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ABSTRACT 

In this paper we consider an MIG/I queueing model, in which each customer is 

fed back a fixed number of times. For the case of negative exponentially distri

buted service times at each visit, we determine the Laplace-Stieltjes transform of 

the joint distribution of the sojourn times of the consecutive visits. As a by-result, 

we obtain the (transform of the) total sojourn time distribution; it can be related to 

the sojourn time distribution in the MIDI l queue with processor sharing. For the 

case of generally distributed service times at each visit, a set of linear equations is 

derived, from which the mean sojourn times per visit can be calculated. 

1 INTRODUCTION 

In this paper we study an M/G/ l queueing system in which each customer is fed 

back a fixed number of times. Feedback systems occur in many practical situa

tions; for instance, in computer systems tasks that are scheduled for rei:ources may 

have to come back several times for additional service. In the literature much 

attention has been paid to feedback queues. However, most studies concerned so

called Bernoulli feedback: when a customer completes his service he departs from 

the system with probability 1-p and is fed.back with probability p; see Takacs (14], 
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Disney [4], Disney and Konig [5], Disney et al. [6] and Doshi and Kaufman [7]. 

Fontana and Diaz Berzosa [8,9] extend some results obtained for the MIG/ 1 model 

with Bernoulli feedback to a more general feedback model with priorities. 

Simon [13] studies a somewhat more general model than the one presented in this 

paper. He allows different types of customers and priority levels, that may change 

after a service completion. The main result of his paper is the derivation of a set of 

linear equations for the mean sojourn time of each visit. 

In the present model, to be described in Section 2, the priority mechanism is 

omitted. In Section 3 we derive, for the case of negative exponentially distributed 

service times, the Laplace-Stieltjes transform (LST) of the joint stationary distribu

tion of the successive sojourn times of a customer. As a by-result we obtain an 

explicit expression for the LST of the distribution of the total sojourn time of a 

customer; the latter result has also been obtained by Lam and Shankar [ l l] , for a 

more general feedback mechanism. This expression can be used to obtain the LST 

of the sojourn time distribution in the M/D/l queueing system with processor 

sharing, a result previously found by Ott [12]. In Section 4 we show that, for the 

case of generally distributed service times at each visit, the set of linear equations 

for the mean sojourn times per visit can be explicitly solved. Finally an extension 

is made to a model with a more general feedback mechanism. 

2. MODEL DESCRIPTION 

We consider a single server queueing system with infinite waiting room. Custo

mers arrive at the system according to a Poisson process with intensity :\>0. Each 

customer requires N services: a customer who enters the queue will return to the 

queue (feedback) after service N - I times before leaving. Fed back customers 

return instantaneously, joining the end of the queue. The service discipline is First 
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Come First Served (FCFS). The N service times of a customer are mutually 

independent random variables having distribution functions B;(·), with mean /3i and 

second moment /3Fl, i = l, ... ,N. These service times are also independent of the 

service times of other customers, and of the arrival process. 
N 

Obviously the stability condition is that A 2,{Ji < 1. In the following this condition 
i=l 

is assumed to hold, and we'll restrict ourselves to stationary distributions. 

We define, for i = I, ... ,N, 

- type-i customer: customer who is visiting the queue for the i-th time, 

- X;: number of type-i customers in the system at an arbitrary epoch in time, 

- X;: number of type-i customers in the system at an arbitrary arrival epoch, 

- S;: time between i-th arrival and i-th service completion of a customer; 

N 
S · - 2,S; (total sojourn time). 

;o=J 

3. THE NEGATIVE EXPONENTIAL CASE 

For the case that the service times are identically, negative exponentially, distri-

buted, 

B ( ) - 1- -I /{3 . -1 N i t - e , I - , ... , , 

we derive an expression for the Laplace-Stieltjes transform E{e-(w,s,+ ... +wNSNl} of 

the joint distribution of the successive sojourn times S;, i = 1, ... ,N, of a customer. 

First note that the system described above can be considered as a queueing net

work consisting of one queue with N types of customers. Type-N customers leave 

the system with probability 1 after service. Type-i customers return to the queue 
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with probability 1 after service, and change into type-(i + 1) customers, 

i = 1,. .. ,N -1. 

Because the service times are assumed to be exponentially distributed, the results 

obtained by Baskett et al. [l] can be applied to find the joint distribution of the 

number of type-i customers in the system. It is found that, for 

Xi, ... ,XN = 0,1,2, ... , 

(3.1) 

- -
The PAST A property [ 15] implies that the joint distribution of { X1, ... , XN} is 

also given by this expression. 

We follow a customer, say K, from the moment he arrives as a type- I customer 

until he leaves the system as a type-N customer. For the successive sojourn times 

S1, ... , SN of K it holds that 

Let w:=(w1, ... ,wN), and 

A-(w) := l 
I i-J ' 

I +/3(wN-i+I +A.-;\ IT Aj(w)) 
j =I 

We now prove the following theorem. 

THEOREM 

i =2, ... ,N. 

In the MIMI 1 queue with deterministic feedback, for Re w; ;;;;.o, i = 1, .. ,N, 



SOJOURN TIMES 119 

N 
(1-N"Afi) IlA;(w) 

E { e -(w,S, + ... +w11S11)} i=I (3.3) 
N N 

1-A/3(IlA;(w)+ ITAi(w)+ ... +AN((.))) 
i=I i =2 

PROOF: The proof is based on the observation that the joint process of successive 

departure epochs and queue length vector at these departure epochs is a Markov 

renewal process ( cf. Cinlar [3], Ch. 10). Conditioning on the number of external 

arrivals, n;, during the i-th sojourn time, i = l, ... ,N -1, it is easily seen that 

00 00 f e -w,t, f e -w,t, 

r 1 =O 1,=0 

00 00 f e -w,r, f e -w,t, 

r, =O 12 =O 

oo N-l 00 (A.t-)n, [ l lx,+n,+ ... +n11 ,+1 f e -wN·\tN-\ II 2: e -"At,-'-
-o ·-1 -o n;! l+f3wN tN 1- l- n1-

N-2 oo -Ai (A.t;t' rr 2:e , __ 
n·' i = 1 n,=O 1 • 

[ lx,+1 oo oo 
1+1 w J e -w,t, j e -w,t, 

ft N t,=O t 1 =0 

00 J e-WN-2/N-2 

1,., _2 =O 

N-2 oo (At·)n' II :2: e -Ai, ' 
n ·' i=ln,=O t· 
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Proceeding in this way we find 

' 
- - N I+ ~>I 

E{e-(w1S1+ ... +wNS.-) JX1=x1, ... ,XN=xN} = ITA; i=t (w). (3.4) 
i=I 

Substituting (3.1) and (3.4) in (3.2) yields the required result. 

REMARKS 

i) Consider a type-i customer, present when the tagged customer K arrives. During 

his (i + y )-th service, y = 0, 1, ... 1 N - i1 he influences K 1s sojourn times 

Sy+ i. ... , SN in two ways. His service time contributes to Sy+ 11 and customers 

arriving during this service time influence S1 +21 ..• , SN. These contributions are 

collected in the term AN-y(w); the total contribution of all x; type-i customers to 

N-i N 
the expression in the right-hand side of (3.4) is {II AN-y(w)}x, = UIAj(w)r'. 

y=O j=i 

ii) The (marginal) distribution of the i-th sojourn time, S; 1 i = 1, ... ,N, can be 

obtained from (3.3) by taking w1=01 j = 11 ••• ,N, f=/=i. It is found that 

E{ -w,S, } = 1-NA.p 
e I - NA./3+ /Jw; · 

(3.5) 

Hence, the sojourn times S;, i = l 1 ••• 1 N, are identically, negative exponentially, dis

tributed with mean /3 /(I - NA./3). This coincides with the sojourn time distribution 

in an ordinary MIMI 1 queue with mean service time /3 and arrival rate NA.. 

iii) In order to investigate the dependence between the i-th and j-th sojourn time 
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we have computed the Laplace-Stieltjes transform of the joint distribution of Si 

and s1, t ,,;;;i <j ,,;;;N. It is found from (3.3) that 

From (3.6) the correlation coefficient, corr(Si,SJ)• can easily be obtained: 

It follows that corr (S1, s1) as a function of i and j only depends on j -i, and that it 

decreases if j -i grows. It is also seen that corr(S1,S1) is an increasing function of· 

the total offered load Nl.../3 for fixed i and j. These intuitively appealing properties 

are illustrated in Fig. I. 

iv) From (3.3), substituting w1 =w0, i = l, .. .,N, it is found that the Laplace-Stieltjes 

transform of the total sojourn time distribution is given by 

-wS (l-N!...{3)(1...+wof 
E{e o }= wfi(l+!...,8+/3wof+!...(!...+wo)(l-Nl...,8)+!...wo' Rewo;;.O. (3.8) 

Formula (3.8) can easily be inverted using Jagerman's inversion technique [10]. 

From (3.8) we obtain the variance of the total sojourn time: 

Var(S)= [ f3 ]
2
[-2--N2 -2(1-N!.../3)(1+!...[3f]. (3.9) 

I - Nl.../3 (l.../3)2 . (A.{3)2 

Formula (3.9) could also have been derived from the above results for Var(S;) and 

corr(Si,SJ). 

v) If we let Njoo and /no in such a way that /3: =N {3 remains constant, then the 

distribution of the total service time received by each customer approaches the 

deterministic distribution fixed at /3: 
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FIG.l 

corr(Si,S) as a function of offered load N"A{3, with N =20 

This limiting procedure apparently reduces the deterministic feedback model to the 

MIDI I queueing model with processor sharing. Indeed, in the limit the distribution 

of the total sojourn time equals the sojourn time distribution in the MIDI l system 

with processor sharing: 

a result previously obtained by Ott [12]. 
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4. THE GENERAL CASE 

In this section we first consider the case where the service time distribution of a 

customer depends on the number of times he has been fed back. As in Simon [13], 

we derive a set of linear equations from which the mean sojourn time per visit can 

be calculated. Next, we show that for the special case that all service time distribu

tions are equal (but not necessarily negative exponential), this set of linear equa

tions can be easily solved explicitly. It appears that from the second visit on, all 

mean sojourn times are equal. Finally we introduce a generalized feedback model, 

which includes both the deterministic feedback model and the Bernoulli feedback 

model. Again, a set of linear equations for the mean sojourn times is derived. This 

set is solved for the case of Bernoulli feedback. 

4.1 Derivation of a set of linear equations 

We consider the case that the service time distribution of a customer who has 

been fed back i -1 times is given by Bi(-), i = 1,2, ... ,N. Denote by p;: ="A{3; the 

offered traffic due to type-i customers. We start by obtaining a relation for ES1. 

Note that a newly arriving customer is a Poisson arrival and hence PASTA ([15]) 

applies. Consider the mean amount of work that has to be handled before this 

newly arriving customer receives his first service. This quantity consists of two 

components: 

1. the mean amount of waiting work found upon his arrival that is handled 

N 
before his first service, given by: "'2,f3iEX7; 

i=l 

2. 
. . N f3Fl 

the mean amount of work currently m sefVlce: i ~p; 2{3; ; 

where X7 denotes the number of waiting type-i customers. It may now be seen 
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that, 

N N {3)2! 
ES1 = ":£J3iEXj + ~Pi 2{3 + /31. 

i=I i=l 1 

(4.l.1) 

With EXj = EXi - A.{3; we obtain: 

(4. l.2) 

ESi + 1 is composed of mean service times of "old" customers and of customers 

who have arrived during the first i sojourn times: 

N-i i 
ESi+l = ~ EX1f31 + ~/3i+1-1AES1 + /3i+1, i=l, ... ,N-1. ( 4.1.3) 

j=1 j=I 

As observed by one of the referees, the sojourn time process is a delayed semi

regenerative process (with underlying Markov renewal process the joint process of 

successive departure epochs and queue length vector at those departure epochs; cf. 

Cinlar [3], Ch. 10). A somewhat similar observation for the MIG/ l queue with 

Bernoulli feedback was made in [4]. 

Now apply Little's formula to ( 4.1.2) and ( 4.1.3): 

N f..N(2) 2 
ES1 = ~p;ESi + 2 ~(/31 -2{3;) + /31, 

i=l i=l 

(4. l.4) 

N-i i 

ES;+1 = ~ P1ES1 + ~P;+1-1ES1 + /3;+i, i = l, ... ,N- l. ( 4.1.5) 
j=I j=I 

Formulas ( 4.1.4) and ( 4.1.5) represent a set of N linear equations in N unknowns. 

In the next subsection this set of equations will be solved in a special case. 

4.2 Special case: BJ)= B(), i = l, ... ,N 

In this subsection we assume that all service time distributions are the same. In 

fact, for our purposes it suffices to assume that /3i=/3 and pF>=/Pl for all i. The 

equations ( 4.1.4) and ( 4.1.5) now become: 
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(4.2. l) 

N-i i 

ESi+1 = A/3 .}: ES1 + A/3.}:ES1 + /3, i = l, ... ,N -1. (4.2.2) 
j=I j=l 

Due to the symmetry in ( 4.2.2) we have that 

ESi+l = ESN-i+J, i=l, ... ,N-1. 

Subtracting ESi from ES;+ 1 we obtain, for i == 2, ... ,N - 1, 

Hence, ES; = ESi + 1 and we obtain 

ESi = ES3 = · · · = ESN. (4.2.3) 

Now from (4.2.1) and (4.2.3): 

ES1 = Xf3ES1 + (N-l)X/3ESi + ;N(/30l-2f32) + /3. (4.2.4) 

And from (4.2.2) and (4.2.3): 

ES2 = 2A/3ES1 + (N - 2)A/3ESz + /3. (4.2.5) 

Solving equations (4.2.4) and (4.2.5) yields: 

(1-(N -2)A./3)~N(/f-2) -2/32) 

ES /3 + 2 
1 = 1-NX/3 (1 + A/3)(1- NX/3) 

(4.2.6) 

- ES - {3 + A_2f3N(ff1)-2{Jl). 
- N - 1 - NX/3 (1 + A/3)(1 - NX/3) 

(4.2.7) 

Hence 

ES = N f3 l + NA.{3 A N@2l -2/j2) 
l - NX/3 + l - NX/3 2 1 + A/3 

(4.2.8) 

For N = 1 this gives: 

>-._jf-2) 
ES = 2(1 = A/3) + /3, (4.2.9) 

as could be expected. 
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Finally observe from (4.2.6) and (4.2.7) that £S1 = ES2 if the service times are 

negative exponentially distributed. 

4.3 A generalized M!Gll Bernoulli feedback model 

An obvious generalization of our model and of the Bernoulli feedback model is 

the model in which a customer who just had his j-th service departs from the sys

tem with probability 1-p(j) and is fed back with probability p(j), j = 1,2, .... By 

definition, p (0) = 1. Let 

i-1 
qi : = IJp(j), i = 1,2, .... 

j =O 

The definitions of type-i customers and their characteristic quantities, as given in 

Section 2, are extended in an obvious way. Note that the stability condition for 

00 

this system is that A "2,q;/3i < 1. We assume in the following that BJ-) = B(-). In 
i=l 

exactly the same way as in Subsection 4.2 we derive: 

oo A. a2) 2 oo 
ES1 = /3"2,EX; + 2(P' -2/3 J"2.q;+1 + /3, 

i=l i=O 

(4.3.1) 

k-1 ~ qk+; 
ESk +1 = A.fJ "2, q;+1ESk-i + /3 ,i_--EX; + /3, k = 1,2, .... 

i=O i=l q; 
(4.3.2) 

Rewriting ( 4.3. l) and ( 4.3.2) and using Little's formula yields: 

(4.3.3) 

k-1 00 

ESk +1 = A.fJ "L, q;+1ESk-i + A./3"2.qk+;ES; + /J, k = 1,2, .... (4.3.4) 
i=O i=l 

For some special cases (in particular, cases with P(N)=O for some finite N) this set 

of equations can be easily solved. Below we present the solution for the case of 

Bernoulli feedback. 
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Introducing 

M : = 1_(/i-2>-2132)-1-, 
2 1-p 

M; := ~[ES;- l-A.f:JJ(I-p) l· i=l,2, ... , 

we can rewrite (4.3.3) and (4.3.4) into 

M1 = A.f3Di-IM; + 1, 
i=I 

- k-I i 00 k+i-1 
Mk + 1 - A.(3 ~ p Mk -i + A.{3'2,p M;, k = 1,2, .... 

i =O i=l 

From ( 4.3.6), 
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(4.3.5) 

(4.3.6) 

Mk+2 = (A./3+p)Mk+I = ... = CA{:J+pf M1, k =0,1,.... (4.3.7) 

Substitution of (4.3.7) into (4.3.5) and (4.3.6) leads to a set of two linear equations 

with two unknowns M 1 and M 2 ; finally 

so 

- 1-p-A.(3p 
MI - 1-p -A.{3 , 

M2 = A.{3 l-p(A.{3+p) 
1-p -A./3 ' 

ES1 = /3 + 1_(/p> - 2{32 )-1- 1 -p -A.pP 
1-A./3/(l-p) 2 1-p 1-p-A.{3' 

(4.3.8) 

ESk = f3 + 1_(1)(2>-2f32)-1-A.{3l-p(A./3+p)(A./3+ )k-2, (439) 
l-A./3/(1-p) 2 P' 1-p l-p-A{J p .. 

k=2,3, .... 

Note that ESk~ l-A./3 I (l-p) for k~oo, which is the mean sojourn time per 

visit in the case of a negative exponential service time distribution. Also note that 

(cf. Takacs [14]) 
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ES= ~ni- 1 £S,· = /3 + ~(fP>-2/32 ) 1 . 
£../-' I -p -A/3 2 1-p -A/3 

(4.3. IO) 
i=I 

In a future paper ([2]) it will be shown that the results obtained in Section 3 for 

the deterministic feedback model can be extended to the generalized Bernoulli feed-

back model with exponential service times. 
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