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Abstract

Recently the workload distribution in the M/G/1 queue with work removal has been anal-
ysed, and has been shown to exhibit a generalized Pollaczek-Khintchine form. The latter
result is explained in this note by transforming the model into a standard GI/G/1 queue.
Some extensions are also discussed, as well as a connection with a ‘dual’ risk process.
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1 Introduction

The following model has been studied in [2, 5]. Customers arrive at a single-server queue
according to a Poisson process with rate A*. Their service requirements {B,} are i.i.d. with
distribution B(-), finite mean § and Laplace-Stieltjes Transform (LST) 3(s). We shall refer to
these customers as ordinary or positive customers. In addition to the ordinary customers, and
independent of them, negative customers arrive at the queue according to a Poisson process
with rate A~. These negative customers reduce the amount of work in the queue according
to a distribution C(-), with mean v and LST ~(s). These reduction amounts are denoted by
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{C,} and are assumed i.i.d. Assume that AT3 < 1+ XA7+; this is the stability condition for this
M/G/1 generalization [2, 5]. One can even allow the case in which negative customers always
remove all the work present; this is the so-called disaster model [2, 6].

Let V' denote the steady-state workload in the system. In [2] its LST ¢(s) = El[ezp(—sV)]
was obtained by solving a Wiener-Hopf problem; in [5] this transform was shown to be of the
Pollaczek-Khintchine form:

1—v
1—wn(s)’

with 7(s) the LST of the distribution of a non-negative random variable and 0 < v < 1. Note
that for the ordinary M/G/1 queue without negative arrivals, (1) holds with v = AT and
n(s) = (1 — A(s))/Bs.

In [2] a transformation is presented to show that the workload distribution equals the waiting
time distribution in an ordinary GI/G/1 queue with positive customers only - thus yielding
access to the rich literature on the GI/G/1 queue. The purpose of the present note is twofold:
to show how that transformation directly leads to (1), and to establish a connection between
this transformation and a dual risk process, in which - in addition to claims and a unit rate
premium - there are also lump additions.

o(s) = Re s >0, (1)

2 A transformation

Consider the M/G/1 queue with additional removal of work, as described in Section 1, with
workload V'(t) at time ¢, steady-state workload V, and V, denoting steady-state workload as
found by arriving ordinary customers. Let %, denote the arrival epoch of the nth ordinary
customer, with #g def ). During the interarrival time 7, def tn+1 —tn, K, negative arrivals occur,
removing the i.i.d. amounts of work CT,...,C% . It was observed in [2] that

Vtni1) = V(tn) + B — 7591, n=0,1,..., (2)
where o+ % max(a, 0) and

Knr
T;défrn—f—ZCj", n=0,1,.... (3)
j=1

Clearly, (2) is the recurrence relation for the waiting time in a GI/G/1 queue with service times
B, but longer interarrival times ;. Thus we conclude that V, has the same distribution as the
steady state waiting time in this GI/G/1 queue.

A Pollaczek-Khintchine form then follows from random walk theory. Consider the random walk

R,=Bi—1+---+B,—1,,n>1, Ry =0,

with i.i.d. increments B; — 7. The steady-state waiting time distribution in the FIFO GI/G/1
queue is that of the maximum M = max{R, : n > 0}. It follows from random walk theory
(see for example Ch. 9 in [12]) that the LST of M is of the form (1) where v = P(R, >
0, for some n > 0) is the probability of at least one strictly ascending ladder height, and 7(s)



the LST of such a ladder height distribution (conditional on it occurring).

Since V, has the same distribution as M, while V has the same distribution as V, by PASTA,
we conclude that the desired Pollaczek-Khintchine formula (1) also holds for V. In this context
v =PV >0).

Remark 2.1

The transformation idea of [2], lengthening of interarrival times to take work removal into ac-
count, gives direct access to the literature on the GI/G/1 queue, see e.g. Cohen [3]. If B(-) is
general but ~y(s) is rational, the denominator being a polynomial of degree m (denote this by
K,,), then 7% has a K, distribution. One can now apply known results for the K,,1/G/1
queue, cf. [3], Section I1.5.11.

If B(t) = 1 — exp(—t/F) then an even better tractable model results (even if the ordinary
customers arrive according to a renewal process, and work removals follow an arbitrary distri-
bution): the transformation yields a GI/M/1 queue and hence V has an exponential distribution
with a point mass at the origin.

The transformation holds more generally in a G/G/1 queue with a stationary sequence {(By, )}
of service and interarrival times for positive customers. The transformed sequence becomes the
new stationary sequence {(B,,7;)} as defined by (3) (the new sequence remains stationary
because the negative arrivals are Poisson and independent of all else). In the GI/G/1 case
where the interarrival times are ii.d., the LST 7(s) of interarrival time is transformed into
(s + A7 (1 = 7(s)))-

The transformation idea even applies to a GI/G/1 queue in which each arriving customer is
with probability p a positive customer who requires some service, and with probability 1 —p a
negative customer who removes some work; now 7(s) transforms into p7(s)/(1 — (1 — p)7(s))-
Of course in these cases, PASTA may not hold and the distributions of V' and V, are typically
different.

Remark 2.2

In [5] formula (1) is derived for the model of negative arrivals by utilizing the Preemptive LIFO
discipline (PL) and extending a result of Fakinos [4] (see also [8]): Under PL 7)(s) represents
the LST of the distribution of the remaining service time of the customer found in service by
an arrival, say B*(-), and

P(anaijSmJ‘:j:17"'an):(1_V)VHHB*(Ij)’ (4)
j=1

where @ is the number of customers found by an arrival and V; the remaining service require-
ment of customer 7, j =1,...,n.

Remark 2.3

It is known (cf. [3], p. 282) that the waiting time distribution in the GI/G/1 queue is infinitely
divisible. Interestingly, this immediately follows from the form (1) and Theorem 12.2.3 in [7]
(which states that such a form implies infinite divisibility).



3 Risk processes with lump additions

Consider an insurance business that starts off initially with z > 0 units of money and earns a
rate 1 premium. Claims occur as a Poisson process at rate g~ with interarrival times {7,}, and
claim sizes { B, } are non-negative and i.i.d. with distribution B(-). Furthermore, independently,
lump sums of money are added according to a Poisson process at rate p*, and the lumps {C,,}
are non-negative and i.i.d. with distribution C(-). The total reserve at time ¢ is given by the
risk process

N~ (1) 0)
X0 ett- Y B+ Y G, t>0, (5)
=1 =1

where N~ and NT are the Poisson counting processes for claims and lumps respectively;
Xz(0) = z. Of intrinsic interest is to compute the probability of ruin, P(7(z) < c0), where

7(z) ¥ inf{t > 0: X, (t) < 0}.

(1(x) 4 o if X (t) never enters (—o0,0).) When the model has no lump additions, then it is

well known (see [9] for example) that
P(r(z) < o0) = P(V > z), (6)

where V' is steady-state workload for an M/G/1 queue with arrival rate = and service times
{Br}. It is intuitive that (6) should also hold for our risk model with lump additions, where V'
is the steady-state workload in the M/G/1 queue with negative customers in which \*™ = p~
and A~ = put. We now show this, following the duality theory from [1].
Observing that ruin can only occur right after a claim epoch (denoted by t¢,, n > 1, with
to & 0), we conclude that

7(z) = min{t, > 0: X, < 0},

where X, def Xz(tn+), n > 1, and X def 0. But X,, is a random walk starting at = with

increments 7;_; — By, n > 1:
Xp=z+7—-B1+---+7,_1—Bn, n>1, Xg=rz,
where 7 is defined exactly as in (3), which in the current notation is given by
N (tnt1)
7'* = Tn + Z 0]7 (7)
JEN*(tn)+1

and represents the cumulative earnings (interest plus lump sums) in the time interval (¢, t,+1]-
Thus from Example 1 in [1] (and the fact that Poisson processes are time reversible) we conclude
that {X,,} is the dual of the reflected random walk given by

Wn—l—l = (Wn + Bn - 7—:)—1—5 (8)

and that (6) holds when V' = W, the steady-state for this reflected random walk. But (8) is
the same recursion as (2); so from Section 2, W can be identified with the stationary workload



in the M/G/1 queue with negative customers in which AT =y~ and A\~ = pt.

Remark 3.1

The lump additions can be replaced by any Levy process {A(¢)} with non-negative increments,
in which case (7) is generalized to 7} = 7, + A(tp+1) — A(t,); the duality with the reflected
random walk remains valid.

The duality between {X,,} and {W,} extends to the case when {(B,,7,)} forms a stationary
sequence, but then its time reversal must be used in recursion (8); see [1].

Remark 3.2

Using a continuous time analogue of [1] developed in [11] (or, since workload is a Markov
process, by using Siegmund Duality [10]), it can be shown that the duality in (6) holds for all
t>0:

P(Xz(t) <y) = P(Vy(t) 2 2), 20, (9)
where V,(t) denotes the workload at time ¢ in the M/G/1 queue with negative customers in
which V(0) =y > 0. This means that the continuous time {X (¢)} and {V(¢)} are duals of one
another. This can be generalized further (using time reversal) to a time-stationary setting in
which {(By, 7,)} is defined from a time-stationary marked point process or {A(¢)} from Remark
3.1 is a process with non-negative stationary increments.
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