (i.e., the Lévy process X(·) becomes active again), etc.
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Remark 1. A special case of the above model results by taking X(·) a compound Poisson
process minus a positive drift, and Y (·) a (e.g., the same) compound Poisson process but
without the drift. This is an M/G/1 queue with vacations, the length of a vacation depend-
ing on the length of the preceding busy period.

Now that we have defined the dynamics of the process, we subsequently (i) indicate how the
probabilities pz(A) := Pz(A(τ) = A), for z ≥ 0, A ⊆ Nd, can be computed; (ii) determine the
steady-state distribution of the storage level at the ‘switching epochs’, i.e., epochs that the
process switches from passive periods to active periods; (iii) study the correlation between
consecutive active and passive periods; (iv) determine the steady-state distribution of the
storage level in continuous time.

(i) Reflections on the computation of the pz(A). We first observe that P0(τ = 0) = 1 so that
p0(Nd) = 1, and consequently p0(A) = 0 for all strict subsets A of Nd.Now consider the case
z > 0. Then

pz(A) = Ez

∏
i∈A

1{τ<Ti}
∏
j 6∈A

1{τ≥Tj}

 = Ez

∏
i∈A

e−λiτ
∏
j 6∈A

(1− e−λjτ )

 , (6)

where an empty product is one. For conciseness, we introduce for A ⊆ Nd, the ‘aggregate
rate’ Λ(A) :=

∑
i∈A λi, where an empty sum is zero. Observe that

∏
i∈A

e−λiτ
∏
j 6∈A

(1− e−λjτ ) =
n−|A|∑
k=0

(−1)k
∑

{B:B⊇A and |B|=|A|+k}

e−Λ(B)τ

=
∑

{B:B⊇A}

(−1)|B|−|A|e−Λ(B)τ .

(7)

Taking the expected values in (7), in conjunction with (2), now gives that

pz(A) =
∑

{B:B⊇A}

(−1)|B|−|A|e−ψ(Λ(B))z . (8)

In particular

pz(Nd) = e−ψ(Λ(Nd))z . (9)

(As an aside, we mention that it is easy to check that (8) and (9) remain valid for z = 0. In
particular, for A being a strict subset of Nd, and with Ac := Nd \A,

p0(A) =
∑

{B:B⊇A}

(−1)|B|−|A| =
∑

{B′:B′⊆Ac}

(−1)|B
′| = 0 , (10)

as the number of subsets of Ac is 2|A
c|, where half of them are odd and the other half even.

Also, evidently, (9) is in agreement with p0(Nd) = 1.)
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(ii) Steady-state distribution of the storage level at the switching epochs. We now consider
the steady-state distribution of the Markov process (Zn)n∈N. Clearly, such a stationary dis-
tribution, say Z, exists (independent of the initial state Z0): it is evident that the process is
regenerative, and the mean regeneration time is finite.
Denote by ζ(·) the LST of the steady-state distribution Z of (Zn)n∈N. Then, from (5) and (8),
for α ≥ 0,

ζ(α) =
∑

A⊆B⊆Nd

(−1)|B|−|A|ζ(ψ(Λ(B)))βA(η(α))

= β∅(η(α)) +
∑

B⊆Nd
B 6=∅

∑
A⊆B

(−1)|A|βA(η(α))

 (−1)|B|ζ(ψ(Λ(B))) .

(11)

Later we will use the identity that is obtained after inserting α = 0; we then find

0 =
∑

B⊆Nd
B 6=∅

∑
A⊆B

(−1)|A|

 (−1)|B|ζ(ψ(Λ(B))) . (12)

We remark that the last equation is also obvious from the fact that, for any nonempty B,∑
A⊆B(−1)|A| = 0, cf. (10).

From (11) we observe that if we know, for any B ⊆ Nd, the value of ζ(ψ(Λ(B))), then we
have identified the LST ζ(·) of Z. These constants can be found as follows. For each B′ ⊆ Nd

we substitute α := ψ(Λ(B′)). In this way one obtains a system of linear equations defining
the missing constants. We note that it is possible that for two or more different sets B′ the
values of Λ(B′) are the same. In this case the number of unknowns is reduced, but the
number of equations is reduced accordingly.

Example. Consider the simplest case, i.e., d = 1. Then the above formulae yield that

ζ(α) = β∅(η(α))− [β∅(η(α))− β{1}(η(α))]ζ(ψ(λ1)) (13)

so that

ζ(ψ(λ1)) =
β∅(η(ψ(λ1)))

β∅(η(ψ(λ1))) + 1− β{1}(η(ψ(λ1)))
(14)

and thus

ζ(α) =
β∅(η(ψ(λ1)))β{1}(η(α)) + (1− β{1}(η(ψ(λ1))))β∅(η(α))

β∅(η(ψ(λ1))) + 1− β{1}(η(ψ(λ1)))
. (15)

When µ∅ = 0, and thus β∅(·) = 1, we have

ζ(α) =
β{1}(η(α)) + (1− β{1}(η(ψ(λ1))))

2− β{1}(η(ψ(λ1)))
. (16)
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(iii) Correlation between consecutive active and passive periods. We note that, due to the
standard identity Cov(U, V ) = Cov(U,E[V |U ]), for any given initial level z ≥ 0, the covari-
ance between the durations of the active and passive periods is

Covz

τ, ∑
A⊆Nd

1{A(τ)=A}µA

 =
∑
A⊆Nd

µACovz
(
τ, 1{A(τ)=A}

)
. (17)

This covariance can be computed in a rather straightforward manner. To this end, first ob-
serve that it follows immediately from (2) that

Ez[τe−λτ ] = − d
dλ

Ez[e−λτ ] = zψ′(λ)e−ψ(λ)z (18)

and as Ez[τ ] = z/%X = zψ′(0) we have that

Cov(τ, e−λτ ) = −ze−ψ(λ)z(ψ′(0)− ψ′(λ)) (19)

which is strictly negative when X(·) is not a linear drift (as ϕ(·) is then strictly convex and
thus ψ(·) is strictly concave); the covariance is zero when X(·) is a linear drift.
Relying on (7) and (19), we can now further determine the terms in the sum in the right-hand
side of (17). It is readily checked that

Covz
(
τ, 1{A(τ)=A}

)
=

∑
{B:B⊇A}

(−1)|B|−|A|Covz(τ, e−Λ(B)τ )

= −z
∑

{B:B⊇A}

(−1)|B|−|A|e−ψ(Λ(B))z(ψ′(0)− ψ′(Λ(B)))

(20)

and thus the covariance (17) between the active period and the next passive period is given
by

−z
∑

A⊆B⊆Nd

µA · (−1)|B|−|A| · e−ψ(Λ(B))z · (ψ′(0)− ψ′(Λ(B)))

= −z
∑
B⊆Nd

∑
A⊆B

(−1)|A|µA

 (−1)|B|e−ψ(Λ(B))z · (ψ′(0)− ψ′(Λ(B)))

= −z
∑

B⊆Nd
B 6=∅

∑
A⊆B

(−1)|A|µA

 (−1)|B|e−ψ(Λ(B))z · (ψ′(0)− ψ′(Λ(B))).

(21)

This expression reveals that if, for each B,
∑

A⊂B(−1)|A|µA is positive when |B| is even
(odd) and negative when |B| is odd (even), then the covariance will be negative (positive,
respectively).
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For example, in case d = 1 we have that for B = {1},
∑

A⊂B(−1)|A|µA = µ∅ − µ{1}. In this
particular case the covariance is

−z(µ∅ − µ{1})e
−ψ(λ1)z(ψ′(0)− ψ′(λ1)). (22)

(iv) Steady-state distribution of the storage level in continuous time. In order to compute
the stationary distribution for the continuous time process we look at a single cycle which
begins with the stationary distribution of the embedded Markov process (Zn)n∈N. Then

E
[∫ τ

0
e−αX(t)dt

]
=
∫ ∞

0
E

[∫ τ(z)

0
e−αX(t)dt

]
dP(Z ≤ z)

=
∫ ∞

0
E

[∫ τ(z)

0
e−ϕ(α)tdt

]
dP(Z ≤ z) =

∫ ∞

0
E

[
1− e−ϕ(α)τ(z)

ϕ(α)

]
dP(Z ≤ z) =

=
∫ ∞

0

(
1− e−αz

ϕ(α)

)
dP(Z ≤ z) =

1− ζ(α)
ϕ(α)

.

(23)

In the last line, we have used (2) and ψ(ϕ(α)) = α.
With V denoting a random variable distributed like a passive period, we have

E
[∫ V

0
e−αY (t)dt

]
= E

[∫ V

0
e−η(α)tdt

]
=

1− E[e−η(α)V ]
η(α)

=
1− E[e−αY (V )]

η(α)
. (24)

Since Z1 is distributed like Y (V ), and using that the process (Zn)n∈N is stationary, it imme-
diately follows that

E
[∫ V

0
e−αY (t)dt

]
=

1− ζ(α)
η(α)

. (25)

Conclude that the time-stationary distribution of the process (that is, in continuous time) is
given by

E
[∫ τ

0 e
−αX(t)dt

]
+ E

[∫ V
0 e−αY (t)dt

]
E[τ ] + E[V ]

=
(1− ζ(α))

(
1

ϕ(α) + 1
η(α)

)
−ζ ′(0)

(
1

ϕ′(0) + 1
η′(0)

) . (26)

Using earlier results this expression can be further simplified, as follows. Denoting βeA(α) :=
(1− βA(α))/(µAα) when µA > 0 and βeA(α) := 1 when µA = 0, and setting

cA := µA
∑

{B:A⊆B⊆Nd}

(−1)|B|−|A|ζ(ψ(Λ(B))) = µA · pZ(A), (27)

we have from (11) and (12) that

1− ζ(α)
−ζ ′(0)

=

η(α)
∑
A⊆Nd

cAβ
e
A(η(α))

η′(0)
∑
A⊆Nd

cA
. (28)
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This entails that (26) simplifies to∑
A⊆Nd

cAβ
e
A(η(α))∑

A⊆Nd

cA
·
1 +

η(α)
ϕ(α)

1 +
η′(0)
ϕ′(0)

. (29)

Remark 2. It can be easily checked that for d = 1 the resulting LST is

µ{1}β∅(η(ψ(λ1)))βe{1}(η(α)) + µ∅(1− β{1}(η(ψ(λ1))))βe∅(η(α))

µ{1}β∅(η(ψ(λ1))) + µ∅(1− β{1}(η(ψ(λ1))))
·

1 +
η(α)
ϕ(α)

1 +
η′(0)
ϕ′(0)

. (30)

If we assume in addition that µ∅ = 0 (that is, there is no vacation when the active period is
too long) then this LST further simplifies to

βe{1}(η(α)) ·
1 +

η(α)
ϕ(α)

1 +
η′(0)
ϕ′(0)

. (31)

At first sight, it may seem that this is a mistake as it does not depend on λ1. However,
some thought reveals that if τ ≥ T1 then there is no vacation. This means that during the
next cycle the process starts from zero and hence the hitting time of zero is zero, and thus is
majorized by the next exponential, and as a consequence a vacation (with LST β{1}(·)) will
begin. Therefore, the process is identical to one where no comparison with exponentials is
made, and in which we have just active periods followed by independent vacations with
LST β{1}(·). A related model was considered in [5]. The same phenomenon will occur if
µA = 0 for all A that are strict subsets of Nd, and µNd

> 0.

Remark 3. A special case of the model with d = 1 is the following. Assume that the length of
a cycle is max(τ, Tλ) where Tλ ∼ exp(λ) and is independent of all other stochastic quantities
involved in the system. If τ < Tλ, then the length of the vacation is Tλ − τ and otherwise it
is zero. This model is indeed equivalent to the model above with the choices d = 1, λ1 = λ,
P(S∅ ≤ t) = 1[0,∞)(t) and P(S{1} ≤ t) = (1 − e−λt)1[0,∞)(t) (that is, with β∅(α) = 1 and
β{1}(α) = βe{1}(α) = λ/(λ+ α)).

Remark 4. When ϕ(α) = rα−η(α), that is when during active periods there is a deterministic
outflow at rate r while during vacations there is none, the LST of the last term in (29) is given
by

1 +
η(α)
ϕ(α)

1 +
η′(0)
ϕ′(0)

=

rα

ϕ(α)
r

ϕ′(0)

=
αϕ′(0)
ϕ(α)

, (32)
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which is simply the LST of the steady-state storage level of a reflected Lévy process with
exponent ϕ [1, Ch. IX]. This leads to the decomposition result discovered in [5] for a model
in which the length of the vacation is independent of the previous active period, but on the
other hand is a general stopping time with respect to some filtration (not necessarily the one
generated by Y (·)).

Remark 5. Let FA(·) := P(SA ≤ ·). Whenever a vacation is zero it is as if we are immediately
starting another vacation with distribution

FNd
(t)− FNd

(0)
1− FNd

(0)
. (33)

Therefore without loss of generality we may assume that FA(0) = 0 and, in particular, that
µA > 0 for all A. For example, if FA(0) > 0, then when replacing FA(t) with

GA(t) := FA(t)− FA(0) + FA(0)
FNd

(t)− FNd
(0)

1− FNd
(0)

(34)

the continuous-time process remains the same, but GA(0) = 0 (it evidently has impact on
the embedded process (Zn)n∈N, though).

3 Model 2: vacation determined by a phase-type clock

This model is similar to the one of the previous section, in that the storage level is determined
by alternating active and passive periods. Also, as before, the buffer level at the beginning of
the active period has impact on the duration of the vacation. Suppose at the beginning of the
active period the buffer level was z, and let τ be the time it takes the system to empty. Now
consider a ’clock’ random variable T which has a phase-type distribution. If T ≤ τ the next
vacation period lasts for a random time with LST β1(·), and if T > τ it lasts for a random time
with LST β2(·). Define pz(1) := Pz(T ≤ τ) and pz(2) := Pz(T > τ). Similar to the previous
section, we first (i) compute the probabilities pz(1) and pz(2), then (ii) determine the storage-
level distribution at ‘switch epochs’ (i.e., as before, epochs at which the active period starts),
then (iii) analyze the correlation between subsequent active and passive periods, and finally
(iv) determine the steady-state distribution at an arbitrary point in time.

(i) Reflections on the computation of the pz(i), for i = 1, 2. Any phase-type distribution is
characterized by a d-dimensional (d ∈ N) vector γ, and a d× d matrix Q. Here γ is the ‘initial
distribution’, and Q is such that there is a generator matrix Q̄ that can be written as

Q̄ =

(
Q q

~0 T 0

)
(35)

with q chosen such that the rows sum to 0 (here ~0 is a d-dimensional vector with all its
entries equal to 1, and the superscript ‘T’ denotes transpose). The last row (containing just

9



zeroes) indicates that state d + 1 is absorbing; notice also that the vector q is necessarily
componentwise nonnegative. From [1, Prop. III.4.1] we immediately have that

P(T ≥ t) = γeQt~1.

Let λ1, . . . , λd denote the eigenvalues of Q, and let Λ := diag{λ1, . . . , λd}; all eigenvalues
have a negative real part [1, Section II.4d]. Assume for the moment that all eigenvalues of Q
are simple, so that we have, for some matrix S,

pz(2) =
∫ ∞

0
P(T > t)dPz(τ ≤ t) =

∫ ∞

0
γeQt~1dPz(τ ≤ t) =∫ ∞

0
γSeΛtS−1~1dPz(τ ≤ t) =

d∑
i=1

δie
−ψ(λi)z ,

(36)

for suitable coefficients δ1, . . . , δd. The last equality follows by combining the fact that γSeΛtS−1~1
is some weighted sum of terms e−λit with Formula (2) (as an aside we remark that if λi and
λj are complex conjugates, then so are e−ψ(λi)z and e−ψ(λj)z). In many important cases, how-
ever, the eigenvalues of Q are not simple. If for instance T is Erlang(d, λ) distributed, it is
easily verified that the eigenvalue λ has multiplicity d. In general one could say that for any
T having a phase-type distribution there are constants δij such that

P(T > t) =
k∑
i=1

mi∑
j=1

δijt
j−1e−λit; (37)

here the λi are, as before, the eigenvalues of Q, k ∈ {1, . . . , d} is the number of distinct
eigenvalues, and mi is the multiplicity of the ith eigenvalue (so that

∑k
i=1mi = d). It is now

readily verified that

pz(2) = Pz(T > τ) =
k∑
i=1

mi∑
j=1

δijEz[τ j−1e−λiτ ], (38)

which can be rewritten as

k∑
i=1

mi∑
j=1

δij (−1)j−1

(
dj−1

dλj−1
e−ψ(λ)z

∣∣∣∣
λ=λi

)
. (39)

It now follows that we can identify coefficients δ̄ij such that

pz(2) =
k∑
i=1

mi∑
j=1

δ̄ijz
j−1e−ψ(λi)z. (40)

Example. Consider the case that T has an Erlang(2, λ) distribution; we have k = 1, m1 = 2,
and λ1 = λ. It is straightforward to obtain that pz(2) = e−ψ(λ)z(1 + λψ′(λ)z). In other words,
in this case we have that δ̄11 = 1 and δ̄12 = λψ′(λ).
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(ii) Steady-state distribution of the storage level at the switching epochs. Let Z denote the
steady-state storage level at switching epochs. We immediately find the following relation
for the LST ζ(·) of Z:

ζ(α) = E[pZ(1)]β1(η(α)) + E[pZ(2)]β2(η(α)). (41)

Using the expressions for pz(i) derived above, we find

ζ(α) = E

1−
k∑
i=1

mi∑
j=1

δ̄ijZ
j−1e−ψ(λi)Z

β1(η(α)) + E

 k∑
i=1

mi∑
j=1

δ̄ijZ
j−1e−ψ(λi)Z

β2(η(α))

=

1−
k∑
i=1

mi∑
j=1

δ̄ij(−1)j−1ζ(j−1)(ψ(λi))

β1(η(α)) + k∑
i=1

mi∑
j=1

δ̄ij(−1)j−1ζ(j−1)(ψ(λi))

β2(η(α)).

(42)

The d constants ζ(j−1)(ψ(λi)) can be identified by inserting α = ψ(λi) (for i = 1, . . . , k) into
the (j − 1)th derivative of the above equation (for j = 1 to mi).

(iii) Correlation between consecutive active and passive periods. The covariance between
active and passive periods is, with µi := −β′i(0), for an initial level z ≥ 0, given by

µ1Covz
(
τ, 1{T≤τ}

)
+ µ2Covz

(
τ, 1{T>τ}

)
. (43)

Elementary algebra, and relying on the results for pz(i), yields that this equals

(µ1 − µ2)
k∑
i=1

mi∑
j=1

δijCovz
(
τ, τ j−1e−λiτ

)
= (µ1 − µ2)

k∑
i=1

mi∑
j=1

δij

(
Ez[τ je−λiτ ]− Ez[τ ]Ez[τ j−1e−λiτ ]

)
.

(44)

The latter expression can be further evaluated by differentiating Ez[e−λiτ ] = e−ψ(λi)z.

(iv) Steady-state distribution of the storage level in continuous time. This can be done by
mimicking the arguments used for Model 1; in particular Equations (23)–(26) remain valid.

Remark 6. It is clear that we can combine the models of this and the previous section; then
there are d clocks, each having a phase-type distribution, and the vacation has distribution
SA if the set of clocks still active at τ is A. It is easily seen that the probabilities pz(A) are
mixtures of terms of the type zje−βz , for j ∈ {0, 1, . . .} and β > 0, and therefore the analysis
of the previous sections carries over to this more general model.
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