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A polling system is a queueing system in which several queues are attended 
by a single server. Spurred by various important applications, the field of 
polling systems is going through a period of feverish activity. The first part 
of this paper surveys some of the main developments. The second part 
generalizes the theory of polling systems to the case in which the customer 
arrival process depends on the position of the server, and to the case in 
which customers travel from queue to queue. 

1 INTRODUCTION 

It has been a great pleasure to write this paper on the mathematical analysis 
of the single-server polling system in honour of a truly devoted server. In a 
sometimes almost literally painstaking way, Cor Baayen saw to it as director 
of SMC that both LAW and CWI, and also both its mathematics and com­
puter science groups, were served in an equally fair manner. He has strongly 
stimulated research at the interface of mathematics and computer science. His 
far-reaching vision has been crucial in realizing the INSP support for CWI in 
the eighties, which in its turn made it possible to build up a research group on 
the mathematical analysis of the performance of computer systems. 

Consider the following situation. A director of a research institute divides 
his attention among several activities: scientific, financial, personnel matters, 
representative activities. Suppose that he devotes his energy for a while (a 
'session') to tasks of a scientific nature, then switches to finance, etc. During 
a session other new tasks of the same type, as well as of different type, may be 
generated; furthermore, a task may have to be reconsidered in future sessions 
('feedback'). The director is interested in the evolution of his workload, the 
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numbers of tasks of all types, etc. These quantities clearly depend on the way in 
which the offered load fluctuates over time; but the director can also influence 
the process by a judicious choice of the order of his activities and of the ti~e 
he reserves for a session. The framework in which these matters can be studied 
is that of single-server queueing models. More precisely, it is the framework of 
polling models. . 
A polling model is a queueing model in which customers (tasks) arnve _a~ a 
set of queues Q 1, •.. , Q N according to some stochastic arrival process, requ1~mg 
some stochastic: amount of service. A single server B visits the queues m a 
fixed order to provide service. We assume throughout the paper that it is the 
cyclic order Qi, ... , QN. Q1, ... ( cf. Fig. 1 ). 

FIGURE I. Queueing model of a polling system 

\\'hen B visits Q, and it is not empty, then B serves customers in a session at 
Q, according to some service discipline. The most common service disciplines 
an': 

• 1-limited: serve just one customer (if at least one is present) 

• exhaustive: sc>rve customers until the queue is empty 

• gated: serve precisely those customers that were already present at the 
start of the session 

When Q, is empty, or the session is completed, then B switches to Q.;+ 1 . This 
may require some switchover time, which is represented by a stochastic: vari­
able. 

The assumptions about the stochastic: nature of the arrival process, service 
times and switehover times are introduced to represent the usually inherently 
random nature of customer behaviour, as well as a lack of detailed information. 
Moreover. a probability distribution for, say, service times may also represent 
an aggregate of in itself known, constant but distinct, service times of several 
types of customers. Thc> purpose of the analysis of a polling model is to de­
termine the performance of (several variants of) the underlying system, and 
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eventually to optimize system behaviour. Due to the stochasticity assumptions 
one can at most make probabilistic statements about the main performance 
measures of a polling model, like workload of the server, numbers of custom0rs at the various queues, or their waiting times. 
The analysis and optimization of polling syst0ms has in recent years received an 
enormous amount of attention, and much progress has been r;iade. It has also 
bt•en one of the key research topics of the performance analysis group at CWI; 
cf. the PhD Theses of W.P. Groenendijk [10] and S.C. Borst [l]. Therefore it 
seems appropriate to briefly review the main developments, with some empha­
sis on contributions from the latter group. This review is presented in Section 
2. In Section 3 we discuss a generalization of the standard polling model, in 
two directions that so far have receiv(•d hardly any attention: 
(i) The arrival rate of customers at the various queues may depend on the po­
sition of the server: information on which queue the server is presently visiting, 
and hence on which queue it will visit next, may influence the generation of 
new tasks. 
(ii) Instead of leaving the system, customers may be routed to another (or the 
same) queue after having received a service. A customer's required service time 
at a queue may depend both on that queue and on the number of services it 
has already received. 
We show how, for an important class of service disciplines, these generalizations 
can be analyzed in full detail. Crucial in this analysis is the application of the 
theory of multitype branching processes. 
The above-mentioned features of feedback and customer information arise quite 
naturally in our director example; in the remainder of this section we mention 
several other applications of polling models. 

Applications of polling models 
Polling models arise in situations in which there are multiple customer classes 
sharing a common resource which is available to only one customer class at a 
time. The oldest polling model in the queueing literature concerns a patrolling 
repairman, who consecutively inspects a number of machines to check whether 
a breakdown has occurred and to restore such breakdowns [12]. In this example 
the server is the repairman, the queues are the machines, and the customers 
represent the breakdowns. 
The application that gave polling models their name is a time-sharing com­
puter system consisting of a number of terminals connected by multidrop lines 
to a central computer. The data transfer from the terminals to the computer 
(and back) is controlled via a 'polling scheme' in which the computer 'polls' 
the terminals, requesting their data, one terminal at a time. Iu this example 
the server represents the central computer, the queues are the terminals and 
the customers are the data. 
The interest in polling models was strongly revived by the study of message 
transmission protocols iu local area networks. Many communication systems 
provide a broadcast channel which is shared by all connected stations. When 
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two or more stations wish to transmit simultaneously, a conflict arises. The 
rules for either resolving or preventing such conflicts are referred to as 'multi­
access protocols'. An important conflict-free protocol is the token ring proto­
col. In a token ring local area network, several stations (terminals, file servers, 
hosts, gateways, etc.) are connected to a common transmission medium in a 
ring topology. A special bit sequence called the token is passed from one station 
to the next; a station that 'possesses the token' is allowed to transmit a mes­
sage. After completion of its transmission the station releases the token, giving 
the next station in turn an opportunity to transmit. This situation can be 
represented by a polling model with 1-limited service at each queue; the server 
is the token, the queues are the stations and the customers are the messages. 
Variants of the above-described token-passing mechanism give rise to related 
polling models, with e.g. exhaustive service at the queues. A queueing analysis 
of these polling models yields insight into the (dis )advantages of the various 
access protocols, and allows system designers to make performance predictions. 
We refer the reader to Takagi [18] and Grillo [9] for surveys on polling appli­
cations in respectively computer- and communication networks. 
Other application areas of polling models include: 

• robotics in manufacturing (a single machine processes several types of 
parts, incurring switchover times for changing tools) 

• traffic signal control (the green light represents the availability of the 
server for a queue of vehicles) 

• the operation of elevators (multiple servers are interesting here: is it better 
to have a concentration of elevators in a central area, or should they be 
dispersed over the building?) 

• packet transfer protocols in B-ISDN (in such Broadband Integrated Ser­
vices Digital Networks, channel access will be alternately granted to voice, 
video and data messages, all digitized into 53-byte packets) 

The characteristic feature of all these applications is that the server is 'moving' 
between queues, implying that the priorities of the queues are dynamically 
(e.g., cyclically) changing. This sharply contrasts with classic static priority 
queueing models, where one type of customers always has priority over other 
customer types. 

2 ANALYSIS OF POLLING SYSTEMS 

In this section we briefly review the exact analysis of the standard cyclic polling 
system. After a detailed model description we consecutively consider work­
loads, waiting times and queue lengths. 

Model description 
We here describe the standard cyclic polling model; in Section 3 we extend this 
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model in several ways. Customers arrive at N queues Q1, ... , Q N with infi­
nite waiting rooms according to N independent Poisson processes, with rates 
>.1 , ..• , AN· Customers who arrive at Qi are called type-i customers. Server 
B visits the queues in the cyclic order Q1, ... , QN, Q1, .... Upon his visit to a 
queue, he serves one or more customers (if present) according to some service 
discipline like 1-limited, gated or exhaustive service ( cf. Section 1 ). The service 
times of type-i customers are independent, identically distributed stochastic 
variables; their distribution is Bi(·), with first moment /3i, second moment ,aj2l 
and Laplace-Stieltjes Transform (LST) /3i0· The switchover times of B be­
tween Qi and Q.;+i are independent, identically distributed stochastic variables, 

with first moment Bi, second moment s~2 ) and LST ai(-). The total switchover 
time of B in one cycle has first and second moment s respectively sl 2l. We 
assume that the interarrival, service and switchover processes are mutually in­
dependent. 
The offered traffic Pi at Q; is defined as p; := >.;{3;, and the total offered 
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traffic load is p := I; Pi· Obviously p < 1 is a necessary condition for steady-
i=l 

state distributions of workloads, waiting times and queue lengths etc. to exist. 
When all switchover times are zero, this condition is also sufficient; otherwise 
the situation may be much more complicated, and in particular the service 
disciplines may influence the stability condition (e.g., in 1-limited service Bis 
forced to spend time switching after each service). See Fricker and Jalbi [8] for 
an extensive discussion of these stability issues. We assume in the sequel that 
steady-state distributions of all quantities under consideration exist. 

The workload process 
Consider first the case that all switchover times are zero. Then B is always 
working as long as there is at least one customer anywhere in the system. 
The amount of work in the system evolves in a way that does not depend on 
the order of service of the queues and w'ithin the queues, or on the service 
disciplines at the queues; this is the principle of work conservation ( cf. Heyman 
and Sobel [13], p. 418). Hence, for any service discipline at the queues of 
the cyclic polling system, the amount of work is distributed as the amount of 
work in the 'corresponding single server queue' with FCFS (First Come First 
Served) order of service. Since the superposition of N independent Poisson 
processes is again a Pobson process, that. 'corresponding single server queue' is 

N 
an M/G /1 queue with arrival rate A := I; A; and with service time distribution 

i=l 
N 

B(·) := L (>.;/ A.)B;(· ). 
i=I 

Now consider the case that not all swit<:hover times are zero. The principle 
of work conservation is clearly violated. However, it has been shown in [4] 
that a principle of work rfocornpoHition holds: the steady-state amount of work 
V with in the pollin~ system with switchover times is related to the steady-
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state amount of work V without in the 'corresponding polling system' without 
switchover times (hence in the above-mentioned 'corresponding M/G/1 queue') 
via 

d 
V with = V without + Y 1 (1) 

where Y is the steady-state amount of work present in the system at an epoch in 

which Bis not serving; ~ denotes equality in distribution. Moreover, V without 

and Y are independent. The distribution of V without is known from M/G/1 
theory. The distribution of Y can be determined in a number of cases, but with 
considerable effort. The mean EY, on the other hand, is very easily determined 
for virtually any set of service disciplines at the various queues - which turns 
out to be most useful for deriving mean waiting times, as we'll see in formula 
(4) below. 

REMARK 2.1 
The proof of (1) as presented in [4] is based on three concepts which are sketchily 
indicated below. 
(i) As long as B is serving, the amount of work evolves in exactly the same 
way as if B would be serving according to the LCFS (Last Come First Served) 
rule. 
(ii) Characteristically for LCFS, an amount of work Y found by a customer C 
upon his arrival in a switchover period is not served until C has been served, 
plus all customers who arrive during C's service (C's offspring), plus all cus­
tomers who arrive during those services, etc. (together - including himself -
forming G's 'ancestral line'). 
(iii) The time period required to serve the ancestral line of C is distributed as 
the busy period in the above-mentioned 'corresponding M/G/1 queue'. 
Since the principle of work conservation implies that during such a busy pe­
riod the amount of work evolves in the same way, regardless whether service 
is FCFS or LCFS, combination of (i), (ii) and (iii) shows that the workload 
V with is distributed as the superposition of Y and V without· 

Another proof of (1), communicated to the author by B.T. Doshi, proceeds as 
follows. Assume for simplicity that the densities of the distributions of V with 

and Y exist; denote them by v( ·) and y( ·), and denote their Laplace transforms 
by </J( ·) and 'TI(·). Equating the down crossing and up crossing rates of level x > 0 
gives: 

x 

v(x) - (1 - p)y(x) =A j (1- B(x - z))v(z)dz. 

0-

Combining this relation with v(O) = (1- p )y(O) and taking Laplace transforms 
leads (with [3(-) the LST of B(-)) to: 

1 - ,B(w) 
<P(w) - (1- p)71(w) =A </J(w). 

w 
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Hence 
(1 - p)w 

<f;(w) = w - A+ A;3(w)rJ(w), (2) 

which proves the decomposition into two independent components: cp(w) is the 

product of the transform of the distribution of Vwitlwut (a well-known M/G/l 
expression) and the transform r7(w) of the distribution of Y. See [3] for a 
generalization of this principle of work decomposition, and for applications to 
various polling models with a non-cyclic visit pattern. 

Waiting times 

We restric1 ourself here to mean waiting times. Denote the mean waiting time 
of type-i c1 •storners by EW;, and the mean number of waiting type-i customers 
by EXi. These quantities are related via Little's formula: EX; = >.;EW;. It 

is easy to relate the mean workload in queueing models with Poisson arrivals 
to mean queue lengths, and hence to mean waiting times. Indeed, under mild 
restrictions that are fulfilled in the standard polling model described earlier in 
this section, we can write ( cf. [3]): 

N N (3(2) 

EVwith = ~ /3;EX; + ~ p; , '/3· · 
i=l i=l 2 l 

(3) 

Now take means in (1) and combine the resulting formula with (3). Appli­
N 

I: .X.;(3~2) 
cation of Little's formula and EVwithout 

conservation law [4]: 

i~l 

2(1-p) then yields the pseudo-

N f, >...;f3f2l 
'°' p;EW; =pi=( ) + EY. ~ 21-p 
i=l 

(4) 

Here ( cf. the notation introduced in the model description) 

(5) 

with Z;.; the amount of work left behind at Q; by the departing server. EZii, 

and hence EY, can be explicitly determined for polling models with standard 
service disciplines like I-limited, gated, or exhaustive. EY = 0 for the case 
of zero switchover times, and then ( 4) reduces to the well-known conserva­

tion law [11 J. The origin of the term conservation law is that the weighted 
N 

sum I: PiEWi of the mean waiting times remains the same, regardless of any 
"i=l . 

changes in the service disciplines at the various queues. In the case of swrtchover 
times this weighted sum does change when a service discipline is changed, but 
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only via a - usually simple - change in EY. 
N 

The remarkably simple exact expression for I: p;EW; has in the past few years 
i=l 

turned out to be extremely useful for a variety of purposes: testing simulation 
results, the development of approximations for mean waiting times, and the 
optimization of server routing and server visit times. 

Queue lengths 
For the above-described N-queue cyclic polling model, with exhaustive service 
at all queues, Eisenberg [7] obtains the joint queue length PGF (Probability 
Generating Function) at epochs in which Breaches one of the queues. His solu­
tion method may also be used to handle the case of gated service at all queues. 
Furthermore, he also allows a fixed non-cyclic visit pattern. In a series of pub­
lications following Eisenberg's paper, an exact queue length analysis has been 
performed for several other N-queue polling models, with exhaustive or gated 
service, or mixtures and variants of these service disciplines; for an overview 
we refer to the survey of Takagi [I9]. In contrast, polling models with limits 
on the number of customers to be served during a session, or on the session 
time, have mostly defied an exact analysis. The joint queue length distribution 
for the 2-queue model with I-limited service at both queues can be obtained 
by transforming the problem into a Riemann- or Riemann-Hilbert boundary 
value problem (see, e.g., [6]), but for N > 2 it is not clear at all how the queue 
length problem can be attacked. 
In an important paper, written at CWI, Resing [I5] clarifies this sharp separa­
tion between 'easy' and 'hard' polling models. He considers a class of service 
disciplines with the following property: 

Branching property 
If there are k.; customers present at Q; at the start of a visit, then during the 
course of the visit each of these k; customers will effectively be replaced in an 
i.i.d. manner by a random population having some PGF h;(z1, ... , ZN) which 
may be any N-dimensional PGF. 

Resing demonstrates that, if the branching property holds at all queues, then 
the joint queue length process at successive moments that B reaches a fixed 
queue, say Qi, is a Multi-Type Branching Process (MTBP) 'with immigration'. 
The theory of MTBP now yields stability conditions as well as an exact ex­
pression for the joint queue length PGF. 
The I-limited service discipline does not have the branching property. The 
gated and exhaustive disciplines, on the other hand, do possess this property, 
with respectively 

N 

h;(z1, ... ,ZN) = /3;(z:=>-j(I - Zj)), (6) 
.i=l 
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(note that this is the PGF of the joint distribution of the numbers of arrivals 
at the various queues during one service at Qi), and 

h;(z1, ... , ZN) = O;(L Aj(l - Zj)), 
#i 

(7) 

where Bi(-) denotes the LST of a busy period in an M/G/1 queue with arrival 
rate .\; and service time distribution Bi ( ·). 
In the next section we shall extend the queue length results for the polling 
model of the present section, with the branching property at all queues, to 
some more general polling models. Therefore we now go into more detail con­
cerning the theory of MTBP with irnmigration and the results of Resing [15]. 
Consider a system with N particle types. Let pCil (j1 , ... , j N) denote the prob­
ability that a type-i particle 'produces' as offspring Jk particles of type k, k = 
1, ... , N. The offspring PGF of pli) (Ji, ... ,JN) i8 denoted by J(i) (z1 , ... , ZN), 
and the mean number of particles of type J produced by oue type-'i particle is 
denoted by m;.j. The matrix A1 = (rn;.i) plays an essential role in the theory 
of MTBP. M is called primitive if there is an n such that all entries of the 
matrix !vf" are strictly positive. The well-known Perron-Frobenius theorem 
implies that a nonnegative primitive matrix 1\1 has a positive real eigenvalue 
Vmax such that J v I< l/rn""' for all other eigenvalues v of M. 
Not only are particles produced by other particles; new partic:les can also en­
ter the system via immigration (this corresponds to the arrival of customers 
during a period in which B is not serving). Let q(j 1 , ... , JN) denote the 
probability that a group of immigrants consists of Jk particles of type k, 
k = 1, ... , N. Denote its PGF by g(z1 , ... , ZN ), and inductively define the 
functions fn ( z1, ... , z N) by 

r (" ,. ) ·- (7 ,. ) JO "'-'], ... ,-...N .- "-'], ... , ....... N, 

fn(z1, ... ,ZN) := (J(ll(Jn_i(z1, ... ,ZN)), ... ,/(N)(J.,,_1(z1, .. .,zN))). 

Resing cites the following theorem, due to Quine [14]: 

THEOREM 2.1 
Let Zn = (z;,1l, ... , z;,N)) be an MTBP with immigration in each state, with 
offspring PGF f(i) (z1, ... , ZN ), i = 1, ... , N, and immigration PGF g(z1 , ... , ZN ). 

Let the mean matrix M corresponding to the branching process be primitive 
and its maximal eigenvalue Vrruu < 1. Assume the Markov chain Zn is irre­
ducible and aperiodic. The stationary distribution rr(j1 , ... , j N) of the process 
Zn exists iff 

q(J1, ... ,JN) log(J1 + ... +JN)< CXJ. (8) 

When this condition is satisfied, the PGF P( z1 , ... , z N) of the distribution 
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7r(j1, ... , JN) is given by 

00 

P(z1, ... , ZN) = IT g(fn(Z1, ... , ZN )). (9) 

n=O 

Resing proves the following theorem ([15], Theorem 3): 

THEOREM 2.2 
Assume that the service discipline at each queue Qi of the cyclic polling model 
satisfies the branching property with PGF hi(z1 , ... , ZN ), i = 1, ... , N. Then 
the numbers of customers in the queues at successive time points that Breaches 
Qi constitute an MTBP with immigration in each state, where the offspring 
PGF's J(i) (zi, ... , ZN) are given by 

f (il(z ) _ h·(z ..,. j(Hl)(.,, z ) f(N)(.,, .,, )) 1, ... ,ZN - i 1, ... ,,..,..i, ,....1, ... , N , ... , .... 1, ... , .... N , 

(10) 
and the immigration PGF g(z1, ... , ZN) is given by 

REMARK 2.2 
The proof of Theorem 2.2 is established by considering the evolution of the 
joint queue length process between two successive time points, say t,, and tn+I, 

that B reaches Qi. Let CA be a customer in the system at tn. Define the an­
cestral line of CA as CA plus the set of all g1 customers who have arrived <luring 
the service of CA, plus the set of all g2 customers who have arrived during the 
service of those gi customers, plus .... Define the effecti've replacements of CA 

as those customers from the ancestral line of CA who are still present at tn+l · 

If CA is not served in this cycle, the effective replacements of CA consist of only 
cA itself. 
In a similar way the effective replacements of a customer c8 who arrives during 
a switchover interval between tn and tn+l are defined. 
The total collection of customers in the various queues at tn+I consists of 
the effective replacements of all customers present at in plus the effective 
replacements of all customers who have arrived during a switchover interval 
between tn and tn+i · The fact that all arrival processes are Poisson pro­
cesses, combined with the fact that all service disciplines satisfy the branch­
ing property, implies that the joint queue length process at successive epochs 
when B reaches Q 1 constitutes an MTBP with immigration. The offspring, 
in the sense of the MTBP, of one type-j customer is the set of effective re­
placements of that customer, and the immigration corresponds to the effec­
tive replacements of all arrivals during the switchover periods in one cycle. 
In particular, J(N)(z1,. .. ,ZN) = hN(Z1, .. .,ZN), but J(N-l)(z1,. . .,ZN) = 
hN-1 ( z1 , ... , ZN-1, f (N) (z1, .. . , ZN)). The latter formula reflects the fact that 
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type-N arrivals during a type-(N - 1) service may still generate their own off­
spring during the cycle. To arrive at the nested structure of the last PGF, the 
following property is used: The PGF of A 1 + ... +AK, with A 1 , A 2 , ... and 
K independent nonnegative integer-valued stochastic variables with PGF A(·) 
respectively K ( ·), is given by 

00 00 

L L Pr(K = j)Pr(A1 + ... + Aj = n)zn 
n=Oj=O 

00 

= °LPr(K = j)A(z).i = K(A(z)). 
j=O 

REMARK 2.3 
It follows from the above two theorems that the PGF of the joint queue length 
process at moments that B reaches Q1 is given by the infinite-product expres­
sion ( 9). Let us explain and illustrate this result by considering the 2-queue 
case. Denote by P; ( z1 , z~) ( G;( z1 , z2 )) the PG F of the joint queue length dis­
tribution when B read1e3 (leaves) Q;; so P1 (z1, z2 ) is the PGF we are looking 
for. Then we have the following four relations. 

P1(z1, z2) = o-2(>-1(1- zi) + >-2(1- z2))G2(z1, z2), 

G2(z1, z2) = P2(zi, hz(z1, z2)), 

P2(z1, z2) = 0-1(>-1 (1 - zi) + >-2(1 - z2))G1 (z1, z2), 

G 1 (z1, z2) = P1 (h1 (z1, z2), z2). 

(12) 

Here we have used the memoryless property of the Poisson arrival processes, 
and the nested structure outlined above for the sum of a random number of 
stochastic variables, as well as the following property of PGF's: 
The PGF of the sum of two independent stochastic variables is the product of 
their PGF's. 
Combination of the four relations in (12) yields: 

Remembering the definitions of the immigration PG F g( z1, z2 ) and the offspring 
PGF's J(il(z1 ,z2 ), we can rewrite this into 

(13) 

Iteration of this functional equation leads to the infinite-product expression 
(9), with N = 2. 

REMARK 2.4 
Polling models with and without switchover times are usually treated separately 
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in the literature, often via different approaches; the difficulty with simply let­
ting the switchover times tend to zero in a polling model with switchover times 
is that the number of visits in an idle period tends to infinity, leading to de­
generate distributions at such visit epochs. However, the following way out is 
possible. Let us assume that B in an empty system rests at, say, Q1 . For this 
situation Resing [15] shows, for the class of polling models with the branching 
property, that the joint queue length process at successive moments that B vis­
its Q1 is again an MTBP - but now with immigration only in state zero. In [2] 
it is subsequently shown how the identical offspring PGF's of the MTBP's cor­
responding to the polling model with respectively without switchover times give 
rise to a strong relation between their respective joint queue length processes 

(see also [17]). 

3 POLLING SYSTEMS WITH SMART OR PERSISTENT CUSTOMERS 

In this section we shall generalize the polling model of Section 2 in two di­
rections: polling models with arrival rates that depend on the server position 

('smart customers') and polling models with feedback and customer routing 
('persistent customers'). For each of these directions we outline (because of 
space restrictions without detailed proofs) how the model can be analyzed 
completely when the service discipline at each queue satisfies the branching 
property. 

3.1 Smart customers 

In some polling applications, knowledge about the server position may influ­
ence the arrival rates of the customer types. In the director's exarnple, the 
knowledge that the director will next turn to personnel matters may generate 
some new personnel tasks, while there is less hurry in creating tasks of an­
other nature. Let us model this as follows, making a few adaptations in the 
model described in the previous section. The arrival process of customers at 

Q;, when B is at Q j, is Poisson with rate AiJ; the arrival process of customers 

at Qi, when Bis switching from Qj to Qj+l' is Poisson with rate /liJ· When 
the service discipline at each queue satisfies the branching property, with PGF 
hi ( z1 , ... , z N) at Qi, then it is easy to check that the joint queue length process 
at successive moments that B visits, say, Q 1 is an MTBP with immigration. 
The immigration PGF is given by (cf. (11)): 

g(z1, ... ,zN)= ITai (tµ1.,;(l-z1.,)+ t. µ,ki(l-f(k)(z1 1 ••• ,zN))). 
·i==l k==l A:==i+l 

(14) 
In the case of gated service at Qi the offspring PG F is ( c:f. ( 6)): 

N 

hi(Z1, ... ,ZN) = f3l2=Aj;(l- Zj)), (15) 
j ==l 
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and in the case of exhaustive service at Q; the offspring PGF is (cf. (7)): 

hi(z1, ... 'ZN) = ei(I: Aj;(l - Zj)). (16) 
Ni 

The reasoning presented in Remark 2.3 should make it clear that the present 
model again gives rise to a functional equation of the type (13), iteration of 
which leads to an infinite-product expression for P1(z1, .. .,zN) like (9). The 
PGF of the joint queue length distribution at the end of a switchover from Q; 
to Q.;+ 1 is simply expressed in the PGF at the beginning of that switchover 
(the end of a visit to Q;), and the latter PGF can be expressed in the PGF 
of the joint queue length distribution at the beginning of that visit to Q; by 
substitution of the offspring PGF h;(.) at the i-th position in the PGF. 

Several interesting special cases deserve further attention. E.g., ,\,j = Ap;j and 
N N 

µ;J = Aq;j with PiJ, q;J 2': 0 and I: PiJ = I: q;J = 1 for all j corresponds to a 
i=l i=l 

fixed total arrival rate A. If the service discipline at each queue is gated (hence 
when B visits Q;, he will only serve customers that were already present at the 
start of the session), the smartest thing for an arriving customer to do is to go 
to the next queue: A;+ 1,; = /li+l,i =A, and .\;J = µ;J = 0 for all i =J j + 1. The 
most foolish behaviour, on the other hand, is represented by ,\;,; = µ;,; = A, 
and Aij = µ;1 = 0 for all j =J i. The former choice clearly minimizes the waiting 
time of each individual arriving customer. Let us now moreover assume that 
Bi ( ·) = B ( ·). Then the above choice also minimizes, in the sense of stochastic 
ordering, the workload of the server. This may he proven using coupling meth­
ods; see [5] for the more restricted fully symmetric case. 
In the case of identical service time distributions and fixed total arrival rate 
A, the work decomposition (1) still holds (check the level crossing argument 
presented in Remark 2.1), and EY can easily be calculated. But if not all ser­
vice time distributions are the same, or the total arrival rate is not constant, 
then the whole work decomposition concept breaks down. Some reflection will 
make it clear that when switchover times are zero, even the concept of work 
conservation is destroyed. 

3.2 Feedback and customer routing 

In the director's example, a completed task may have to be reconsidered in 
future sessions. This feature can he incorporated in the model of Section 2 in 
the following way. A newly arriving customer at Q,; (Poisson with arrival rate 
,\,;) is called a type-( i, 1) customer. After completion of its service, it moves 

to Qk with probability Pil), becoming a type-(k, 2) customer, and it leaves the 

system with probability pg). More generally, a type-(i, j) customer denotes a 
customer at Qi who has to be served for the j-th time; after having received 

service, it moves to Qk with probability p;~), and it leaves the system with 
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probability p)~l. A type-(i,j) customer requires a service time at Qi with dis­

tribution B;j(·), with LST f3ij(·). We assume that Pl~) = 1 for all i, i.e., each 
customer requires at most L services. 
Customer routing has hardly been studied in the context of polling, although 
several applications in token ring networks, robotics and computer systems ex­
ist; cf. Sidi et al. [16]. The latter paper analyzes the case of fixed transition 
probabilities Pij of customers from Qi to Qi, with fixed service time distribu­
tion Bi ( ·) at Q; and exhaustive or gated service at all queues. 
In this section we study the N £-dimensional queue length process X = 
(X11 , •.• , XiLi ... ;XNl, ... ,XNL), whereXij denotes the number of customers 
of type-( i, j) at a moment at which B reaches Qi. 
The branching property of Section 2 has to be adapted in the sense that one 
has to distinguish L PGF's h;1 (z1, ... ,zN), j = 1, ... ,L, in Q;. 
It is easily seen that X is an MTBP with immigration in each state. For the 
general case, determination of the offspring PGF's and the immigration PGF is 
somewhat involved. For example, one has to take the possibility into account 
that a customer is fed back to the same queue; and in the case of exhaustive 
service, such a customer may then receive more than one service during the 
same session. We shall refrain from formulating and proving the generalization 
of Theorem 2.2 here in its full generality. Instead, we illustrate the structure 
of the MTBP by considering a two-queue example with gated service at both 
queues. Similar to Remark 2.3, we denote by Pi(z11 , ... , Z2L) ( G.;(z11, ... , Z2L)) 
the PGF of the joint queue length distribution when Breaches (leaves) Q;. We 
have the following four relations: 

G2(z11, ... , Z2L) = P2(z11, ... , ZIL; Y21, ... , Y2d, 

P2( Z11, . .. 'Z2L) = CT1 (>.1 (1 - zu) + >-2(1 - Z21 ))G1 (z11, ... 'Z2L)' 

G1(z11, ... ,z2L) = P1(Yu, ... ,y1LiZ21, ... ,z2L)· 

Here, for i = 1, 2, j = 1, ... , L, 

Yij := (3;j (A1 (1 - Zn) + A2(l - Z21)) [pl~) + p;{) Z1,j+l + pg> Z2,j+1]. 

Note that (3;j (>.1 ( l-zu)+>.2(l-z21 )) is the PGF of the numbers of new arrivals 
at the various queues during a type-(i,j) service and that p(30.) + p<J>z1 ·+1 + 

(j) . ' . z zl ,J 
P;2 z2,j+1 is the PGF of the numbers of type-(k,J + 1) customers, k = 1, 2, 
generated by the feedback of one type-(i,j) customer. 
C01~b~nation of the four relations in (17) leads to a recursion for P1 (z11 , ... , z2L ), 

of sumlar form as (13), which can be solved iteratively. 

REMARK 3.1 
We_ thus obtain the PGF of the joint queue length distribution at time points in 
which B reaches Qi. But the four relations in (17) then also yield the PGF's 
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of the joint queue length distributions at time points in which B leaves Q 1 , 

reaches Q 2 and leaves Q2. The PGF of the joint steady-state queue length 
distribution may also be determined from these results, once the service order 
at the queues is specified (e.g., serve type-( i, j + l) before type-( i, j) customers). 

REMARK 3.2 
The case of a single queue with feedback, contained in the present model, is 
also interesting in itself. We can obtain the joint queue length distribution of 
the numbers of customers that are present for the first, ... , L-th time, at the 
time points at which B starts a new session. 

REMARK ;· .. 3 
Several variants and generalizations can also be handled in the framework of 
an MTBP. For example, one can allow zero switchover times between sessions, 
obtaining an MTBP with immigration only in state zero. Furthermore, instead 

of assuming p)fi'l = l, we may also assume that P'.2 = Pik and B;j(-) = B;(·) 
for all j 2: L, k = 0, 1, ... , L. The resulting MTBP still has a finite number of 
NL variables. This generalizes the model of Sidi et al. [16] in various ways. 
We may generalize our model even further, while retaining the MTBP structure. 
For example, we can allow 'smart customers' in combination with feedback and 
routing; and we can also allow the possibility that a served customer not just 
feeds back, but branches into several customers: a task of type-(i,j) that has 
been handled by the director may simultaneously give rise to tasks (k1 ,j + 1) 
and (k2,j + 1). While these possibilities may make the job of a director rather 
complicated, they do not fundamentally complicate the analysis of his work­
load. 
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