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ABSTRACT

We analyze the queueing behavior of long-tailed tra�c ows under the Generalized Processor

Sharing (GPS) discipline. GPS-based scheduling algorithms, such as Weighted Fair Queueing,

play a major role in achieving di�erentiated quality-of-service in integrated-services networks.

We prove that, in certain scenarios, a ow may be strongly a�ected by the activity of `heavier'-

tailed ows, and may inherit their tra�c characteristics, causing induced burstiness. This

phenomenon contrasts with previous results which show that, under certain conditions, an in-

dividual ow with long-tailed tra�c characteristics is e�ectively served at a constant rate. In

particular, the ow is then essentially immune from excessive activity of ows with `heavier'-

tailed tra�c characteristics. The sharp dichotomy in qualitative behavior illustrates the

crucial importance of the weight parameters in protecting individual ows.

2000 Mathematics Subject Classi�cation: 60K25 (primary), 68M20, 90B18, 90B22 (secondary).

Keywords and Phrases: Generalized Processor Sharing (GPS), long-tailed, queue length

asymptotics, regular variation, subexponential, Weighted Fair Queueing (WFQ).

Note: Work of the �rst two authors carried out in part under the project PNA2.1 \Commu-

nication and Computer Networks".

Shortened version appeared in: Proceedings of the 37th Annual Allerton Conference on Com-

munication, Control, and Computing, Urbana-Champaign, Illinois, September 1999.

1



1 Introduction

Statistical data analysis has provided convincing evidence of long-tailed (subexponential) tra�c

characteristics in high-speed communication networks. Early indications of the long-range

dependence of Ethernet tra�c, attributed to long-tailed �le size distributions, were reported

in Leland et al. [21]. Long-tailed characteristics of the scene length distribution of MPEG

video streams were explored in Heyman & Lakshman [15] and Jelenkovi�c et al. [18].

These empirical �ndings have encouraged active theoretical developments in the modeling

and queueing analysis of long-tailed tra�c phenomena. We refer to Boxma & Dumas [9] for a

comprehensive survey on uid queues with long-tailed arrival processes. See also Jelenkovi�c [16]

for an extensive list of references on subexponential queueing models.

Despite signi�cant progress, however, the practical implications are not yet thoroughly un-

derstood, in particular issues relating to control and priority mechanisms in the network. To

gain a better understanding of those issues, the present paper analyzes the queueing behavior

of long-tailed tra�c ows under the Generalized Processor Sharing (GPS) discipline. As a

design paradigm, GPS is at the heart of commonly-used scheduling algorithms for high-speed

switches, such as Weighted Fair Queueing, see for instance Parekh & Gallager [25, 26].

The impact of priority and scheduling mechanisms on long-tailed tra�c phenomena has re-

ceived relatively little attention. Some recent studies have investigated the e�ect of the schedul-

ing discipline on the waiting-time distribution in the classical M/G/1 queue, see for instance

Anantharam [2]. For FCFS, it is well-known (see Cohen [13]) that the waiting-time tail is

regularly varying of index 1 � � i� the service time tail is regularly varying of index ��. For

LCFS preemptive resume as well as for Processor Sharing, the waiting-time tail turns out to be

regularly varying of the same index as the service time tail, see Boxma & Cohen [8], and Zwart

& Boxma [32], although with di�erent pre-factors. In the case of Processor Sharing with several

customer classes, Zwart [29] showed that the sojourn time distribution of a class-i customer is

regularly varying of index ��i i� the service time distribution of that class is regularly varying

of index ��i, regardless of the service time distributions of the other classes. In contrast, for

two customer classes with ordinary non-preemptive priority, the tail behavior of the waiting-

and sojourn time distributions is determined by the heaviest of the (regularly-varying) service

time distributions, see Abate & Whitt [1].

In the present paper, we consider the Generalized Processor Sharing (GPS) discipline. GPS-

based scheduling algorithms, such as Weighted Fair Queueing, play a major role in achieving

di�erentiated quality-of-service in integrated-services networks. The queueing analysis of GPS

is extremely di�cult. Interesting partial results for exponential tra�c models were obtained in

Bertsimas et al. [3], Dupuis & Ramanan [14], Massouli�e [22], Zhang [27], and Zhang et al. [28].

Here, we focus on non-exponential tra�c models. We show that, in certain scenarios, a ow

may be strongly a�ected by the activity of `heavier'-tailed ows, and may inherit their traf-
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�c characteristics, causing induced burstiness. This complements results previously obtained

in [6] which show that, under certain conditions, an individual ow with long-tailed tra�c

characteristics is e�ectively served at a constant rate. The latter rate only depends on the

tra�c characteristics of other ows through their average rate. In particular, the ow is then

essentially immune to excessive activity of ows with `heavier'-tailed tra�c characteristics.

The sharp dichotomy in qualitative behavior illustrates the crucial importance of the weight

parameters in protecting individual ows.

The remainder of the paper is organized as follows. In Section 2, we present a detailed model

description. In Section 3, we derive generic lower and upper bounds for the workload dis-

tribution. We then show, in Section 4, that for long-tailed tra�c characteristics, the lower

and upper bounds have the same asymptotic behavior, yielding exact asymptotics for the tail

distribution of the workload. In Section 5, we make some concluding remarks.

2 Model description

We consider two tra�c ows sharing a link of unit rate. Tra�c from the ows is served in

accordance with the Generalized Processor Sharing (GPS) discipline, which operates as follows.

There are weights �i, i = 1; 2, associated with each of the ows, with �1 + �2 = 1. As long

as both ows are backlogged, ow i is served at rate �i, i = 1; 2. If one of the ows is not

backlogged, however, then the capacity is reallocated to the other ow, which is then served

at the full link rate (if backlogged).

We ignore some technicalities here which may arise for general arrival processes when the inow

rate ri of ow i may be smaller than the weight �i. In that case, only the excess capacity,

i.e., �i � ri, is reallocated to the other ow. These subtleties however will not arise for the

arrival processes that we consider. We refer to Dupuis & Ramanan [14] for a more thorough

discussion of these issues.

Denote by Ai(s; t) the amount of tra�c generated by ow i during the time interval (s; t]. We

assume that the process Ai(s; t) is stationary.

Denote by Vi(t) the workload of ow i at time t. Let Vi be a stochastic variable with as

distribution the limiting distribution of Vi(t) for t!1 (assuming it exists).

De�ne Bi(s; t) as the amount of service received by ow i during the time interval (s; t]. Then

the following identity relation holds,

Vi(t) = Vi(s) +Ai(s; t)�Bi(s; t) (1)

for all 0 � s � t.

For any c � 0, denote by V c
i (t) := sup

0�s�t
fAi(s; t)� c(t� s)g the workload at time t in a queue

of capacity c fed by ow i only. Denote by �i the tra�c intensity of ow i as will be de�ned in
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detail below for the two tra�c scenarios that we consider. For c > �i, let V
c
i be a stochastic

variable with as distribution the limiting distribution of V c
i (t) for t!1.

Denote by Pc
i the busy period associated with the workload process Vc

i . For conciseness, we

occasionally suppress the superscript c when the capacity is clear from the context.

Similarly to the identity relation above,

V c
i (t) = V c

i (s) +Ai(s; t)�Bc
i (s; t) (2)

for all 0 � s � t, with

Bc
i (s; t) = c

Z t

s
IfV c

i (u)>0gdu: (3)

Before describing the tra�c model, we �rst introduce some additional notation. For any

two real functions g(�) and h(�), we use the notational convention g(x) � h(x) to denote

limx!1 g(x)=h(x) = 1, or equivalently, g(x) = h(x)(1 + o(1)) as x ! 1. For any stochastic

variable X with distribution function F (�), EX <1, denote by F r(�) the distribution function

of the residual lifetime of X, i.e., F r(x) = 1
EX

R x
0 (1�F (y))dy, and by Xr a stochastic variable

with that distribution.

The classes of long-tailed, subexponential, regularly varying, intermediately regularly varying,

and dominatedly varying distributions are denoted with the symbols L, S, R, IR, and DR,

respectively. The de�nitions of these classes may be found in Appendix A.

We now describe the two tra�c scenarios that we consider.

2.1 Instantaneous bursts

Here, a ow generates instantaneous tra�c bursts according to a renewal processes. The in-

terarrival times between bursts of ow i have distribution function Ui(�) with mean 1=�i. The

burst sizes of ow i have distribution Si(�) with mean �i < 1. Thus, the tra�c intensity of

ow i is �i = �i�i.

We now state some results which will play a crucial role in the analysis.

Theorem 2.1 (Pakes [24]) If Sr
i (�) 2 S, and �i < c, then

P fVc
i > xg �

�i
c� �i

P fSri > xg :

Theorem 2.2 (Zwart [30]) If Ui(�) is an exponential distribution, i.e., the arrival process is

Poisson, Si(�) 2 IR, and �i < c, then

P fPi > xg �
c

c� �i
P fSi > x(c� �i)g :
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In fact, the preceding theorem can be extended to non-Poisson arrival processes, see Zwart [30].

In the analysis we will need a slight modi�cation:

Theorem 2.3 If Ui(�) is an exponential distribution, Sr
i (�) 2 IR, and �i < c, then

P fPr
i > xg �

c

c� �i
P fSri > x(c� �i)g :

Remark 2.1 Although Theorem 2.3 is only a minor extension of Theorem 2.2, the proof is

new and might be of independent interest. It directly uses Theorem 2.1 to derive the asymptotic

behavior of the residual busy period. Note that if Si(�) 2 IR, then Theorem 2.2 implies The-

orem 2.3. However, if we only assume Sr
i (�) 2 IR, then we cannot directly use Theorem 2.2,

since Sr
i (�) 2 IR does not necessarily imply Si(�) 2 IR.

Proof of Theorem 2.3

For compactness, we suppress the subscript i, e.g., V c(t) � V c
i (t), � � �i, etc.

For 0 < � < c� �, de�ne

L�(t) := sup
0�s�t

fBc(s; t)� (c� �)(t � s)g;

with Bc(s; t) as in (3).

Observe that L�(t) and V c(t) represent the workload processes in a priority queue with service

rate c and arrival processes �(t� s) and A(s; t), respectively, with L�(t) having lower priority.

Since the total workload does not depend on the priority mechanism, the sum of the workloads

equals

L�(t) + V c(t) = V c��(t) = sup
0�s�t

fA(s; t)� (c� �)(t � s)g: (4)

(Upper bound) By the previous equality and Theorem 2.1, in steady state,

P

n
L� > �x

o
� P

n
Vc�� > �x

o

�
�

c� � � �
P fSr > �xg : (5)

Let Pb;r be the past lifetime of the busy period of V c(t) in steady state. By symmetry, Pb;r is

equal in distribution to Pr. Hence,

P

n
L� > x

o
� P

n
Vc > 0;Pb;r > x=�

o
= P fVc > 0gP fPr > x=�g ; (6)

where we use the fact that in steady state the event fVc > 0g is independent of Pb;r.

Since the busy period P is larger than the time S=c it takes to serve a single service request,

it easily follows that

P fPr > xg �
ES

cEP
P fSr > xcg ; (7)
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which, in conjunction with (5), (6) and Sr(�) 2 IR, implies that P r(�) 2 DR, and therefore

P r(�) 2 S.

Now observe that L�(t) may also be interpreted as the workload at time t in a queue with

constant service rate c � � fed by an On-O� process with On- and O�-periods equal to the

busy and idle periods associated with the workload process V c(t), respectively. During the

On-periods, tra�c is produced at constant rate c. The fraction O�-time is 1 � �=c. The

On- and O�-periods are independent because U(�) is an exponential distribution. Hence, by

Theorem 2.4,

P

n
L� > �x

o
�

c� �

c

�

c� � � �
P fPr > xg : (8)

Now, (5) and (8) yield

lim sup
x!1

P fPr > xg

P fSr > �xg
�

c

c� �
;

and the upper bound follows by letting � " c� �.

(Lower bound) From (4), in steady state, for any � > 0,

P

n
L� > �x

o
= P

n
Vc�� �Vc > �x

o

� P

n
Vc�� > (1 + �)�x;Vc � ��x

o

� P

n
Vc�� > (1 + �)�x

o
� P fVc > ��xg : (9)

Hence, by (8), (9), and Theorem 2.1,

lim inf
x!1

P fPr > xg

P fSr > (1 + �)�xg
�

c

c� �
�
c(c� � � �)

(c� �)2
lim sup
x!1

P fSr > ��x=(r � c)g

P fSr > (1 + �)�xg
;

which, by letting �rst � " c� � and then � # 0 completes the proof of the lower bound.

2

2.2 On-O� processes

Here, a ow generates tra�c according to an On-O� process, alternating between On- and

O�-periods. The O�-periods of ow i have distribution function Ui(�) with mean 1=�i. The

On-periods of ow i have distribution Si(�) with mean �i < 1. While On, ow i produces

tra�c at a constant rate ri, so the mean burst size is �iri. The fraction of time that ow i is

O� is

pi =
1=�i

1=�i + �i
=

1

1 + �i�i
:

The tra�c intensity of ow i is

�i = (1� pi)ri =
�i�iri
1 + �i�i

:

We now state the analogues of Theorems 2.1, 2.2, and 2.3 for the case of On-O� processes.
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Theorem 2.4 (Jelenkovi�c & Lazar [17]) If Sr
i (�) 2 S, and �i < c < ri, then

P fVc
i > xg � pi

�i
c� �i

P fSri > x=(ri � c)g :

Theorem 2.5 (Boxma & Dumas [10], Zwart [30]) If Ui(�) is an exponential distribution, i.e.,

the O�-periods are exponentially distributed, Si(�) 2 IR, and �i < c < ri, then

P fPi > xg � pi
c

c� �i
P fSi > x(c� �i)=(ri � �i)g :

In addition, the following minor extension of the preceding theorem holds:

Theorem 2.6 If Ui(�) is an exponential distribution, Sr
i (�) 2 IR, and �i < c < ri, then

P fPr
i > xg � pi

c

c� �i
P fSri > x(c� �i)=(ri � �i)g :

Remark 2.2 Theorems 2.5 and 2.6 follow directly from Theorems 2.2 and 2.3 because of a

beautiful equivalence relation observed by Boxma & Dumas [10] and Zwart [31]. The busy

period in a uid queue is equal in distribution to the busy period in a corresponding G=G=1

queue scaled by a factor ri=(ri� ci). The interarrival times in the G=G=1 queue are exactly the

O�-periods in the uid queue, and the service times correspond to the net input during the On-

periods. Thus, with some minor abuse of notation, P fPi > xg = P

n
P
G=G=1
i > x(ri � c)=ri

o

for all values of x, with U
G=G=1
i (�) = Ui(�) and S

G=G=1
i := (ri � c)Si.

From Theorem 2.2, noting that c� �
M=G=1
i = (c� �i)=pi and piri = ri � �i,

P

n
P
M=G=1
i > x(ri � c)=ri

o
�

c

c� �
M=G=1
i

P

n
S
M=G=1
i > x(c� �

M=G=1
i )(ri � c)=ri

o

= pi
c

c� �i
P fSi > x(c� �i)=(ri � �i)g ;

yielding Theorem 2.5.

In Boxma & Dumas [10], Theorem 2.6 was essentially obtained in this manner from a weaker

version of Theorem 2.2 in De Meyer & Teugels [23] for the case Si(�) 2 R. Similarly, Theo-

rem 2.6 for the residual busy period can be directly obtained from Theorem 2.3.

Alternatively, Theorem 2.6 can be proved by mimicking the proof of Theorem 2.3. The only

di�erence is that in Equations (5) and (9), one uses Theorem 2.4 instead of Theorem 2.1, and

replaces c in (7) by c=r.

3 Bounds

We now derive some generic bounds for the workload distribution which we will use in the

next section to analyze the tail behavior. Without loss of generality we focus on ow 1. The

bounds apply for the scenario of instantaneous bursts as well as On-O� processes as described

in Subsections 2.1 and 2.2, respectively.
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We �rst introduce some notation. De�ne

Q�(t) := sup
0�s�t

fB�2
2 (s; t)� (1� �1 � �)(t� s)g;

with B�2
2 (s; t) as in (3). For � < 1��1��2, let Q

� be a stochastic variable with as distribution

the limiting distribution of Q�(t) for t!1.

De�ne Zc
1(s) := sup

u�s
fc(u � s) � A1(s; u)g. For c < �1, let Z

c
1 be a stochastic variable with as

distribution the distribution of Zc
1(s) (which does not depend on s because the process A1(s; t)

is stationary).

We �rst present a lower bound for the workload distribution of ow 1.

Lemma 3.1 (Lower bound) If �1 > �1, then for any � > �1 + �2 � 1 su�ciently small and y,

P fV1 > xg � P
�
Q�� > x+ y

	
P

n
Z
�1��
1 � y

o
:

Proof

De�ne

s� := arg sup
0�s�t

fB�2
2 (s; t)� (1� �1 + �)(t� s)g; (10)

so that

Q��(t) = B�2
2 (s�; t)� (1� �1 + �)(t� s�): (11)

It is easily veri�ed that for any � su�ciently small,

V �2
2 (s�) = 0; (12)

because otherwise B�2
2 (s� � �; t) = B�2

2 (s�; t) + ��2, contradicting the optimality of s�, as

�2 = 1� �1 > 1� �1 + �.

The GPS discipline ensures that

V2(t) � V �2
2 (t); (13)

since each ow i is guaranteed to receive a minimum service rate �i whenever backlogged.

Combining (1), (2), (12), and (13),

B2(s
�; t) � B�2

2 (s�; t): (14)

By de�nition, B1(s; t) +B2(s; t) � t� s for all 0 � s � t, so that

B1(s
�; t) � t� s� �B2(s

�; t): (15)
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Substituting (14), (15) into (2), with i = 1, using (11),

V1(t) � A1(s
�; t) +B�2

2 (s�; t)� (t� s�)

= Q��(t) +A1(s
�; t)� (�1 � �)(t� s�)

� Q��(t) + inf
u�s�

fA1(s
�; u)� (�1 � �)(u� s�)g

= Q��(t)� sup
u�s�

f(�1 � �)(u� s�)�A1(s
�; u)g

= Q��(t)� Z�1��
1 (s�):

Note that, by (10), (11), s�, Q��(t) depend only on A2(s; t), 0 � s � t, and are independent

of Z�1��
1 (s), s � 0 (�xed). Hence,

P fV1(t) > xjs�g � P

n
Q��(t)� Z�1��

1 (s�) > xjs�
o

� P

n
Q��(t) > x� y; Z�1��

1 (s�) � yjs�
o

= P
�
Q��(t) > x� yjs�

	
P

n
Z
�1��
1 � y

o
;

which immediately yields the statement of the lemma.

2

We now present an upper bound for the workload distribution of ow 1.

Lemma 3.2 (Upper bound) For any � < 1� �1 � �2 and �,

P fV1 > xg � P fQ� > (1� �)xg + P

n
V

�1+�
1 > �x

o
:

Proof

The GPS discipline implies that

V1(t) = sup
0�s�t

fA1(s; t)� C1(s; t)g; (16)

(assuming V1(0) = 0), with

C1(s; t) =

Z t

s
(1� �2IfV2(u)>0g)du: (17)

From (3), (13),

C1(s; t) =

Z t

s
(1� �2IfV2(u)>0g)du �

Z t

s
(1� �2IfV �2

2
(u)>0g

)du = t� s�B�2
2 (s; t): (18)

Substituting (17), (18) into (16), for any � > 0,

V1(t) � sup
0�s�t

fA1(s; t)� (t� s) +B�2
2 (s; t)g

� sup
0�s�t

fA1(s; t)� (�1 + �)(t� s)g+ sup
0�s�t

fB�2
2 (s; t)� (1� �1 � �)(t� s)g

= V �1+�
1 (t) +Q�(t);

from which the statement of the lemma directly follows.

2
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4 Asymptotic analysis

We now use the bounds from the previous section to determine the tail distribution of the

workload. We consider both the scenario of instantaneous bursts and On-O� processes as

described in Subsections 2.1 and 2.2, respectively. We also allow for mixed tra�c scenarios,

where one ow generates instantaneous bursts, while the other produces tra�c according to an

On-O� process. De�ne c2 := �2 if ow 2 generates instantaneous tra�c, and c2 := minfr2; �2g

if ow 2 produces tra�c according to an On-O� process, and denote Pr
2 := (Pc2

2 )
r.

Theorem 4.1 Assume that U2(�) is an exponential distribution.

If �1 + �2 < 1, �1 + c2 > 1, Sr
2(�) 2 IR, and P fSr1 > xg = o(P fSr2 > xg) as x!1, then

P fV1 > xg �
c2 � �2
c2

�2
1� �1 � �2

P fPr
2 > x=(�1 + c2 � 1)g ;

with P fPr
2 > x=(�1 + c2 � 1)g as in Theorems 2.3 and 2.6, respectively.

The above theorem complements the results obtained in [6] which in the context of the present

model may be formulated as follows.

Theorem 4.2 If either (i) �1 < �1, and Sr
1(�) 2 S (instantaneous bursts) or Sr

1(�) 2 IR

(On-O� process); or (ii) Sr
1(�) 2 IR, P fSr2 > xg = o(P fSr1 > xg) as x ! 1, and r1 > 1,

then

P fV1 > xg � P fV1
1 > xg ;

with 1 := maxf�1; 1� �2g and P fV1
1 > xg as in Theorems 2.1 and 2.4, respectively.

Before giving the formal proof of Theorem 4.1, we �rst provide an intuitive interpretation.

When ow 2 is backlogged, ow 1 is only served at rate 1 � c2, while it generates tra�c at

average rate �1 > 1 � c2. Thus the queue of ow 1 has positive drift �1 + c2 � 1 > 0 when

ow 2 is backlogged. Now suppose that ow 2 generates a large burst or experiences a long

On-period. It will then become backlogged, and because of the positive drift, ow 1 will soon

become backlogged too; ow 2 will thus experience a busy period as if it were served at rate c2;

ow 1 will be served at rate 1� c2, and its queue will roughly grow at rate �1 + c2 � 1.

Of course, its queue may also build up when ow 1 itself generates a large burst or experiences a

long On-period. However, these e�ects are dominated by the build-up during the busy periods

of ow 2, because the tra�c characteristics of ow 2 are heavier.

Thus, the most likely scenario for ow 1 to build a large queue is for ow 2 to generate a large

burst, or experience a long On-period, while ow 1 itself shows average behavior. As long as

ow 2 is backlogged, the queue of ow 1 will then roughly grow at rate �1 + c2 � 1. When

ow 2 is not backlogged, the queue of ow 1 will drain at approximately rate 1��1. Thus, the

10



queue of ow 1 behaves as a queue with constant service rate 1� �1 fed by an On-O� process,

with On- and -O� periods exactly equal to the busy and idle periods of ow 2 when served

at constant rate c2. This is reected in Theorem 4.1, if we use Theorem 2.4 to interpret the

right-hand side.

In contrast, under the assumptions of Theorem 4.2, the above scenario cannot arise: either

(i) �1 < �1, so that the queue of ow 1 retains negative drift when ow 2 is backlogged; or

(ii) P fSr2 > xg = o(P fSr1 > xg) as x ! 1 so that the congestion e�ects due to activity of

ow 1 itself dominate the build-up during the busy-periods of ow 2. In this case, the most

likely scenario for ow 1 to build a large queue is to generate a large burst or experience a

long On-period itself, while ow 2 shows average behavior. Flow 1 will then approximately be

served at a constant rate 1, as con�rmed by Theorem 4.2.

In [7], analogues of Theorems 4.1 and 4.2 were obtained for a closely related coupled-processors

model using an explicit expression for the workload transforms. In addition, the analysis in [7]

covers the theoretically interesting case that P fS1 > xg � KP fS2 > xg with 0 < K <1.

In preparation for the proof of Theorem 4.1 we �rst state two auxiliary lemmas.

Lemma 4.1 Assume that U2(�) is an exponential distribution.

If Sr
2(�) 2 IR, then for any 1� �1 � c2 < � < 1� �1 � �2,

P fQ� > xg �
c2 � �2
c2

�2
1� �1 � �2 � �

P fPr
2 > x=(�1 + c2 + �� 1)g ; (19)

with P fPr
2 > x=(�1 + c2 + �� 1)g as in Theorems 2.3 and 2.6, respectively.

Proof

Observe that Q�(t) = Lc+�1+��1(t) as de�ned in the proof of Theorem 2.3 with c = c2. The

statement then follows from (8) and the fact that Sr
2(�) 2 IR.

2

Lemma 4.2 If Sr
2(�) 2 IR, and P fSr1 > xg = o(P fSr2 > xg) as x!1, then for any c > �1,

P fVc
1 > xg = o(P fSr2 > xg) as x!1:

Proof

For any � > 0, construct the stochastic variable S� with distribution

P fS� > xg = minf1;P fS1 > xg+ �P fS2 > xgg:

Now consider the workload process V c
� (t) in a queue with service rate c where the stochastic

variable S1 in the arrival process is replaced by S�. For � su�ciently small, let Vc
� be a

stochastic variable with as distribution the limiting distribution of V c
� (t) for t ! 1. (Notice

that ES� � ES1 + �ES2 , so that the queue is stable for � su�ciently small.)

11



Clearly, S� is stochastically larger than S1, so that

P fVc
1 > xg � P fVc

� > xg : (20)

Also,

P fSr� > xg � �
ES2

ES�
P fSr2 > xg ;

which implies that P fSr� > xg 2 IR. Hence, by Theorems 2.1, 2.4,

lim sup
x!1

P fVc
� > xg

P fSr2 > xg
� �K (21)

for some �nite constant K independent of �.

The lemma follows by combining (20) and (21) and letting � # 0.

2

We now give the proof of Theorem 4.1.

Proof of Theorem 4.1

First observe, from Theorems 2.3, 2.6, that P r
2 (�) 2 IR, with P r

2 (x) = P fPr
2 > xg.

(Lower bound) Using Lemmas 3.1, 4.1 and the fact that P r
2 (�) 2 IR,

lim inf
x!1

P fV1 > xg

P fPr
2 > x=(�1 � �1)g

� P

n
Z
�1��
1 � y

o
lim inf
x!1

P fQ�� > x+ yg

P fPr
2 > x=(�1 � �1)g

= P

n
Z
�1��
1 � y

o �2 � �2
�2

�2
1� �1 � �2 � �

lim inf
x!1

P fPr
2 > (x+ y)=(�1 � �� �1)g

P fPr
2 > x=(�1 � �1)g

=
�2 � �2
�2

�2
1� �1 � �2 � �

K(
�1 � �1

�1 � �� �1
)P
n
Z
�1+�
1 � y

o
;

with lim
�#1

K(�) = 1.

Thus, letting y !1, then � # 0,

lim inf
x!1

P fV1 > xg

P fPr
2 > x=(�1 � �1)g

�
�2 � �2
�2

�2
1� �1 � �2

:

(Upper bound) Using Theorems 2.3, 2.6 and Lemma 4.2,

P

n
V

�1+�
1 > �x

o
= o(P fPr

2 > x=(�1 � �1)g) as x!1: (22)

Using (22), Lemmas 3.2, 4.1, and the fact that P r
2 (�) 2 IR,

lim sup
x!1

P fV1 > xg

P fPr
2 > x=(�1 � �1)g

� lim sup
x!1

P fQ� > (1� �)xg

P fPr
2 > x=(�1 � �1)g

+ lim sup
x!1

P

n
V

�1+�
1 > �x

o

P fPr
2 > x=(�1 � �1)g

=
�2 � �2
�2

�2
1� �1 � �2 + �

lim sup
x!1

P fPr
2 > (1� �)x=(�1 + �� �1)g

P fPr
2 > x=(�1 � �1)g

=
�2 � �2
�2

�2
1� �1 � �2 + �

K(
(1� �)(�1 � �1)

�1 + �� �1
);
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with lim
�"1

K(�) = 1.

Thus, letting �; � # 0,

lim sup
x!1

P fV1 > xg

P fPr
2 > x=(�1 � �1)g

�
�2 � �2
�2

�2
1� �1 � �2

:

2

5 Conclusion

We analyzed the queueing behavior of long-tailed tra�c ows under the Generalized Processor

Sharing (GPS) discipline. GPS-based scheduling algorithms, such as Weighted Fair Queueing,

play a major role in achieving di�erentiated quality-of-service in integrated-services networks.

We proved that, in certain scenarios, a ow may be severely inuenced by the activity of

`heavier'-tailed ows, and may inherit their tra�c characteristics, causing induced burstiness.

This phenomenon contrasts with previous results which show that, under certain conditions, an

individual ow with long-tailed tra�c characteristics is e�ectively served at a constant rate. In

particular, the ow is then largely insensitive to extreme activity of ows with `heavier'-tailed

tra�c characteristics. The sharp dichotomy in qualitative behavior highlights the critical role

of the weight parameters in isolating individual ows.

Acknowledgment The authors gratefully acknowledge a helpful observation made by Bert

Zwart.
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A De�nitions

De�nition A.1 A distribution function F (�) on [0;1) is called long-tailed (F (�) 2 L) if

lim
x!1

1� F (x� y)

1� F (x)
= 1; for all real y:

De�nition A.2 A distribution function F (�) on [0;1) is called subexponential (F (�) 2 S) if

lim
x!1

1� F 2�(x)

1� F (x)
= 2;

where F 2�(�) is the 2-fold convolution of F (�) with itself, i.e., F 2�(x) =
R1
0 F (x� y)F (dy).

The class of subexponential distributions was introduced by Chistyakov [11]. The de�nition

is motivated by the simpli�cation of the asymptotic analysis of the convolution tails. A well-

known subclass of S is the class R of regularly-varying distributions (which contains the Pareto

distribution):

De�nition A.3 A distribution function F (�) on [0;1) is called regularly varying of index ��

(F (�) 2 R��) if

F (x) = 1�
l(x)

x�
; � � 0;

where l : R+ ! R+ is a function of slow variation, i.e., limx!1 l(�x)=l(x) = 1, � > 1.

The class of regularly-varying functions was introduced by Karamata [19]; a key reference is

Bingham et al. [4]. It is easily seen that R � S � L. Examples of subexponential distributions

which do not belong to R include the Weibull, lognormal, and Benktander distributions (see

Kl�uppelberg [20]). A useful extension of R is the class IR of intermediately regularly-varying

distributions:

De�nition A.4 A distribution function F (�) on [0;1) is called intermediately regularly vary-

ing (F (�) 2 IR) if

lim
�"1

lim sup
x!1

1� F (�x)

1� F (x)
= 1:

A further extension is the class DR of dominatedly varying distributions (see Cline [12]; R �

IR � (DR \ L) � S):

De�nition A.5 A distribution function F (�) on [0;1) is called dominatedly varying (F (�) 2

DR) if

lim sup
x!1

1� F (�x)

1� F (x)
<1; for some real � 2 (0; 1):
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