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Waiting Times in Discrete-Time Cyclic-Service 
Systems 

ONNO J. BOXMA AND WIM P. GROENENDDK 

Abstract-This paper considers single-server, multiqueue systems with 
cyclic service in discrete time. Nonzero switch-over times between 
consecutive queues are assumed; the service strategies at the various 
queues may differ. A decomposition for the amount of work in such 
systems is obtained, leading to an exact expression for a weighted sum of 
the mean waiting times at the various queues. The present paper is the 
companion paper of Boxma and Groenendijk [1] where the continuous
time case is treated. 

I. INTRODUCTION 

I N local communication networks, a number of stations often 
compete for the use of a common transmission medium. 

Various polling schemes are employed to coordinate and 
control the access to the communication channel. The per
formance of such polling schemes can be analyzed by studying 
single-server, multiqueue queueing systems. For example, in a 
token ring local area network, the common transmission 
channel may be represented by the single server, and the 
workstations attached to the ring by the queues. The circula
tion of the token along the ring implies that the stations are 
polled in a cyclic order. The resulting single-server, multi
queue system with cyclic service and switch-over times 
between queues is the subject of the present paper. 

The main performance measure of interest in polling 
systems is the waiting time of messages at the stations. 
Unfortunately, explicit analytical results for even mean waiting 
times in cyclically served queueing systems are only available 
in some exceptional cases. The recent discovery of so-called 
pseudoconservation laws (Watson [13], Ferguson and 
Aminetzah [3]) is an important step forward. These laws are 
exact expressions for weighted sums of the mean waiting 
times. They can be readily used to obtain and/or test 
approximations for the mean waiting times at the various 
queues (cf. [2]). In [1], those pseudoconservation laws have 
been generalized by allowing a mixture of different service 
strategies at different queues. The proof of the resulting 
unified pseudoconservation law is based on a stochastic 
decomposition of the amount of work in the cyclic-service 
system. This decomposition provides a generalization of 
Kleinrock's work conservation principle [5] to models with 
switch-over times. The decomposition also allows a simple 
probabilistic interpretation of the various terms of the unified 
pseudoconservation law. 

All above-mentioned results are for continuous-time sys
tems. The main goal of the present paper is to obtain discrete
time analogs of the results of [l]-thus solving a problem 
posed by Takagi [12]. Our motivation is that discrete-time 
arrival and service processes naturally fit the generally time
synchronized configuration of practical communication net-
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works (while continuous-time cyclic-service results can be 
easily obtained from their discrete-time counterparts). Dis
crete-time polling systems have . been studied before, cf. 
Konheim and Meister [7], Swartz [10], Rubin and DeMoraes 
[9], and Takagi [11], but the bulk of the literature in this area 
is devoted to continuous-time systems. See Takagi [11] for an 
extensive survey of cyclic-service systems, and Takagi [12] 
for an update reflecting the rapid development and strong 
interest in this area of research. 

The organization of the rest of the paper is as follows. In 
Section II, we consider cyclic-service systems without switch
over times. For such systems the principle of work conserva
tion clearly holds. This principle naturally leads to a discrete
time version ofKleinrock's conservation law for mean waiting 
times. The extension of the work conservation principle to the 
case with switch-over times is made in Section ill. The main 
result of the paper, the discrete-time pseudoconservation 
law for mean waiting times, is proved in Section IV. In 
Section V the relation between the obtained discrete-time 
results and results for the continuous-time case is presented. 
Section VI contains some concluding remarks and topics for 
further research. We close this introductory section by 
presenting a more detailed model description and some basic 
results of general validity. 

Model Description 
We consider a discrete-time queueing system with N 

stations (queues) Qi. · · ·, QN where each station has an 
infinite buffer capacity to store waiting messages (customers). 
Each message consists of a number of packets, which are 
assumed to be of fixed length. Time is slotted with slot size 
equal to the transmission time of the data contained in a packet 
(the service time of a packet). We shall call the time interval 
[j, j + l] the jth slot. 

Arrival Process 
Let 

x;(j) : = number of messages arriving at station i 
in the jth slot, 

number of packets included in a message 
at station i. 

The message arrival process at each station is assumed to be 
independent of those at other stations. The stochastic processes 
{x;(j)} and { b;} are assumed to be mutually independent. The 
x;(j), j = l, 2, · · · are assumed to be independent, 
identically distributed random variables with z transform, first 
and second moment 

A;(Z) : = E[zx;U>], A.;:= E[x;(j)]. >..f> : = E[xf(j)]. 

(1.1) 

Note that we can view the arrival process at Q; as a Bernoulli 
arrival process with batch arrivals 

0090-6778/88/0200-0164$01.00 © 1988 IEEE 



BOXMA AND GROENENDIJK: DISCRETE-TIME CYCLIC-SERVICE SYSTEMS 

with G,{z) denoting the z transform of the size of a type i 
batch. 

Let 

A:=~ A;, }..<2l := E [ (~ x;(j))2] . (1.2) 

The z transform, first and second moment of the number of 
packets, b;, in a message at Q; are given by 

B;(Z): = E[zbi], (3;: = E[b;], {3~2l: = E[b;J. (1.3) 

Further, introduce 

NA· NA 
{3 • = ~ __!. f3· {3(2) • - ~ ...!. 13<2) 

• ~ l' .- .,i,,/ .• 
i=t }.. i=t}.. ' 

(1.4) 

Note that B,{0) = Pr {b; = O} = 0 by definition. The offered 
traffic at the ith station, p,, is defined as 

P;: = A;/3;, i= 1, 2, · · ·, N. (1.5) 

The total offered traffic p is defined as 

N 

P := ~p;. (1.6) 
i=l 

Service Strategy 

We assume that a single server S visits the N stations in the 
order of their indexes i = 1, 2, · · ·, N ("cyclic service"). For 
the service strategies at the queues there are various possibili
ties, which differ in the number of messages which may be 
served in a queue during a visit of server S to that queue. 
Assume that S visits Q;. When Q; is empty, S immediately 
begins to switch to Q;+ 1 (we disregard variants in which S does 
not switch if none of the queues contains messages). Other
wise, S acts as follows, depending on the service strategy at 
Q;. 

1) Exhaustive service (E): S serves type i messages until Q; 
is empty. 

2) Gated service (G): S serves exactly those type i 
messages present upon his arrival at Q; (a gate closes 
upon his arrival). 

3) I-limited service (1-L): S serves one type i message (the 
term nonexhaustive has often been used for this strategy; 
in [1] we have accordingly used NE instead of lL). 

4) Semiexhaustive service (SE): S continues serving type i 
messages until the number present is one less than the 
number present upon his arrival. 

In this paper, we will allow mixed cyclic-service strategies 
(e.g., semiexhaustive at Q1, exhaustive at Q2 and Q4, I-limited 
at Q3 , and gated at Q5, • • ·, QN). The order of service within 
each queue is first-come-first-served (FCFS). This assumption 
is not essential. In the sequel, the system is assumed to be in 
equilibrium. 

Remark I 
Consideration of mixed service strategies will enable us to 

prove results for various cyclic-service systems in a unified 
manner. However, it is also of practical interest to study 
mixed strategies. For example, according to the draft IEEE 
802.6 recommendation of the committee on metropolitan area 
networks, two or more token ring local area networks are to be 
interconnected by a backbone ring through bridges. It is often 
natural to assign a higher priority to the queues which 
represent the bridges than to the other queues at the ring. The 
service discipline at the ordinary queues usually is I-limited, 
but at the "bridge queues" one may consider another service 
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discipline to model the preferential treatment received by these 
queues. 

Switching Process 

A switch-over time is needed to switch from one station to 
the next. The switch-over times of the server between the ith 
and the (i + l)th station (measured in slots) are independent, 
identically distributed random variables with first moment S; 

and second moment s~2>. The first moments of the total switch
over time during a cycle of the server is given by 

N 

S := ~S; (1.7) 
i=l 

its second moment is given by s<2>. 
Some additional notation we shall be needing is the 

following: 

X;: the number of type i messages in the system at an 
arbitrary epoch; 

X j: the number of waiting type i messages in the system 
at an arbitrary epoch; 

W;: waiting time of a type i message; the waiting time is 
counted from the beginning of the slot following the 
one in which the message arrived. 

Remark 2 
It should be noted that, as customary in discrete-time 

queueing literature, an arbitrary epoch is supposed to be the 
instant just after the beginning of a slot. 

Below, we state a few general results for future reference. 
For any strictly cyclic-service system, we can define the cycle 
time C; for Q; as the time between two successive arrivals of S 
at Q;. It is easily seen that the mean cycle time for Q;, EC;, is 
independent of i; we will denote it by EC. The visit time V; of 
S for Q; is the time between the arrival of S at Q; and his 
subsequent departure from that queue. Balancing the flow of 
type i messages in and out of the system during a cycle shows 
that 

p;EC=EV;. 

Summing over i, we obtain 

This yields 

N 

pE C= ~ EV;=EC-s. 
i=l 

s 
EC=

l-p 

and hence, from (1.8) and (1.9) 

p;S 
EV;=--. 

l-p 

The intervisit time I; for Q; is defined as 

l;: = C;- V;. 

(1.8) 

(1.9) 

(1.10) 

(l.11) 

Now some remarks about the conditions for ergodicity of 
these cyclic-service systems are in order. Clearly, p < 1 is a 
necessary condition. For exhaustive and gated service, this 
condition is also sufficient. For a queue Q; with I-limited 
service, it can bf') seen that 

A;S 
--<1 
1-p 

(l.12) 

is an additional condition for the ergodicity of the cyclic-
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servu:c systi~m; 1ntlec~L the nk:all number of 
a should be !css than one. Nole Iha! 

Iha!., ('vcn if is 1mstahlc, snme of !he other queues arc 
s.tab!e. 

for a qut~uc with semicxhauslivc scrvke. we 
additional condition: 

~"·---<L 
!-

( l.l 3) 

This rclle.'ts the fact that, for scmicxhaustivc service, the 
mc<m number of type i arrivals during the intcrvisit time 11 

should be less than one, for visit limes the number of 
mc:ss•1gc·s is at most by one. 

"'""<'~:";;" thal we allow. the conditions ( l.12) 
and (I 13) should be to the stability condition p < l for 
those queues at which we have a l L or SE strategy. 

n. CoNSIS!<Vi\110N LA\~ FOR THE DISCRETE-TIME MIG!l 
MODEL 

In this s<.-ction, the switch-over times are taken to be zero; 
hence. the server works whenever there is \Vork in the system. 
and is idle when there is no work in the system. Therefore, the 
prindpie of work conservation holds: the total amount of work 
V. in the system does not depend on the order of 

and should hence the amount of work in a 
FCFS l queueing system. This obser-

vation us to derive a conservation law for mean 
waiting times in the system without switch-over 
times. We first the notion of the "corresponding" 
A.fiG/l model. This is a discrete-time queueing 
model, consisting of one queue and one server with a Bernoulli 
(Memoryless = l\.1) arrival process with batch arrivals. The 
arrival process is constnK·ted as follows: the arrival streams at 
all N' queues of the cyclic-service model are aggregated into a 

arrival stream. The batch of an the messages arriving in 
a is called a train. In :my slot, no train arrives with 
probability fi'~ Ai(O) and a train does arrive with probability 1 
- n '~ A;(O). An arbitrarily chost~n message in this train poses 
a service request whose .;: transform is the mixture ~·~ p.,1 
ll.)Bi(Z). 

The principle of work conservation now states that V0 

equals the amount of work in the corresponding ,\,f / G/ 1 
system, Therefore, J~, also equals V 111.eG i in distribution 

(2.l) 

According to Kobayashi and Konhcim [6]. the mean number 
of messages in the corresponding system at an arbitrary epoch 
is given by 

, r..213(2) (Xm-x2-X)i3 
E)r;._~fGl =---+ +p. (2.2) 

2(1 - p) 2(1- p) 

Note that the second term in the right-hand side disappears 
when the arrival process is Poisson. The mean number of 
messages in service is p: the residual service time of the 
message in service is (j(3l/2!3 + 1/2. Hence, · 

[ "' .. 2!'.3m . (t..m-r..2-f..)p] EV\t " 1::: ·---+ . .:i 
• f.j 20 - p) 2(1 - p) fJ 

Remark 3 

[ 
{3(2) 1] 

+p -+-
2!3 2 

(2.3) 

It should be observed that in the renewal process in discrete 
time with intercvent-time distribution with first moment f3 and 
second moment i3'2l, /3 12l/2p + 1/2 is the mean residual life 
time and !3'21/2{3 - 1/2 is the mean past life time. 

On the other hand, we can write EV .. as (ef. the definitiom> 
above Remark 2) 

EV,,= ± {3;EX;'+ ±Pi [l3l2
l +~] 

I ;,-J 2{3; 2 

.~· N [{3(2) l] 
= ~ p;EW;+ ~ p; 2~; +2 . (2,4) 

The second equality is based on Little's formula. 
From (2.1), (2.3), and (2.4), we obtain the following 

expression for a weighted sum of the mean message waiting 
times 

We propose to call (2.5) the MIG/1 conservation law in 
discrete time. We have found no references to this relation in 
the literature, although it seems highly likely that it has been 
derived before. 

Ill. A STOCHASTIC DECOMPOSITION RESULT 

In the sequel, switch-over times are incorporated in the 
systems under consideration. Because now the server may be 
idle (switching) although there is work in the system, 
Kleinrock's principle of work conservation is no longer valid. 
However, Theorem 1 below presents a natural modification of 
this work conservation principle. In the theorem, an arbitrary 
epoch is considered to be "in" a switching interval if it marks 
the beginning of a switching slot; the "corresponding" 
lvflGI 1 system is the system (without switch-over times) 
introduced in the preceding section. 

Theorem J 
Consider a single-server cyclic-service system with mixed 

service strategies as described in Section I. Suppose the system 
is ergodic and stationary. Then the amount of work V" in this 
system at an arbitrary epoch is distributed as the sum of the 
amount of work VM•G.ei in the ''corresponding" MIG/1 
system at an arbitrary epoch and the amount of work Y in the 
cyclic-service system at an arbitrary epoch in a switching 
interval. In other words, 

D 
Ve == V,\fiG!I + Y (3.1) 

D 
where = stands for equality in distribution. Furthermore, 
V.\f!G•1 and Y are independent. 

Proof: The proof is similar to that of Theorem l in [ l] 
for the continuous-time case, apart from the fact that trains are 
considered instead of customers. It is based on the following 
observations: 

l) fl'.\11011 is not affected when the service discipline is 
LCFS nonpreemptive instead of FCFS. 

2) V,, is also not affected when, instead of cyclic service, 
the following service strategy is enforced: all arriving trains 
are served LCFS, but service is interrupted precisely during 
the switch-over periods of the cyclic-service system. 

3) It now suffices to prove that, in distribution, VLCFS = 
Vk£'Jil + Y. The validity of this decompositio~ is a 
consequence of the LCFS discipline. Consider a train T that 
arrives during a switch-over period. It has to wait until trains 
that arrived after T, in the same switch-over period, have been 
served (and also trains arriving during their service, etc.). 
When, finally, T is taken into service, the only work present is 
t~e ~ork th~t T found upon his arrival. This latter quantity is 
d1stnbuted hke Y. Here, we use a discrete-time equivalent of 
the PASTA property [14], which we should like to call the 
BASTA property (Bernoulli arrivals see time averages); 
because the input of trains to the system is Bernoulli (and due 
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to the memoryless property of the underlying geometric 
distribution), the distribution of the amount of work at an 
arbitrary epoch is equal to the distribution of the amount of 
work immediately before an arrival epoch of a train. T 
initiates a busy period, which evolves exactly like a busy 
period in the "corresponding" MIG/I system. So during the 
busy period initiated by T, the amount of work present in the 
system is distributed as the sum of Y and the amount of work 
during a busy period of the MIG/I system. We refer to [l] for 
details. 

Remark 4 
Theorem 1 is the discrete-time analog of Theorem 1 of [l]. 

The latter theorem was motivated by, and its proof uses 
arguments suggested by, Fuhrmann and Cooper [4]. 

However, the reasoning in [4] is held for customers at 
departure epochs instead of work at arbitrary epochs. In [4], 
this leads to a similar decomposition as [ 1, Theorem 1] and 
(3 .1), for queue lengths, for a class of so-called vacation 
systems. For our purposes, the amount of unfinished work is 
the natural quantity. Decomposition (3 .1) holds for this 
quantity under very general assumptions (the restriction to 
cyclic service can in fact be relaxed). In the next section, 
decomposition (3.1) will be exploited to obtain a relation 
between the mean waiting times at the various queues of the 
cyclic-service system. 

Remark 5 
In Levy and Kleinrock [8], Y represents "the additional 

delay due to the presence of the starter.'' 

IV. THE PSEUDOCONSERVATION LAW 
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mean amount of work that arrived at all queues during the 
switching intervals after the last visit of the server to those 
queues. Note that s<2l/2s - 112 represents the mean total past 
switching time from the departure of the server from an 
arbitrary queue to the present random switching epoch. This 
interpretation explains why only s and s(2) occur, and no 
moments of individual switch-over times. The second term 
reflects the interaction between queues; it represents the mean 
amount of work that arrived at queues, after the last visit of S, 
during the subsequent service periods of other queues. Its most 
natural representation is perhaps [cf.(1.10)] 

Finally, Sf= I EM(I) represents the mean amount of work that 
arrived at queue~ during the last service periods of those 
queues, but that was not handled by Sat those service periods. 
From (4.2) and (4.4) 

N /..(3(2) (/.. (2) _'A 2- 'A)/3 s<2l 1 '°' pEW. p+ p+p --- P ~ ' ' 2(1-p) 2/..(1-p) 2s 2 

S ( N ) N + p2- 2: PI + 2: EM~I). 
2(1-p) i=l i=l 

(4.5) 

Note that the form of formula (4.5) is still independent of the 
service strategies at the various queues; only the EMPl depend 
on the choice of service strategies. 

As a consequence of Theorem l 

EVc=EVM1011 +EY 

and hence, cf. (2.3) and (2.4), 

(4.1) The EM;' 1> are readily found for an exhaustive or gated 

N ')\(3(2) (')\(2)_')\2-/..){3 '°' p·EW,·= p+ p+EY. (4.2) ~ I 2(1 - p) 2 A (1 - p) 

We now derive an expression for EY, thus obtaining a very 
general pseudoconservation law for the weighted sum of the 
mean waiting times at the various queues. Let EY; denote the 
amount of work in the cyclic-service system at an arbitrary 
switching epoch during a switch-over from Q; to Q;+ I· 
Obviously, EY = 2:;': 1 (s;ls)EY;. As in the continuous-time 
case, EY; is composed of three terms: 

1) EM?>: the mean amount of work in Q; at a departure 
epoch of the server from Q;. 

2) EM)2l: the mean amount of work in the rest of the system 
at a departure epoch of S from Q;. 

3) p{s)2lf2s; - 112}: the amount of_ wo:k t?at arrived in 
the system during the past part of the sw1tchmg mterval under 
consideration (cf. also Remark 3). 

Again, as in the continuous-time case, we have 

N S· 
+ 2: ..!. 2: EM)1l (4.3) 

i=l S Ni 

and hence for EY 

EY=p (
5(2) 1) S ( N ) N --- + - p2- 2: PT + 2: EMJ1). 
2s 2 2(1 p) i=I j=t 

(4.4) 

The first term in the right-hand side of (4.4) represents the 

strategy at Q;: 
Q; exhaustive: 

EM<1l=O. 
I 

Q; gated [cf.(1.10)]: 

s 
EMOl=p;EV;=pf--. 

l 1-p 

(4.6) 

(4.7) 

For the I-limited strategy somewhat more work is required. 
At a departure epoch of S from Q;, S has just completed one 
service of a message with probability A.;s/(1 - p), and no 
service with probability 1 - A.;sl(l - p). Hence, with ET; the 
amount of work left behind at a departure epoch of a type i 
message 

'A·s 
EMOl=-1 - ET;. 

l 1-p 
(4.8) 

To determine ET;, we calculate the mean number of packets 
left behind by a departing type i message. Let W,{z) be the z 
transform for the waiting time of an arbitrarily chosen type i 
message (the tagged message); EW; = W/ll(l). Note that the 
messages left behind at station Q; when the service of the 
tagged message has been completed are those which arrived 
during the sojourn time of the tagged message, and those 
which arrived in the same slot as the tagged message but were 
placed behind the tagged message (the sojourn time is counted 
from the beginning of the slot next to the one in which the 
arrival took place). The z transform Q;(z) for the number of 
messages who arrived during the sojourn time of the tagged 
message is given by 

Qi(Z) = Wi(Ai(Z))B;(A;(Z)). (4.9) 

Q;(z), the z transform for the number of messages which 
arrived in the same slot as the tagged message, but were placed 
behind the tagged message, is given by the backward 



168 JEE!:' TRANSACTIONS ON COMMUNICATIONS, VOL. 36, NO. 2. FEBRUARY 1988 

recurrer1<.·e tilne 1ran~form 

l ·-
;::;:::. ~-"·· .. ----··- IO) 

! -z) 

These numbers of messages an~ not im.l<.'.'pc:nd<ent. but we can 
still determine the first moment of the sum. i.e., 

where 

l) 

Q~11(l)= 'A,(EW,+ 

-A, 
Qfi)(i)=---~. 

' 2)1., 

(4. J 1) 

(4.12) 

(4.13) 

And so ET,, the mean amount of work left behind in Q, at a 
departure epoch of a type i message. equals 

1.m-x 
ET,=p1EiV,+p,{3;+-' --' /3,. 

2A., 

From (4.8) and (4.14). we obtain the following. 
For Q, 1-limited. 

(4.14) 

!2) 
, A.;s , s p,s A; - X, 

EM1";--p1E'W;+p~--+-----. (4.15) 
1 I -p ' I - p l - p 2X; 

Finallv, we consider semiexhaustive service. With the 
above d~finition of ET1, (4.14) again holds. Denote by U; the 
number of messages in Q, at an arrival epoch of Sat Q;. Due to 
the structure of the SE strategy. we can also write 

-h;J 
2X1 

{3;. (4.16) 

Note that the second term in the right-hand side represents the 
1mount of work left behind by a departing message in a 
jiscrete-time 111/G/l queue with A,{z) and B;(Z), respectively, 
:he z transform of the number of message arrivals per slot and 
the number of packets per message; the first three terms 
between square brackets represent the mean number of 
messages that have arrived during the sojourn time of the 
departing message (cf. (2.2) and Little's formula), and the 
fourth term is the mean number of messages that have arrived 
in the same slot as this message, but were placed behind it, cf. 
(4.l3). Subsequently, express El'tf)ll in the first term in the 
right-hand side of (4.16) · 

EM:n = /3;E [max (0, U,- 1)] 

=t3,E[U,-11u, ~I] Pr {U, ~ 1}. (4.17) 

Because the mean visit time of Sat Q, during a cycle, when 
positive, equals {3/(1 - p) (the mean busy period of a 
discrete-time MI Gll system with mean number of arrivals 
per slot /\1 and mean number of packets per message /31), we 
have 

. p,S tJ; 
E~';=--=Pr { Ui ~ l} --

1-p l -p; 
(4.18) 

so 

} A;S(l -p1) 
Pr{U1 ~1= . 

1-p 
(4.19) 

Combining (4.14), (4.16). (4.17), and (4.19), 

EM 01 

p,EW,+p,{3;= I 

J -p; 
A;S--

1-p 

[ 
A. 2{3(.2) A.1.2i_A.2-I-; ] 

+ I l + ; l ' Pt+P; (3;. 
2(1-p;) 2A;(l-p;) 

And so we have 

(IJ_ A.;s(l-p;) EW- A.;s(l-p;) 
EM, -P; l I l • -p -p 

[ 

}...f.1(2) (A.(2)_t,_2-A.·) ] 
1/J i l l l 

. ~+ ~~ 
2(1 - p;) 2/..;(1 - P;) 

(4.20) 

(4.21) 

Combining (4.5) and the four expressions for EMf1> in the 
cases of E, G, 1 L and SE service strategy at Q1, respectively, 
we have proved our main result. 

Theorem 2 
Consider an ergodic cyclic-service system with one server 

and mixed service strategies as described in Section I. Denote 
by 

e: the group of E(xhaustive) queues, 
g: the group of G(ated) queues, 
ll: the group of lL(imited) queues, and 
se: the group of S(emi) E(xhaustive) queues. 

Then, 

iEe 

[ 
A;S ] l--

1-p 
EW; 

iEg iEI/ 

[ 
A;S(l - p;) J 

+ l; Pt 1 - l _ E W; 
iEse p 

+-s- ~ 2_ s ~ A2(3<2l . 
(l-p) L.J P; 2(l- )L.J; ;P1 

iEg,11 P iEse 

s t..<2)_ X; 
+-- l; -' --p; 

(J-p) iEll 2A; 

- s ~ (/.. (2) _ }..2-A.·)f3·p·. 
2(1 - ) L.J l 1 I I I 

p 1Ese 

Remark 6 

(4.22) 

The case of N = 1 queue yields expressions for mean 
waiting times in discrete-time MIG/I queues with some form 
of server vacations. In the completely symmetric case with all 
queues having identical characteristics and the same exhaus
tive (gated, 1-limited) service strategy, formula (4.22) reduces 
to formula (3.63b) [respectively, (5.23), (6.60)] of [11]. 

Remark 7 
If we assume Poisson arrivals in (4.22) (and hence take /'-)2) 
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= A.7 + A;), we obtain the following relation for the weighted 
sum of the mean waiting times. 

~ [ ~s ] £.J P;EW;+ ~ p;EW;+ ~ P; 1--- EW; 
iEe iEg iEll 1- p 

[ 'A·s(l -p·)] 
+ ~ P; 1 - ' _ ' EW; 

iEse 1 P 

A.(3<2> s<2> 1 s 
= p+p---p+---

2(1-p) 2s 2 2(1-p) 

. [p 2 -~P7] +~ ~ P7 
Vi (1 p) iEg,1/ 

s ~ 'A.2(3<2> s ~ 'A 
2(1-p) _£.J i ; P;+ 2(l - ) £.J ;p;. (4.23) 

1Ese P iEI/ 

V. RELATION TO THE CONTINUOUS-TIME CASE 

In the present paper, we have expressed all quantities 
involved, including waiting times, in slots with the slot length 
equal to the time unit. If, instead, we assume a slot to be of 
length .6. we are able, by taking the limit A -> 0, to pass the 
results over to continuous time. 

First, we express the arrival process in messages per time 
unit. Recall that the z transform of the number of message 
arrivals at Q; in a slot is given by A;(z), with first and second 
moment A; and A.j2>, respectively. Denote by A;(Z) the number 
of message arrivals at Q; per time unit. Then 

A;(Z)= [A;(Z)] 1/.6. (5.1) 

(1/.6. is the number of slots per time unit). From (5.1), we find 

- A.i 
A:=-

' A' 
f..<2> ( ) -c2> i 1 1 2 A.. =-+- --1 A .. 

I A A A I 
(5.2) 

For the service (switching) process let ff;, /3j2>(s;, sj2>) denote 
the first and second moment, respectively, of the service 
(switching) time expressed in time units. It may be easily seen 
that 

Si=S;A, g~2> = s~2l A 2. 
I I 

Similarly, cf. (1.2), (1.4), 

- ~ - 'A 'A:= £.JA.;=-, 
i=I A 

N 

xc2> := >;2+ ~ <X:Z'-5\7) 
i=l 

hence, 

furthermore, 

- N )\i -
fJ := ~ -;:;-{Ji={JA, 

i=I 'A 

For the mean waiting time in time units EW;, we have 

EWi=EW;A. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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(4.22) and (5.2)-(5.6): 

~ - 1 ~ - 1 ~ [ 5\is ] £.J p;EWi-+ £.J p;EW; -+ £.J Pi 1---
;ee A iEg A iEI/ 1-p 

Ew.- 1 ~ [l 5\i§(l - Pi)] _ 1 · ; -+ £.J P; - EW;-
A iEse 1-p A 

5\{JC2) (5\C2l-J\2-5\)/f 1 
= p -+ p-

2(1-p) A 25\(l-p) A 

s<2> 1 1 s [ J 
+pu".;i-2p+2(1-p) p2-~P7 A 

§ 1 - 1 +-- ~ p~ - s ~ )\2(J(2) 
(1-p) ;f:.11 ' A 2(1-p) ite ; ; P; ';1 

s 5\~2'-(l-A)X~-5\. 1 
""' l l l +-- £.J P;7 

(1-p) iEI/ 25\i .<.l 

§ ~ 5\ (2) - - 2 - - . -. • 2_ 
2(1- ) .£.J ( i A.; A.,){3,p, A. • 

P 1Ese 

(5.7) 

In (5.7), we can take the limit for .6. -> 0 by multiplying the 
left- and right-hand side with .6. and substituting .6. = 0. If we 
do so, we obtain 

~ - ~ - ~ [ 5\;s J -£.J p;EWi+ £.J PiEW;+ £.J Pi 1---=- EWi 
iEe iEg iEI/ 1 p 

~ [ 5\is(I-pi) J _ 
+£.JPi 1- EWi 

iEse 1-p 

5\(3<2) (5\ (2)_ 5\ 2 - 5\)/3 §(2) 
= p+--------p+p 2s-

2(1-p) 2A.(1-p) 

+ 2(1 ~p) [p2-~ P7] 

§ ~ 2 s ~ -25(2) 
+ (l- ) .£.J Pi 20 _ ) £.J A.iµi Pi 

P 1Eg,ll P 1Ese 

§ ~ )\~2)_5\7-5\i 
+-- £.J - Pi 

(1-p) iEll 2A; 

(5.8) 

At this point, some remarks are in order. To obtain formula 
(5.8), it is not necessary to specify precisely how the above 
limit .6. -> 0 is taken. However, the structure of the resulting 
arrival process does depend on it. Let us take a closer look at 
the arrival process. As has been noted in Section I, the 
message arrival process at Q; is a Bernoulli process with batch 
arrivals. We have a Bernoulli arrival process in the sense that 

Pr{ type i batch arrives in a slot } = 1 -A;(O) 

Pr{ type i batch does not arrive in a slot } =A;(O). 

Of course p; = A.;/3; = J\;/J;. We can now express (4.22) in With respect to the batch arrivals, let G;(Z) denote the z 
time units. With the slot length equal to .6., we obtain from transform of the size of a type i batch. Then, we can write 
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z)"" 

and hence. wit.h (!U 

Let 

'\• ·I! ~ -

t· ! -

(5.10) 

l -A,(0) 

1 1 denotes intensity of type i batches. Note that -y, is 
also Now. if in (5.10) we let .:l -> 0 in such 
a way that,,, constant. the z transform for the number 
of message arrivals per time unit at Q1 becomes 

(5. l l) 

which is the z transform of a compound Poisson process. If we 
take G,(Z) "" z (single arrivals), we obtain the z transform of 
the "'ordinarv" Poisson process; in this case ;\_\2l = ;\. 2 + 5:.,, 
and (5.8) reduces to the pseudoconservation la~· in con'tinuous 
time, formula (3.22), derived in [l j: 

""" - """ - """ '[ 'f..;& ] -Li p;EJl~+ Li p,EW,+ _,£.J_ P; I--:- EJ·fli 
1E• iEg 1Ell l p 

" [ >..,s(l-p,) J -+ ,£.J p, 1- EW; 
1E" l -p 

}.(312l §!2) s [ J 
=-- p+p -+-- P2 - ~, P7 20 - p) 2S 2( 1 - p) • 

§ 
+- ]_; 

(l - 1Eg,I! 

(5.12) 

Formula (5 .8) presents a slight extension to this result, in that 
the message arrival pro..:ess at Q, is allowed to be a Poisson 
process with batch arrivals. 

VI. D!SCl!SS!ON 

In this paper, we have derived a stochastic decomposition 
for the amount of work in discrete-time cydic-service systems 
with mixed service strategies. This decomposition is analo
gous to one that has recently been proved in [ l] for the 
continuous-time case. The work decomposition result is used 
to derive an exact expression for a weighted sum of mean 
waiting times-a so-called '"pseudoconservation law." This 
pseudoconservation law. stated in Theorem 2. forms a natural 
extension of the M/G/l conservation law in discrete time as 
stated in fonnula (2.5). Its derivation clearly exposes the 
meaning of all terms. Theorem 2 presents a remarkably simple 
result. in view of the fact that expressions for the individual 
mean waiting times (in continuous- or discrete-time) are in 
general either not known or very complicated. 

In 12], it has been shown. for the I-limited case, how 
pseudoconservation laws can be used to obtain simple, yet 
quite accurate, approximations for individual mean waiting 
times. In a future report, this approximation will be extended 
to more general cyclic-service models with mixed service 
strategies. 

Finally. we should like to stress the fact that Theorem 1 and 
decomposition (4.5) can be proved for more general models 

tlum the one under consideration. In particular, other service 
mav also be included-and for each extension the 
is to determine :'.£;°", 1 El'vf) 1l, the sum of the mean 

amounts of work left behind by the server in the queues. 
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