
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

PNA
Probability, Networks and Algorithms

 Probability, Networks and Algorithms

Task allocation in a multi-server system

S.C. Borst, O.J. Boxma, J.F. Groote, S. Mauw

REPORT PNA-R0122 DECEMBER 31, 2001

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711

Task Allocation in a Multi-Server System

Sem Borst∗, Onno Boxma, Jan Friso Groote, Sjouke Mauw

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

and

Department of Mathematics & Computer Science

Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ABSTRACT

We consider a slotted queueing system with C servers (processors) that can handle tasks
(jobs). Tasks arrive in batches of random size at the start of every slot. Any task can
be executed by any server in one slot with success probability α. If a task execution
fails, then the task must be handled in some later time slot until it has been completed
successfully. Tasks may be processed by several servers simultaneously. In that case,
the task is completed successfully if the task execution is successful on at least one of
the servers.
We determine the distribution of the number of tasks in the system for a broad class
of task allocation strategies. Subsequently, we examine the impact of various allocation
strategies on the mean number of tasks in the system and the mean response time of
tasks. It is proven that both these performance measures are minimized by the strategy
which always distributes the tasks over the servers as evenly as possible. Some numerical
experiments are performed to illustrate the performance characteristics of the various
strategies for a wide range of scenarios.

2000 Mathematics Subject Classification: 60K25, 68M20.
1998 ACM Computing Classification System: C.4.

Keywords & Phrases: task allocation, multi-server queues, response times.

Note: Work of the first two authors carried out in part under the project PNA2.1
“Communication and Computer Networks”.

∗Also with Bell Laboratories, Lucent Technologies, P.O. Box 636, Murray Hill, NJ 07974-0636, USA

1

1 Introduction

The problem of efficiently assigning tasks to processors or servers has been studied from many

different points of view. Depending on the particular side constraints, the problem can take

different shapes and can give rise to essentially different solutions. Approaches from the fields

of job shop scheduling and distributed computer systems have been extensively studied.

Here, we study scheduling in the setting of distributed heterogeneous computing. The basic

observation underlying this branch of computing is the fact that most low-end computers are

often idle. Due to the increased connectivity of such computers it is now possible to aggregate

these otherwise wasted CPU cycles and form a massively parallel computing resource (see [9]).

Participating computers run a client application which on a regular basis receives new tasks

from a central server and submits results of completed tasks.

The last few years, several initiatives were taken to use the idle time of computers linked to

the Internet for solving specific compute-intensive problems. Most notably, the SETI@home

project (see [17, 15]) is dedicated to the search for signs of extraterrestrial civilizations. Radio

signals from outer space form a huge amount of (uniform) data which must be analyzed for

the occurrence of special patterns. The tasks performed by the participating computers

are uniform: after initialization the clients only receive new chunks of data to be searched

through. Current capacity of SETI@home is about 15.7 Teraflops, which is much more

than the largest supercomputer currently available. There are also more general global

computing projects, such as Entropia and United Devices, which support varying tasks.

Some of these projects even sell part of their computing power to commercial clients. From

a more abstract point of view, the Internet and its connected computers form a giant software

and hardware infrastructure, which, in analogy to the power grid, is termed the grid (see [6]).

The grid should provide dependable, consistent, pervasive, and inexpensive access to high-

end computational capabilities. It is intended to support more classes of applications than

the class of high-throughput computing [6] in which the SETI@home applications falls.

The task allocation strategies used by the central servers of these high-throughput computing

projects are only described in very general terms. For SETI@home, it is stated that “The

response to [a client’s] request includes a work unit (. . .). Priority goes to those units that

have not previously been sent or those that were sent but for which no results were received.”

The purpose of our research is to analyze algorithms for task allocation in such a setting.

Rather than analyzing or reengineering the strategies currently being used for initiatives such

as SETI@home, we study algorithms in an idealized setting. As may be expected the problem

of assigning an incoming stream of tasks to a fluctuating set of error-prone computers is not

amenable to analysis in full generality. Therefore, we make some simplifications in modeling

the system.

2

We assume a central application which receives a “stochastically distributed” stream of

tasks that must be assigned to a collection of servers. We consider independent tasks, which

means that execution of one task does not influence execution of another task. The number

of servers, C, is assumed to be constant. Processors are error prone and the availability

of computing power can vary per server and over time. Therefore, it cannot be predicted

when a particular task will be completed, nor will a server report failures. It is, therefore,

necessary for the central server to use time-outs or a similar mechanism to guarantee that

every task will eventually be processed successfully. We model this behavior in a simplified

way by assuming that the system operates in a slotted fashion. By this we mean that tasks

are assigned to servers in the beginning of each time slot. It is possible to assign the same

task to different servers. Therefore, we assume that tasks are idempotent, i.e. each task can

be executed multiple times without negatively impacting the final result. At the end of each

time slot every server is assumed to have completed its task. If this is not the case, the

server is said to have failed on the task, and the task must be processed in some later time

slot. This can be done by one or more different servers, until the task has been completed

successfully. We model this failure behavior by assuming that any task can be executed by

any server in one slot with success probability α.

In the present paper, we investigate the impact of various task allocation strategies on

performance measures such as the mean response time of tasks. We focus on the class S of

strategies that assign the servers to C different tasks whenever there are at least C tasks

present. As a way of justification, we will show that the class S in fact contains the optimal

strategy among all admissible strategies (in terms of minimum mean response time).

The strategies in S are basically free in their actions when there are less than C tasks present.

For example, tasks may then be allocated to several servers simultaneously. In that case, a

task is completed successfully if the task execution is successful on at least one of the servers.

However, strategies in S may also opt to assign exactly one server to each task, thus leaving

some servers unutilized, or even decide not to execute any tasks at all until the number of

tasks in the system reaches the value C.

For the class of strategies S, we determine the distribution of the number of tasks in the

system at slot beginnings. The analysis yields expressions for the mean number of tasks in

the system, and thus via Little’s theorem [13] the mean response time. Subsequently, we

focus on three specific strategies in the class S, corresponding to three allocation rules for

the situation with less than C tasks present: (i) The ‘lazy’ strategy S0 executes no tasks at

all; (ii) Strategy S1 assigns exactly one server to each task; (iii) Strategy S∗ allocates all

servers, distributing them over the tasks as evenly as possible. It will be proven that the

latter strategy is in fact optimal within the class of all admissible strategies, in the sense

that it minimizes the number of tasks in the system (in distribution), and thus the mean

3

response time.

As stated before, scheduling problems have been studied extensively in many different set-

tings. Our approach differs in several respects from related work. From a queueing angle our

model may be viewed as a multi-server queue with geometrically distributed service times

(see [13]), however with the unusual element that tasks can be run in parallel.

Most approaches from the area of distributed computing systems consider just a finite set of

tasks, rather than a stream of incoming tasks. An example is the DO-ALL problem [5]. Re-

search on the DO-ALL problem concentrates on finding efficient algorithms which can deal

with different classes of server failures and restarts (see e.g. [3]). Kanellakis and Shvarts-

man [11, 12] studied the DO-ALL problem for the shared-memory model of computation,

and called it WRITE-ALL. Also for the WRITE-ALL problem a variety of algorithms have

been developed (see e.g. [7]). Our problem setting can be considered the natural extension

of the DO-ALL problem to an unbounded number of incoming tasks.

Whereas in the WRITE-ALL problem setting execution of a task is assumed to take ex-

actly one unit of time, several other approaches start from a stochastic distribution of task

processing times. Bruno et al. [2] show that if the task processing times are independent,

identically distributed random variables with some specific common distribution function,

then the assignment that attempts to place an equal number of tasks on each machine

achieves the stochastically smallest makespan among all assignments. This result is based

on the assumption of a fixed number of tasks and error-free processes.

Other approaches relax our requirement that tasks shall be independent. Hsu et al. [10]

consider e.g. a fixed set of tasks with precedence constraints that form a directed acyclic

graph. Another extension is based on the assumption of extra structure within tasks or

processors, such as the cost of a task and the load of a processor (see e.g. [8] for an advanced

dynamic scheduling algorithm and an extensive overview). Both approaches are restricted

to a finite number of tasks and do not consider server faults.

Maheswaran et al. [16] study scheduling of a fixed number of tasks with random arrival times.

Their fault model includes machines that may go off-line and come on-line again. Tasks may

have affinity for different machines, and tasks may age while waiting for execution.

There are several workbenches which support high-throughput computing. We mention

Condor [1] and EcliPSe [14]. Task distribution in these systems is a complex phenomenon. In

Condor, tasks are distributed according to dynamic negotiations between agents representing

the customer and the resource owner. In this way constraints from both parties can be

satisfied. These systems implement some level of fault-tolerance by means of check-pointing

(i.e. periodic savings of data during a task’s execution). In our setting, fault-tolerance is

reached by duplication and repetition of tasks. Siegel and Ali [18] give an excellent overview

of techniques for mapping tasks in heterogeneous computing systems.

4

This paper is organized as follows. The distribution of the number of tasks in the system

for strategies in the class S is derived in Section 2. In Section 3, the analysis is specialized

to the three strategies S0, S1, and S∗ described above. In Section 4, we show that the

allocation rule which distributes the servers over the tasks as evenly as possible maximizes

the number of successful task completions. In Section 5, it is then proven that strategy S∗,

which follows this rule in each time slot, minimizes the number of tasks in the system (in

distribution). In Section 6, we study how the strategies perform if we split a large number

of servers into a number of smaller pools. In Section 7, we present the results from some

numerical experiments which we conducted to gain further insight into the (absolute and

relative) performance of the various strategies for a wide range of scenarios. In Section 8,

we make some concluding remarks.

Acknowledgement We thank Wil Kortsmit for his assistance with Mathematica.

2 Steady-state distribution of the number of tasks

We consider a slotted queueing system with C servers that can handle tasks. Let Bn denote

the number of new tasks arriving in slot n, n = 1, 2, We assume that B1, B2, . . . and the

generic random variable B are independent, identically distributed random variables with

proper probability distribution P(B = k), k = 0, 1, 2, . . ., and with probability generating

function

E[rB] =
∞∑
k=0

P(B = k)rk, |r| ≤ 1.

Define Xn as the number of tasks present at the beginning of slot n, n = 1, 2, . . ., just before

the arrival of the Bn new tasks. Denote by An the number of successful task completions in

slot n, n = 1, 2,

If Xn + Bn ≥ C, then C tasks are executed in slot n, each one being successful with

probability α. In that case, An is binomially distributed with parameters C and α. If

Xn + Bn < C, then some of the servers may be left idle in slot n, or some of the tasks

may be processed by several servers simultaneously. For now, we do not make any specific

assumptions regarding the allocation rule used in slot n when Xn + Bn < C; we simply

assume that the number of successful task completions An is a random variable which only

depends on Xn + Bn. Hence, the stochastic process {Xn, n = 1, 2, . . .} is a Markov chain

which evolves as follows:

Xn+1 = Xn +Bn −An, n = 1, 2, (1)

5

In this section we determine the steady-state distribution P(X = k) := limn→∞P(Xn = k)

and its generating function E[rX] =
∞∑
k=0

P(X = k)rk. It can be easily verified that a

necessary and sufficient condition for this steady-state distribution to exist is E[B] < αC,

i.e., the mean number of arriving tasks per slot is strictly less than the processing capacity.

Throughout the current paper, this stability condition is assumed to hold.

In the following lemma we give a relation from which E[rX] can be obtained. Let I(A) denote

the indicator function of the event A: I(A) = 1 if A is true, and I(A) = 0 otherwise.

Lemma 2.1

The generating function E[rX] of the steady-state distribution of the number of tasks at slot

beginnings satisfies the following relation, for |r| ≤ 1:

E[rX] =
rCE[rX+B−AI(X +B < C)]− (α+ (1− α)r)CE[rX+BI(X +B < C)]

rC − (α+ (1− α)r)CE[rB]
. (2)

Proof

It follows from the recurrence relation (1) that

E[rXn+1] = E[rXn+Bn−An]

= E[rXn+Bn−AnI(Xn +Bn ≥ C)] + E[rXn+Bn−AnI(Xn +Bn < C)]. (3)

Observe that, for j ≥ C, i = 0, . . . , C:

P(An = i|Xn +Bn = j) =

(
C

i

)
αi(1− α)C−i,

and hence for j ≥ C, using Newton’s binomium:

E[r−An|Xn +Bn = j] =
C∑
i=0

r−i
(
C

i

)
αi(1− α)C−i = (

α

r
+ 1− α)C . (4)

The first term in the right-hand side of (3) may now be rewritten as:

E[rXn+Bn−AnI(Xn +Bn ≥ C)]

=
∞∑
j=C

rj
C∑
i=0

r−iP(Xn +Bn = j,An = i)

=
∞∑
j=C

rjP(Xn +Bn = j)
C∑
i=0

r−iP(An = i|Xn +Bn = j)

=
(
E[rXn+Bn]−E[rXn+BnI(Xn +Bn < C)]

)
(
α

r
+ 1− α)C . (5)

Observe that Xn and Bn are independent, so that E[rXn+Bn] = E[rXn]E[rBn]. In the steady-

state situation, combination of (3) and (5) now yields (2).

2

6

Formula (2) expresses E[rX] in terms of the two unknown functions E[rX+B−AI(X+B < C)]

and E[rX+BI(X + B < C)]. Let us concentrate on the first one, since the second one may

be viewed as a special case of the first one. Using the independence of Xn and Bn, hence

of X and B, we can write:

E[rX+B−AI(X +B < C)] =
C−1∑
k=0

P(X = k)
C−1∑
j=k

rjP(B = j − k)
j∑
i=0

r−iP(A = i|X +B = j).

Hence, the two above-mentioned unknown functions can both be expressed as weighted

sums of C unknown probabilities P(X = 0), . . . ,P(X = C − 1). Once the allocation rule

is specified for Xn + Bn < C, the probabilities P(A = i|X + B = j) are known, and hence

all the weight factors of the probabilities P(X = k) are known. We now show how the

C unknown probabilities P(X = 0), . . . ,P(X = C − 1) may be determined.

Lemma 2.2

The function rC − (α + (1 − α)r)CE[rB] has exactly C zeros r1, . . . , rC with |ri| ≤ 1, i =

1, . . . , C.

Proof

Consider the circle C1+ε around zero with radius 1 + ε, for small but positive ε. According

to Rouché’s theorem ([4], p. 652), the function rC − (α + (1 − α)r)CE[rB] has exactly as

many zeros as rC inside C1+ε if |(α+ (1− α)r)CE[rB]| < |rC | on C1+ε. (We apply Rouché’s

theorem with the circle C1+ε instead of with the unit circle, since r = 1 is a zero that lies on

the unit circle.) The right-hand term equals (1 + ε)C . A routine calculation shows that the

left-hand term is bounded by (1 + ε)C when −αC + E[B] < 0, which is exactly the stability

condition for the system which we assumed to hold. Since ε can be chosen arbitrarily small,

the lemma follows.

2

Now observe that for |r| ≤ 1 the probability generating function E[rX] is a convergent power

series, and hence an analytic function. So for |r| ≤ 1, whenever the denominator of (2)

equals 0, the numerator must also equal 0. For each of the zeros r1, . . . , rC−1, rC = 1, this

gives one linear equation in the C unknown probabilities P(X = 0), . . . ,P(X = C − 1). In

the case of rC = 1, that equation is degenerate. The normalizing condition E[rX] = 1 for

r = 1 provides the required extra equation. Via an application of l’Hôpital’s rule to (2) it

reads:

αCP(X +B < C)−E[AI(X +B < C)] = αC −E[B]. (6)

From these equations, one can (in general only numerically) find the probabilities P(X = k)

for k = 0, . . . , C − 1. Therefore, these probabilities P(X = k) can and will be treated

7

as known constants in the remainder of this paper. In particular, the mean number of

tasks at the beginning of a slot, E[X], can be expressed in terms of these probabilities.

Differentiating E[rX] w.r.t. r, and substituting r = 1, yields E[X]. Write the righthand side

of (2) as T (r)/N(r). It is then easily seen, using l’Hôpital’s rule and T (1) = N(1) (this is

exactly (6)), that

E[X] =
N(1)T ′′(1)−N ′′(1)T (1)

2N(1)N ′(1)
=
T ′′(1)−N ′′(1)

2N ′(1)
.

It thus follows that

E[X] =
1

2(αC −E[B])
{2(1 − α)CE[B] + E[B(B − 1)]

− (2α − α2)C(C − 1)P(X +B ≥ C) + 2αCE[(X +B)I(X +B < C)]

− 2CE[AI(X +B < C)] + E[A2I(X +B < C)]

− E[A(2X + 2B − 1)I(X +B < C)]}. (7)

Remark 2.3

From a performance perspective, a crucial characteristic is the response time W , i.e., the

amount of time that a task spends in the system before it is successfully completed. The

mean response time immediately follows from equation (7) via Little’s formula [13]:

E[X] + E[B] = E[B]E[W], (8)

or

E[W] = 1 +
E[X]
E[B]

. (9)

Relation (8) may be heuristically derived using the following ‘bookkeeping’ argument, cf. [20].

If each task receives one dollar for every slot that it spends in the system, then the total

average cost per slot may be evaluated in two different ways which both should yield the

same result: the mean number of arriving tasks per slot multiplied with the mean number

of slots that a task spends in the system: E[B]E[W]; or as the mean number of tasks in the

system during a slot: E[X] + E[B].

Remark 2.4

From equation (7), one immediately obtains a simple expression for E[X] in a heavy-traffic

regime, i.e., when αC − E[B] ↓ 0. Let us fix the integer number of servers, C, and assume

that E[B]/α → C. In that case, P(X + B < C) ↓ 0 for any strategy in S. Hence, after an

elementary calculation,

limE[B]/α→C(αC −E[B])E[X] =
1
2
[Var[B] + α(1 − α)C]. (10)

8

Note that the heavy-traffic approximation (10) holds for any strategy in S, regardless of its

actions when less than C tasks are present. In other words, in heavy traffic, E[X] grows

asymptotically at the same rate for all strategies in S. This may be understood as follows.

As observed when deriving (10), in heavy traffic, there are almost always at least C tasks

present. In that situation, the actions of all strategies in S coincide. As a result, the

differences in operation when there are less than C tasks present have no effect. As will be

shown later, the class S includes the optimal strategy among all admissible strategies (in

terms of minimum E[X] and E[W]). Thus, we conclude that in heavy traffic all strategies

in S are in fact asymptotically optimal in that respect.

3 Three candidate strategies

In the previous section, we derived the distribution of the number of tasks in the system

for the class of strategies S. The corresponding probability generating function in (2) still

contained the term E[rX+B−AI(X +B < C)], which may be determined explicitly once the

allocation rule is specified for X +B < C. In this section, we focus on three specific strate-

gies in the class S, corresponding to three such allocation rules: (i) The ‘lazy’ strategy S0

executes no tasks at all; (ii) Strategy S1 assigns exactly one server to each task; (iii) Strat-

egy S∗ allocates all servers, distributing them over the tasks as evenly as possible. In the

next section, we will show that the latter strategy is in fact optimal within the class of all

admissible strategies, in the sense that it minimizes the number of tasks in the system (in

distribution), and thus the mean response time. Some numerical results for the strategies S0,

S1 and S∗ are presented in Section 7.

The ‘lazy’ strategy S0

Strategy S0 executes no tasks at all until the number of tasks in the system reaches the

value C, so that A = 0 when X +B < C. Formula (2) then reduces to

E[rX] =
{rC − (α+ (1− α)r)C}E[rX+BI(X +B < C)]

rC − (α+ (1− α)r)CE[rB]
, (11)

and Formula (7) becomes

E[X] =
1

2(αC −E[B])
{2(1 − α)CE[B] + E[B(B − 1)]

− (2α − α2)C(C − 1)P(X +B ≥ C) + 2αCE[(X +B)I(X +B < C)]}. (12)

Strategy S1

Strategy S1 assigns exactly one server to each task when there are less than C tasks present.

9

Thus, A is binomially distributed with parametersX+B and α whenX+B < C. Formula (2)

reduces to

E[rX] =
rCE[(α+ (1− α)r)X+BI(X +B < C)]− (α + (1− α)r)CE[rX+BI(X +B < C)]

rC − (α+ (1− α)r)CE[rB]
,(13)

and Formula (7) becomes

E[X] =
1

2(αC −E[B])
{2(1 − α)CE[B] + E[B(B − 1)]

− (2α − α2)C(C − 1)P(X +B ≥ C)

− (2α − α2)E[(X +B)(X +B − 1)I(X +B < C)]}. (14)

Although duplication of tasks increases the number of successful task completions in a par-

ticular slot, it cannot improve the long-term throughput, which is obviously bounded by the

mean number of arriving tasks per slot E[B]. Viewed that way, duplication of tasks increases

the server utilization without improving the long-term throughput. The server utilization

is evidently minimized by the class of ‘economic’ strategies that never duplicate tasks. A

little thought shows that strategy S1 minimizes the number of tasks in the system among

all ‘economic’ strategies.

Strategy S∗

Strategy S∗ always allocates all servers, distributing them over the tasks as evenly as possible.

The term E[rX+B−AI(X +B < C)] in (2) may thus be determined as follows. Let m1(j) :=

Cmodj and m2(j) := Cdivj. Under strategy S∗, if there are X + B = j < C tasks present,

then there are j − m1(j) tasks allocated to m2(j) servers, and m1(j) tasks allocated to

m2(j) + 1 servers. The former ones are completed with success probability

β(j) := 1− (1− α)m2(j)+1,

and the latter ones with success probability

γ(j) := 1− (1− α)m2(j).

Similar to the calculation in (4), we have

E[r−A|X +B = j] = (
β(j)
r

+ 1− β(j))m1(j)(
γ(j)
r

+ 1− γ(j))j−m1(j), (15)

so that

E[rX+B−AI(X +B < C)] =
C−1∑
j=0

P(X +B = j)(
β(j)
r

+ 1− β(j))m1(j)(
γ(j)
r

+ 1− γ(j))j−m1(j).

Substitution in (2) gives E[rX], expressed in the probabilities P(X+B = j), j = 0, . . . , C−1,

which in their turn can be expressed in the probabilities P(X = k), k = 0, . . . , C − 1. In a

10

similar fashion, E[X] may be evaluated using (7) and (15). We specify the last three (and

most difficult) terms, using (15) each time:

E[AI(X +B < C)] =
C−1∑
j=0

P(X +B = j)E[A|X +B = j]

=
C−1∑
j=0

P(X +B = j)[m1(j)β(j) + (j −m1(j))γ(j)],

E[A2I(X +B < C)] =
C−1∑
j=0

P(X +B = j)E[A2|X +B = j]

=
C−1∑
j=0

P(X +B = j)([m1(j)β(j) + (j −m1(j))γ(j)]2

+ m1(j)β(j)(1 − β(j)) + (j −m1(j))γ(j)(1 − γ(j))),

E[A(2X + 2B − 1)I(X +B < C)] =
C−1∑
j=0

P(X +B = j)E[A(2X + 2B − 1)|X +B = j]

=
C−1∑
j=0

P(X +B = j)(2j − 1)[m1(j)β(j) + (j −m1(j))γ(j)].

Remark 3.1

In Remark 2.4 we obtained a simple heavy-traffic result for the mean number of tasks at

slot beginnings, E[X]; and this result was seen to be valid for any strategy in S. Let us now

consider the light-traffic situation. We let C →∞ so that E[B]/αC ↓ 0. From equation (7),

one can derive an expression for E[X] in this light-traffic scenario. In light traffic, X + B

will usually be less than C. Hence, the probabilities P(X = j) for j = 0, . . . , C − 1 now

play a crucial role, which makes it hard to derive an explicit expression for E[X] along these

lines. However, it is very easy to obtain expressions for E[X] for the special strategies S0,

S1 and S∗ by intuitive arguments. Under the lazy strategy S0, the number of tasks in the

system will vary between C and (1− α)C according to a saw-tooth pattern. Hence

E[X] ≈ 2− α
2

C. (16)

For strategy S1 in light traffic, E[X] should approach the mean batch size times the mean

number of slots required by a server to handle a task:

E[X] ↓ (1− α)E[B]
α

. (17)

Hence, from (9) we find E[W] ↓ 1−α
α ; indeed, under strategy S1 the response time approaches

the service time, which has a geometric distribution with parameter α. Finally, for strat-

egy S∗, all tasks will be successfully handled in their first slot by at least one server:

E[X] ↓ 0. (18)

11

Note that the (relative) performance of the three strategies drastically differs in light-traffic

conditions, in contrast to the heavy-traffic regime where in fact all strategies in S asymp-

totically coincide. This may be intuitively explained as follows. In light traffic, there are

almost always much less than C tasks present. In that situation, the various strategies in S
may differ arbitrarily in their actions.

4 Maximizing the number of task completions

In this section we identify the allocation rule which maximizes the number of successful task

completions in a particular slot. As it turns out, the optimal rule distributes the servers

over the tasks as evenly as possible. In the next section, we will then prove that strategy S∗

which follows this rule in each slot, minimizes the number of tasks in the system and thus

the mean response time among all admissible strategies.

In fact, we establish a somewhat more general result which shows that a ‘more balanced’

allocation yields a larger number of successful tasks. In particular, it follows that the ‘most

balanced’ allocation maximizes the number of successful tasks, and that no duplication is

optimal in that respect when there are at least C tasks present.

The desirability of a well-balanced allocation may be heuristically motivated as follows. As-

signing additional servers increases the probability that a task will be completed successfully.

However, for every extra server that is assigned, the marginal increase in the success proba-

bility decreases. Formally speaking, the success probability is a concave increasing function

of the number of servers that are being assigned. Thus, the marginal return of assigning

additional servers is diminishing. As a result, it is optimal to distribute the servers over the

tasks as evenly as possible. In order to measure the degree of ‘balancedness’, it is useful to

adopt the following partial ordering.

Definition 4.1

Let p and q be two M -dimensional vectors. Let (p(1), . . . , p(M)) and (q(1), . . . , q(M)) be the

components of p and q, respectively, arranged in non-decreasing order. Define Pm :=
m∑
l=1

p(l)

and Qm :=
m∑
l=1

q(l) as the m-th ordered partial sum of the vectors p and q, respectively.

Then p is said to majorize q, denoted as p � q, if Pm ≥ Qm for all m = 1, . . . ,M − 1, and

PM = QM .

Thus, p � q may be interpreted as saying that the vector p is ‘more balanced’ than q, the

average value of the components being equal.

12

Because of the randomness involved in the execution of tasks, one can only hope to maximize

the number of successful task completions in a stochastic sense. In order to formalize that

notion, we use the following definition of stochastic majorization [19].

Definition 4.2

Let F and G be two non-negative integer-valued random variables. Then F is said to

stochastically majorize G, denoted as F ≥st G (or also as G ≤st F), if P(F ≥ n) ≥ P(G ≥ n)

for all n = 1, 2, . . ., or equivalently, P(F ≤ n) ≤ P(G ≤ n) for all n = 1, 2,

The following three facts follow directly from the above definition.

Fact 4.3

If F ≥st G, then E[F k] ≥ E[Gk] for all k ≥ 1.

Fact 4.4

Let F and G be two random variables with F ≥st G, both independent of a third random

variable H. Then F +H ≥st G+H.

Fact 4.5

Let F , G, and H be three random variables with F ≥st G and G ≥st H. Then F ≥st H.

Let us now consider a particular slot with M tasks present. Let pm be the number of

servers assigned to the m-th task, with
M∑
m=1

pm ≤ C. Let S(p) be a 0–1 random variable

indicating whether or not a particular task is completed successfully (0 for failure, 1 for

success) when allocated to p servers, p = 0, 1, . . . , C. Note that P(S(p) = 0) = (1− α)p and

P(S(p) = 1) = 1−P(S(p) = 0).

The number of successful task completions may then be formally expressed as

T (p1, . . . , pM) =
M∑
m=1

S(pm).

Since the random variables S(pm) in the sum are all mutually independent, the distribution

of T (p1, . . . , pM) is completely determined by the marginal distribution of the S(pm) as spec-

ified above. Thus, the problem may be phrased as maximizing the quantity T (p1, . . . , pM) (in

the sense of Definition 4.2), subject to the capacity constraint
M∑
m=1

pm ≤ C. Note that opti-

mality requires that the latter constraint is satisfied with equality, since assigning additional

servers increases the number of successful task completions (strictly, unless α = 1).

Denote by P := {p ∈ NM :
M∑
m=1

pm = C} the set of non-dominated feasible allocation vectors.

Define the ‘most balanced’ allocation vector p∗ with p∗ � q for all q ∈ P (which is unique up

13

to a permutation) by p∗1, . . . , p
∗
m1

= m2 + 1 and p∗m1+1, . . . , p
∗
M = m2, with m1 := CmodM

and m2 := CdivM .

The next theorem states the main result of this section.

Theorem 4.6

If p � q, then T (p) ≥st T (q). In particular, T (p∗) ≥st T (q) for all q ∈ P, with p∗ the ‘most

balanced’ allocation vector defined above.

The above theorem states that the ‘more balanced’ the allocation is, the larger the number

of successful tasks (in the sense of Definition 4.2).

In order to prove the above theorem, we first consider the case of M = 2 tasks. As it turns

out, this case already reveals the main proof ingredients for the case of M ≥ 2 tasks.

Lemma 4.7

If p1 ≤ p2 − 2, then T (p1 + 1, p2 − 1) ≥st T (p1, p2). It follows inductively that, if C is

even, then the optimal allocation is p∗1 = p∗2 = C/2, while if C is odd, then p∗1 = (C + 1)/2,

p∗2 = (C − 1)/2.

Proof

Note that T (p1, p2) ≤ 2 for all values of p1, p2. Therefore, it suffices to prove that if p1 ≤
p2 − 2, then (i) P(T (p1 + 1, p2 − 1) = 0) ≤ P(T (p1, p2) = 0), and (ii) P(T (p1 + 1, p2 − 1) =

2) ≥ P(T (p1, p2) = 2).

These two inequalities may be verified through a simple calculation. (As an alternative, a

probabilistic coupling argument may be used.)

(i) P(T (p1, p2) = 0) = P(S(p1) + S(p2) = 0) = P(S(p1) = 0, S(p2) = 0) =

P(S(p1) = 0)P(S(p2) = 0) = (1− α)p1(1− α)p2 = (1− α)C

for all p1, p2 with p1 + p2 = C.

The above calculation shows that the probability of zero successful task completions

is always (1− α)C , irrespective of the allocation (p1, p2), which of course may also be

seen directly.

(ii) P(T (p1, p2) = 2) = P(S(p1) + S(p2) = 2) = P(S(p1) = 1, S(p2) = 1) =

P(S(p1) = 1)P(S(p2) = 1) = (1−P(S(p1) = 0))(1 −P(S(p2) = 0)) =

(1− (1− α)p1)(1− (1− α)p2) = 1− (1− α)p1 − (1− α)p2 + (1− α)C .

14

Thus, it needs to be shown that if p1 ≤ p2 − 2, then

(1− α)p1+1 + (1− α)p2−1 ≤ (1− α)p1 + (1− α)p2 ,

which follows directly from the convexity of the function (1− α)p in p.

2

We now turn to the case of M ≥ 2 tasks.

Lemma 4.8

If pi ≤ pj − 2, then T (p1, . . . , pi + 1, . . . , pj − 1, . . . , pM) ≥st T (p1, . . . , pi, . . . , pj, . . . , pM). It

follows inductively that the optimal allocation vector is p∗ defined above. In case M ≥ C,

we find p∗1, . . . , p
∗
C = 1 and p∗C+1, . . . , p

∗
M = 0, i.e., no duplication is optimal.

Proof

Using Fact 4.3 and Lemma 4.7,

T (p1, . . . , pi + 1, . . . , pj − 1, . . . , pM) =
∑
m6=i,j

S(pm) + S(pi + 1) + S(pj − 1) =

∑
m6=i,j

S(pm) + T (pi + 1, pj − 1) ≥st

∑
m6=i,j

S(pm) + T (pi, pj) =

∑
m6=i,j

S(pm) + S(pi) + S(pj) = T (p1, . . . , pi, . . . , pj , . . . , pM).

2

Note that the above lemma already implies that the ‘most balanced’ allocation maximizes

the number of successful tasks. However, in order to complete the proof of Theorem 4.6, it

remains to prove the more general result that a ‘more balanced’ allocation produces a larger

number of successful tasks.

Proof of Theorem 4.6

Define P̂ := {p ∈ P : p1 ≤ · · · ≤ pM} as the set of feasible allocation vectors whose

components are in non-decreasing order. Note that for p ∈ P̂, p(m) = pm for all m =

1, . . . ,M , and hence Pm =
m∑
l=1

pl. Because of symmetry, T (p1, . . . , pM) is invariant (in

distribution) under permutation of p1, . . . , pM . Therefore, it suffices to prove the statement

of the theorem for vectors p, q ∈ P̂.

For any two vectors p, q ∈ P̂, define ∆(p, q) :=
M∑
m=1

(Pm −Qm). By definition, p � q means

that Pm ≥ Qm for all m = 1, . . . ,M . Hence, p � q implies ∆(p, q) ≥ 0, with equality iff

Pm = Qm for all m = 1, . . . ,M , i.e., p = q.

15

The proof is by induction on n = ∆(p, q). We first consider the case n = 0, i.e., p = q. Then

T (p) d= T (q), with d= denoting the equality in distribution, i.e., P(T (p) = n) = P(T (q) = n)

for all n = 0, 1, 2, . . ., so that the statement is trivially true.

Now suppose that the statement is true for some n ≥ 0. Let p, q ∈ P̂ be two vectors with

p � q and ∆(p, q) = n+ 1. Let l∗ := max{l : pl ≥ ql + 1} and m∗ := min{m : pm ≤ qm − 1}.

The fact that
M∑
m=1

pm =
M∑
m=1

qm and ∆(p, q) ≥ 1 so that p 6= q ensures that l∗ and m∗ are

well-defined. Also, the fact that p1 ≤ · · · ≤ pM as well as q1 ≤ . . . ≤ qM , and Pm ≥ Qm

for all m = 1, . . . ,M implies that l∗ ≤ m∗ − 1, pm = qm for all m = l∗ + 1, . . . ,m∗ − 1 and

Pm ≥ Qm + 1 for all m = l∗, . . . ,m∗ − 1. Moreover, ql∗ ≤ ql∗+1 − 1, qm∗ ≥ qm∗−1 + 1, and in

particular ql∗ ≤ qm∗ − 2.

Now define the allocation vector r as follows: rl∗ = ql∗ + 1, rm∗ = qm∗ − 1, and rm = qm for

all m 6= l∗,m∗. According to Lemma 4.8, we have T (r) ≥st T (q).

Also, note that r1 ≤ · · · ≤ rM , and that Rm = Qm for all m = 1, . . . , l∗ − 1, Rm = Qm + 1

for all m = l∗, . . . ,m∗ − 1, and Rm = Qm for all m = m∗, . . . ,M . Thus, p � r, and

∆(p, r) ≤ ∆(p, q)− 1 = n. Hence, by the induction hypothesis T (p) ≥st T (r).

Combining the above two stochastic inequalities, and using Fact 4.5, we find that T (p) ≥st

T (q).

2

5 Minimizing the mean response time

In the previous section we identified the allocation rule which maximizes the number of

successful task completions in a particular slot. It was shown that the optimal rule distributes

the servers over the tasks as evenly as possible. In this section we prove that strategy S∗

which follows this rule in each slot minimizes the number of tasks in the system and thus

the mean response time among all admissible strategies.

Remark 5.1

At first sight, it may seem completely obvious that always following the rule which maximizes

the number of successful task completions also minimizes the number of tasks in the system.

Note that maximizing the number of successful tasks indeed minimizes the number of tasks

remaining at the end of the slot, and thus the number of tasks at the beginning of the

next slot. However, minimizing the number of remaining tasks also reduces the potential

for successful task completions in the next slot. Hence, the subtlety lies in proving that the

total effect is still favorable, which indeed turns out to be the case.

To illustrate that the latter fact is not entirely trivial, it is worth considering the ‘lazy’ strat-

egy S0, which essentially does exactly the opposite and minimizes the number of successful

16

tasks (that is, among strategies in the class S which are required to come into full action

when at least C tasks are present; never processing any tasks would obviously be even worse).

Therefore, it may seem equally plausible that strategy S0 maximizes the number of tasks in

the system (among all strategies in S). Surprisingly however, this turns out not to be the

case.

Like any strategy in the class S, strategy S0 is required to come into action when the number

of tasks in the system reaches the level C, and will then necessarily generate a substantial

number of successful tasks, and hence significantly reduce the number of tasks present.

Instead, one could imagine a more perverse strategy which processes just a few tasks when

the number of tasks approaches the level C. Thus, the strategy prevents that the number

of tasks ever reaches the level C so as to avoid being forced into full action. That way, the

strategy keeps the number of tasks in the system close to the level C without ever hitting

it. In particular, for large values of C, the number of tasks will hover relatively close to the

level C. In comparison, recall that under the naively ‘lazy’ strategy, the number of tasks will

oscillate between the levels (1 − α)C and C, and thus be lower by a margin αC/2 for large

values of C.

We first state an auxiliary lemma.

Lemma 5.2

Let Xn and Yn be two Markov chains with Xn+1 = Xn + Bn − Fn, Yn+1 = Yn + Bn − Gn,
n = 1, 2, . . ., and D some constant. If X1 ≥st Y1 +D, and y + Fn|(Xn + Bn = x) +D ≤st

x+Gn|(Yn +Bn = y) for all x ≥ y +D, then Xn ≥st Yn +D for all n = 1, 2,

Proof

The proof is by induction on n. By assumption, the statement is true for n = 1. Now suppose

that the statement is true for some n ≥ 1. Then there exist random variables X ′n and Y ′n such

that X ′n ≥ Y ′n+D, X ′n
d= Xn, and Y ′n

d= Yn, cf. [19]. Also, for all x ≥ y+D, there exist random

variables F ′n(x) and G′n(y) such that y+F ′n(x)+D ≤ x+G′n(y), F ′n(x)
d= Fn|(Xn+Bn = x)

and G′n(y)
d= Gn|(Yn +Bn = y). Then Xn+1 = Xn +Bn − Fn

d= X ′n +Bn − F ′n(X ′n +Bn) ≥
Y ′n +D+Bn −G′n(Y ′n +Bn)

d= Yn +D +Bn −Gn = Yn+1 +D, so that Xn+1 ≥st Yn+1 +D.

2

The next lemma demarcates the performance range of the class S in the form of simple

stochastic lower and upper bounds that coincide up to a constant term. Let D1,D2, . . . be a

sequence of independent random variables, each binomially distributed with parameters C

and α. Let X̃n be a random walk with step sizes Bn − Dn, reflected at zero, i.e., X̃n+1 =

max{X̃n +Bn −Dn, 0}, with B1, B2, . . . the random batch sizes defined earlier.

17

Lemma 5.3

For any strategy S ∈ S, if X̃1 ≤st X
S
1 ≤st X̃1 + C − 1, then X̃n ≤st X

S
n ≤st X̃n + C − 1 for

all n = 1, 2, . . ., and in particular X̃ ≤st X
S ≤st X̃ + C − 1.

Proof

By definition, XS
n+1 = XS

n+Bn−ASn and X̃n+1 = X̃n+Bn−Ãn, with Ãn = min{Dn, X̃n+Bn}.
Note that Ãn|(X̃n +Bn = y) = min{Dn, y} for all y.

Also, ASn |(XS
n +Bn = x) ≤st min{Dn, x} for all x.

By virtue of the fact that S ∈ S, we have that ASn |(XS
n +Bn = x) d= Dn for all x ≥ C.

Thus, for all x ≥ y, we find that ASn |(XS
n +Bn = x) ≤st min{Dn, x} ≤ x− y+min{Dn, y} =

x− y + Ãn|(X̃n +Bn = y).

In addition, for all x ≥ y +C − 1, we have ASn|(XS
n +Bn = x) ≥st Ãn|(X̃n +Bn = y).

Applying Lemma 5.2, once with D = 0 and once with D = C − 1, then completes the proof.

2

The next theorem states the main result of this section, demonstrating that strategy S∗

minimizes the number of tasks in the system among all admissible strategies.

Theorem 5.4

For any admissible strategy S, if XS
1 ≥st X

S∗
1 , then XS

n ≥st X
S∗
n for all n = 1, 2, . . ., and in

particular XS ≥st X
S∗ .

Proof

By definition, XS
n+1 = XS

n +Bn −ASn and XS∗
n+1 = XS∗

n +Bn −AS
∗

n .

For all x ≥ y, we have that ASn |(XS
n +Bn = x) = T (pS1 , . . . , p

S
x) =

x∑
m=1

S(pSm) ≤
y∑

m=1
S(pSm) +

x− y ≤st

y∑
m=1

S(pS
∗

m) + x− y = x− y + T (pS
∗

1 , . . . , pS
∗

y) = x− y +AS
∗

n |(XS∗
n +Bn = y).

Applying Lemma 5.2 with D = 0 then completes the proof.

2

Using Fact 4.3, we have the following corollary.

Corollary 5.5

For any admissible strategy S, if XS
1 ≥st X

S∗
1 , then E[(XS

n)k] ≥ E[(XS∗
n)k] for all k ≥ 1,

n = 1, 2, . . ., and in particular E[(XS)k] ≥ E[(XS∗)k] for all k ≥ 1.

Taking k = 1 in the above corollary, and using equation (9), we obtain a similar optimality

result for the mean response time.

Corollary 5.6

For any admissible strategy S, E[WS∗] ≤ E[WS].

18

The above corollary confirms that strategy S∗ minimizes the mean response time among all

admissible strategies.

There are two caveats. First of all, as pointed out in Remark 2.4, in heavy traffic the mean

response times grow at the same rate for all strategies in S. Thus, in heavy traffic the mean

response time for strategy S∗ cannot be significantly smaller than for any other strategy

in S. Also, in Remark 3.1 we observed that in light traffic, the mean response times may

differ substantially in a relative sense, but will still be moderate in absolute terms for most

(sensible) strategies.

Second, the optimality result in terms of the distribution of the number of tasks as stated

in Theorem 5.4 does in general not extend to the distribution or even higher moments

of the response time. In some situations however, the variance in the response time, or

the probability that the response time violates some deadline may be equally important

performance measures as the mean response time.

In order to minimize the variance or the violation probabilities, one should presumably give

some sort of priority to relatively old tasks or tasks that approach their deadline. To some

extent, one can realize priorization while adhering to strategy S∗ by selecting older tasks

whenever there is a choice. To achieve a strong degree of priority however, one should assign

even more servers to the older tasks. On the other hand, if the goal is to minimize a deadline

violation probability, then once a task has exceeded its deadline, one should not assign any

servers to it anymore until the system has been cleared from all tasks whose deadline has

not yet expired.

Thus, in order to optimize these sorts of performance measures, one would occasionally have

to deviate from the optimal balanced allocation rule that is followed by strategy S∗. In de-

viating from the optimal allocation rule however, one would reduce the number of successful

task completions, and thus increase the number of tasks in the system, at the risk of a total

performance collapse. This suggests that there may be a rather delicate balance between

these two conflicting objectives.

As described above, the optimality result for strategy S∗ in terms of the distribution of the

number of tasks does in general not extend to the distribution or higher moments of the

response time. As a further illustrative example, let us suppose we wish to find a strategy

which minimizes the second moment of the response time. In fact, let us suppose that there is

a cost 2t+1 incurred when a task is not successfully completed within t slots from its arrival.

Then the total cost incurred for a task with response time w is
w∑
t=1

(2t−1) = w(w+1)−w = w2,

so that the average cost rate per unit of time is E[B]E[W 2]. Thus, minimizing the second

moment of the response time is equivalent to minimizing the average cost rate per unit of

time.

19

A natural heuristic is a myopic strategy which simply minimizes the expected cost at the

start of the next slot. Observe that this strategy is not necessarily optimal, since it ignores

long-term repercussions.

Let us now consider a particular slot with M tasks present, with ages V1, . . . , VM . As before,

let pm be the number of servers assigned to the m-th task. Let U(p) = 1 − S(p) be a 0–1

random variable indicating whether or not a particular task fails (0 for success, 1 for failure)

when allocated to p servers, p = 0, 1, . . . , C. Then the cost at the start of the next slot may

be formally expressed as

R(p1, . . . , pM) = 2
M∑
m=1

VmU(pm).

(For convenience, we exclude the cost associated with newly arriving tasks, since these do

not depend on the allocation strategy.) In particular, the expected cost at the start of the

next slot is

E[R(p1, . . . , pM)] = 2
M∑
m=1

VmE[U(pm)] = 2
M∑
m=1

Vm(1− α)pm .

Thus, the problem may be phrased as minimizing the latter quantity, subject to the capacity

constraint
M∑
m=1

pm = C. If the integrality constraints are relaxed, then the optimal solution is

given by p∗m = K log Vm with K = C/
M∑
m=1

log Vm. This suggests that the number of servers

assigned to a task should be roughly proportional to the logarithm of its age in order to

minimize the second moment of the response time.

6 Scaling properties

As mentioned earlier, the number of servers, C, may potentially be quite large. It is interest-

ing therefore to understand the scaling properties of the system when the offered traffic and

the processing capacity grow large. Specifically, let us compare a system with KC servers

and batch sizes BK
n =

K∑
k=1

Bk,n with K independent systems, each with C servers, and batch

sizes Bk,n in the k-th system, all distributed as the generic batch size B. Let the other

quantities be indexed similarly. For example, XK is the number of tasks in the aggregated

system, and Xk is the number of tasks in the k-th isolated system. Intuitively, one would

expect the performance of the aggregated system to be better due to scaling efficiencies. In

a similar fashion as in Section 5, it may be shown that that is indeed the case, in the sense

that XK,S ≤st

K∑
k=1

XS
k for any strategy S such that

K∑
k=1

T (pSk1, . . . , p
S
kxk

) ≤st T (pK,S1 , . . . , pK,Sσ(x)) (19)

20

for all (x1, . . . , xK) ∈ NK , with σ(x) :=
K∑
k=1

xk. The above condition is satisfied for strat-

egy S1:

K∑
k=1

T (pS1
k1, . . . , p

S1
kxk

) =
K∑
k=1

D(min{xk, C}, α) d= D(
K∑
k=1

min{xk, C}, α) ≤st

D(min{
K∑
k=1

xk,KC}, α) = T (pK,S1
1 , . . . , pK,S1

σ(x))

for all (x1, . . . , xK) ∈ NK , with the terms D(qk, α) representing independent binomially

distributed random variables with parameters qk and α. For strategy S∗ condition (19) is

satisfied as well: using Theorem 4.6,

K∑
k=1

T (pS
∗

k1 , . . . , p
S∗
kxk

) = T (pS
∗

k1 , . . . , p
S∗
KxK) ≤st T (pK,S

∗

1 , . . . , pK,S
∗

σ(x)),

since (pK,S
∗

1 , . . . , pK,S
∗

σ(x)) � (pS
∗

k1 , . . . , p
S∗
KxK

) for all (x1, . . . , xK) ∈ NK . Note however that

condition (19) does not hold for the ‘lazy’ strategy S0.

It is further interesting to examine the scaling properties in heavy-traffic or light-traffic

conditions. In heavy traffic, noting that Var[BK] = KVar[B], we obtain from (10),

lim
E[B]/α↑C

(αC −E[B])E[XK] =
1
2
(Var[B] + α(1− α)C],

for any K and for all strategies in S, so that

lim
E[B]/α↑C

E[XK]
E[X]

= 1,

and hence using (9),

lim
E[B]/α↑C

E[WK]
E[W]

=
1
K
.

Thus, in heavy traffic, the mean response time is reduced by a factor K when the system is

scaled up a factor K.

In contrast, in light traffic, we find for all the three strategies S0, S1, and S∗ that

lim
P→∞

E[WK]
E[W]

= 1.

Thus, in light traffic, the mean response time does not significantly improve when the system

is scaled up. This may be understood by observing that in light traffic there are always plenty

of servers available, so that there is little to be gained from sharing servers across independent

isolated systems.

21

Instead of improving performance, the scaling efficiencies may also be exploited to increase

the relative load on the system (i.e. increase the offered traffic relative to the processing

capacity) while maintaining the performance at a fixed level. The question of course is exactly

how the relative load should grow with the size of the system so as to achieve that. The

heavy-traffic result (10) suggests that the mean response time E[WK] will converge to some

constant value τ as K →∞ if the relative load grows in such a way that the slack capacity

E[BK]/αK−KC remains at some fixed value δ, for example by taking αK = E[B]/(C+δ/K).

By varying the slack capacity δ, essentially any target value for τ may be achieved.

7 Numerical experiments

We performed some numerical experiments to obtain further insight in the (absolute and

relative) performance of the various strategies for a wide range of parameter values.

Therefore, we considered each strategy with an increasing number of servers. We displayed

E[B] in Tables 1, 3 and 5 for strategies S0, S1 and S∗, respectively, and similarly, E[W] in

Tables 2, 4 and 6. In each table, we took C/E[B] equal to 2 and 4. We varied the ratio

E[B]/αC from 0.55 to 0.999 to see the effects from light to heavy traffic. In the experiments

we assumed that a constant number of tasks arrived in each slot, i.e., Var[B] = 0. In case B

is taken according to some distribution, then the values of E[B] and E[W] are expected to

increase.

The results in the tables match neatly with the results mentioned throughout the paper.

For instance, heavy-traffic behavior corresponds to the rightmost columns in the tables.

According to Remark 2.4, E[X] becomes large and is independent of any particular strategy.

For E[B]= 1, C = 4 and E[B]/αC = 0.999, Formula (10) would lead to the heavy-traffic

approximation E[X] ≈ 374.87 which clearly matches the values in the tables.

For light traffic, which corresponds to the leftmost columns in the tables, Remark 3.1 causes

us to expect substantial differences. For E[B]= 16, C = 64 and E[B]/αC = 0.55, Remark 3.1

would predict E[X] ≈ 49.45 (according to Equation (16)), E[X] ≈ 19.20 (according to

Equation (17)) and E[X] ≈ 0 (according to Equation (18)) for the respective strategies,

which are quite close to the values in the tables.

Also observe that the tables are in accordance with Lemma 5.3 which implies that the

differences between E[X] for the different strategies never exceed C − 1.

Finally, observe that the tables illustrate very well the conclusion from Section 6, stating

that for light traffic scaling up has little effect on E[W], whereas for heavy traffic scaling up

with a factor K reduces E[W] by the same factor.

22

Strategy S0

E[B] C 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.999

1 2 0.56 0.63 0.71 0.83 1.00 1.25 1.67 2.50 5.00 25.00 250.00
2 4 1.64 1.77 1.91 2.06 2.26 2.54 2.97 3.82 6.34 26.35 251.35
4 8 3.82 4.09 4.33 4.57 4.84 5.17 5.65 6.54 9.09 29.12 254.13
8 16 8.18 8.75 9.24 9.67 10.09 10.54 11.12 12.09 14.71 34.78 259.80
16 32 16.91 18.08 19.08 19.93 20.69 21.42 22.22 23.37 26.12 46.29 271.33
32 64 34.36 36.75 38.77 40.50 42.00 43.34 44.64 46.17 49.22 69.57 294.65

1 4 2.47 2.62 2.78 2.99 3.26 3.65 4.29 5.56 9.32 39.33 376.83
2 8 5.50 5.70 5.91 6.16 6.47 6.89 7.55 8.84 12.62 42.64 380.15
4 16 11.62 11.96 12.27 12.60 12.97 13.45 14.17 15.49 19.31 49.36 386.86
8 32 23.96 24.57 25.10 25.61 26.13 26.73 27.55 28.96 32.84 62.94 400.46
16 64 48.68 49.88 50.90 51.80 52.64 53.50 54.53 56.11 60.14 90.33 427.87

Table 1: E[X] for E[B]/αC = 0.55, 0.60, . . . , 0.95, 0.99, 0.999

Strategy S0

E[B] C 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.999

1 2 1.56 1.63 1.71 1.83 2.00 2.25 2.67 3.50 6.00 26.00 251.00
2 4 1.82 1.89 1.95 2.03 2.13 2.27 2.49 2.91 4.17 14.18 126.68
4 8 1.95 2.02 2.08 2.14 2.21 2.29 2.41 2.64 3.27 8.28 64.53
8 16 2.02 2.09 2.15 2.21 2.26 2.32 2.39 2.51 2.84 5.35 33.48
16 32 2.06 2.13 2.19 2.24 2.29 2.34 2.39 2.46 2.63 3.89 17.96
32 64 2.07 2.15 2.21 2.27 2.31 2.35 2.39 2.44 2.54 3.17 10.21

1 4 3.48 3.62 3.78 3.99 4.26 4.65 5.29 6.56 10.32 40.33 377.83
2 8 3.75 3.85 3.96 4.08 4.23 4.44 4.78 5.42 7.31 22.32 191.07
4 16 3.91 3.99 4.07 4.15 4.24 4.36 4.54 4.87 5.83 13.34 97.72
8 32 4.00 4.07 4.14 4.20 4.27 4.34 4.44 4.62 5.11 8.87 51.06
16 64 4.04 4.12 4.18 4.24 4.29 4.34 4.41 4.51 4.76 6.65 27.74

Table 2: E[W] for E[B]/αC = 0.55, 0.60, . . . , 0.95, 0.99, 0.999

23

Strategy S1

E[B] C 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.999

1 2 0.10 0.21 0.33 0.48 0.67 0.94 1.37 2.22 4.74 24.75 249.75
2 4 0.20 0.40 0.61 0.84 1.11 1.45 1.94 2.85 5.41 25.46 250.47
4 8 0.40 0.80 1.20 1.61 2.05 2.54 3.18 4.21 6.89 27.02 252.05
8 16 0.80 1.60 2.40 3.20 4.01 4.86 5.81 7.13 10.06 30.37 255.43
16 32 1.60 3.20 4.80 6.40 8.00 9.61 11.28 13.24 16.72 37.40 262.55
32 64 3.20 6.40 9.60 12.80 16.00 19.20 22.42 25.79 30.49 51.98 277.28

1 4 1.21 1.43 1.67 1.94 2.28 2.73 3.43 4.74 8.55 38.60 376.11
2 8 2.40 2.81 3.22 3.66 4.15 4.74 5.56 6.99 10.89 41.01 378.53
4 16 4.80 5.60 6.40 7.21 8.05 8.96 10.07 11.75 15.88 46.15 383.71
8 32 9.60 11.20 12.80 14.40 16.01 17.65 19.42 21.68 26.30 56.90 394.52
16 64 19.20 22.40 25.60 28.80 32.00 35.21 38.46 42.04 47.76 79.07 416.84

Table 3: E[X] for E[B]/αC = 0.55, 0.60, . . . , 0.95, 0.99, 0.999

Strategy S1

E[B] C 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.999

1 2 1.10 1.21 1.33 1.48 1.67 1.94 2.37 3.22 5.74 25.75 250.75
2 4 1.10 1.20 1.31 1.42 1.55 1.72 1.97 2.42 3.71 13.73 126.24
4 8 1.10 1.20 1.30 1.40 1.51 1.64 1.80 2.05 2.72 7.76 64.01
8 16 1.10 1.20 1.30 1.40 1.50 1.61 1.73 1.89 2.26 4.80 32.93
16 32 1.10 1.20 1.30 1.40 1.50 1.60 1.71 1.83 2.04 3.34 17.41
32 64 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.81 1.95 2.62 9.67

1 4 2.21 2.43 2.67 2.94 3.28 3.73 4.43 5.74 9.55 39.60 377.11
2 8 2.20 2.40 2.61 2.83 3.07 3.37 3.78 4.49 6.45 21.50 190.26
4 16 2.20 2.40 2.60 2.80 3.01 3.24 3.52 3.94 4.97 12.54 96.93
8 32 2.20 2.40 2.60 2.80 3.00 3.21 3.43 3.71 4.29 8.11 50.32
16 64 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.63 3.99 5.94 27.05

Table 4: E[W] for E[B]/αC = 0.55, 0.60, . . . , 0.95, 0.99, 0.999

24

Strategy S∗

E[B] C 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.999

1 2 0.01 0.04 0.10 0.19 0.33 0.56 0.96 1.78 4.26 24.25 249.25
2 4 0.02 0.08 0.18 0.33 0.54 0.83 1.30 2.18 4.73 24.77 249.78
4 8 0.04 0.16 0.36 0.64 1.01 1.48 2.13 3.19 5.91 26.07 251.11
8 16 0.08 0.32 0.72 1.28 2.00 2.89 3.98 5.48 8.60 29.05 254.14
16 32 0.16 0.64 1.44 2.56 4.00 5.76 7.85 10.39 14.46 35.54 260.77
32 64 0.32 1.28 2.88 5.12 8.00 11.52 15.68 20.51 26.79 49.31 274.81

1 4 0.20 0.31 0.45 0.65 0.94 1.35 2.02 3.32 7.13 37.17 374.68
2 8 0.34 0.51 0.75 1.06 1.48 2.06 2.93 4.46 8.50 38.74 376.29
4 16 0.61 0.92 1.33 1.87 2.59 3.58 4.99 7.18 11.94 42.73 380.39
8 32 1.17 1.76 2.51 3.50 4.81 6.60 9.22 13.12 19.79 51.89 389.81
16 64 2.31 3.41 4.86 6.77 9.28 12.62 17.57 25.38 36.73 71.78 410.21

Table 5: E[X] for E[B]/αC = 0.55, 0.60, . . . , 0.95, 0.99, 0.999

Strategy S∗

E[B] C 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.999

1 2 1.01 1.04 1.10 1.19 1.33 1.56 1.96 2.78 5.26 25.25 250.25
2 4 1.01 1.04 1.09 1.16 1.27 1.42 1.64 2.09 3.37 13.38 125.89
4 8 1.01 1.04 1.09 1.16 1.25 1.37 1.53 1.80 2.48 7.52 63.78
8 16 1.01 1.04 1.09 1.16 1.25 1.36 1.50 1.69 2.08 4.63 32.77
16 32 1.01 1.04 1.09 1.16 1.25 1.36 1.49 1.65 1.90 3.22 17.30
32 64 1.01 1.04 1.09 1.16 1.25 1.36 1.49 1.64 1.84 2.54 9.59

1 4 1.20 1.31 1.45 1.65 1.94 2.35 3.02 4.32 8.13 38.17 375.68
2 8 1.17 1.26 1.37 1.53 1.74 2.03 2.46 3.23 5.25 20.37 189.15
4 16 1.15 1.23 1.33 1.47 1.65 1.89 2.25 2.80 3.99 11.68 96.10
8 32 1.15 1.22 1.31 1.44 1.60 1.83 2.15 2.64 3.47 7.49 49.73
16 64 1.14 1.21 1.30 1.42 1.58 1.79 2.10 2.59 3.30 5.49 26.64

Table 6: E[W] for E[B]/αC = 0.55, 0.60, . . . , 0.95, 0.99, 0.999

25

8 Conclusion

We have analyzed and clarified the task allocation problem in a slotted multi-server system

with batch arrivals. The tasks can be assigned to different servers where each task can be

processed by several servers. Each server deals with its task exactly within one slot with

success probability α.

We were originally motivated by problems that occur when distributing tasks to computers

connected via the Internet, as is for instance done in projects such as SETI@home. For our

analysis, we simplified the setting by assuming that the tasks arrive and are processed in a

slotted fashion, that servers always finish these tasks with probability α and that the number

of servers is a priori fixed. We believe that all these parameters can and must be varied to

get a more realistic analysis of this particular situation. Additionally, we think that it is

interesting to extend our work by adding priorities to tasks that have waited relatively long.

References

[1] J. Basney and M. Livny. Deploying a high throughput computing cluster. In R. Buyya,

editor, High performance cluster computing, volume 1, chapter 5. Prentice Hall PTR,

1999.

[2] J. Bruno, E. G. Coffman, and P. Downey. Scheduling independent tasks to minimize

the makespan on identical machines. Probability in the Engineering and Informational

Sciences, 9:447–456, 1995.

[3] B. S. Chlebus, R. De Prisco, and A. A. Shvartsman. Performing tasks on synchronous

restartable message-passing processors. Distributed Computing, 14:49–64, 2001.

[4] J. W. Cohen. The Single Server Queue. North-Holland Publishing Company, Amster-

dam, 2nd revised edition, 1982.

[5] C. Dwork, J. Y. Halpern, and O. Waarts. Performing work efficiently in the presence

of faults. SIAM Journal on Computing, 27(5):1457–1491, 1998.

[6] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann, San Fransisco, California, 1999.

[7] J. F. Groote, W. H. Hesselink, S. Mauw, and R. Vermeulen. An algorithm for the

asynchronous Write-All problem based on process collision. Distributed Computing,

14:75–81, 2001.

26

[8] B. Hamidzadeh, L. Y. Kit, and D. J. Lilja. Dynamic task scheduling using online

optimization. IEEE Transactions on Parallel and Distributed Systems, 11(11):1151–

1163, 2000.

[9] B. Hayes. Collective wisdom. The American Scientist, 86(2):118–122, March/April

1998.

[10] T. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce. Task allocation on a network of

processors. IEEE Transactions on Computers, 49(12):1339–1353, 2000.

[11] P. C. Kanellakis and A. A. Shvartsman. Efficient parallel algorithms can be made

robust. Distributed Computing, 5(4):201–217, 1992. (A preliminary version appeared in

Proceedings of the 8th ACM PODC, pages 211–222, 1989).

[12] P. C. Kanellakis and A. A. Shvartsman. Fault-Tolerant Parallel Computation. Kluwer

Academic Publishers, Boston, 1997.

[13] L. Kleinrock. Queueing Systems, volume 1: Theory. John Wiley & Sons, New York,

1975.

[14] F. Knop, V. Rego, and V. Sunderam. Fail-safe concurrency in the EcliPSe system.

Concurrency: Practice and Experience, 8(4):283–312, 1996.

[15] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@home:

Massively distributed computing for SETI. Computing in Science and Engineering,

3(1):78–83, 2001.

[16] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic matching

and scheduling of a class of independent tasks onto heterogeneous computing systems.

In Proceedings of the 8th heterogeneous computing workshop (HCW’99), pages 30–44,

San Juan, Puerto Rico, 1999. IEEE Computer Society and Office of Naval Research.

[17] Seti@home – the search for extraterrestrial intelligence.

http://setiathome.ssl.berkeley.edu/.

[18] H. J. Siegel and S. Ali. Techniques for mapping tasks to machines in heterogeneous

computing systems. Euromicro Journal of Systems Architecture, 46(8):627–639, 2000.

[19] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. John Wiley

& Sons, Chichester, 1983.

[20] H. C. Tijms. Stochastic Models – An Algorithmic Approach. John Wiley & Sons, New

York, 1994.

27

