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This paper is devoted to two types of stochastic scheduling problems, one involving a single machine and the other involving a 
flow shop consisting of an arbitrary number of machines. In both problem types, all jobs to be processed have due dates, and 
the objective is to find a job sequence that minimizes the expected weighted number of tardy jobs. For the single-machine 
case, sufficient optimality conditions for job sequences are derived for various choices of due date and processing time 
distributions. For the case of a flow shop with an arbitrary number of machines and identically distributed due dates for all 
jobs, we prove the following intuitively appealing results: (i) when all jobs have the same processing time distributions, the 
expected weighted number of tardy jobs is minimized by sequencing the jobs in decreasing order of the weights, (ii) when all 
weights are equal, the jobs should be sequenced according to an increasing stochastic ordering of the processing time 
distributions. 

stochastic sequencing • tardiness • flow shop 

1. Introduction 

This paper is devoted to two types of stochastic scheduling problems, one involving a single machine 
and the other involving a flow shop consisting of an arbitrary number of machines. In both cases the 
general problem description is as follows. A set of n jobs, J = (1, 2, ... , n), has to be processed. All jobs 
are available at time zero. All jobs have stochastic due dates and deterministic non-negative weights. The 
objective is to obtain a job sequence S = (j1, ) 2 , ••• , Jn), a permutation of J, that minimizes the expected 
weighted number of tardy jobs (i.e., jobs that are not completed before their due date). Which conditions 
(with regard to weights, processing times and due dates) can be formulated that guarantee that S is an 
optimal job sequence? 

Let us first consider the single-machine case in more detail. The processing times X; of job i, 
i = 1, 2, ... , n, are independent, not necessarily identically distributed, stochastic variables. The due dates 
D; of job i, i = 1, 2, ... , n, are independent, not necessarily identically distributed, stochastic variables. The 
due dates are independent of the processing times. Job i has weight w; ~ 0. Let C; represent the 
completion time of job i on the machine. When C; > D;, the decision maker incurs a penalty W; for job i; 
otherwise the decision maker incurs no penalty for job i. We define U;(S) == 1 when C; > D;, and 
U;(S) •= 0 otherwise. In this single-machine case the objective reduces to 

min E(N(S)] == E[i~l w;E(U;(S))l (1.1) 

In Section 2 we search for sufficient conditions for S to be an optimal job sequence, for various choices of 
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distributions of due dates and processing times. For some of these cases we derive simple criteria which 
completely determine the optimal job sequence, whereas in other cases we are only able to formulate rather 
complicated and strong sufficient conditions. In the latter cases we also discuss the question whether 
simple criteria may be expected to hold. In all cases studied, job preemption is not allowed. 

Subsequently we consider the case of a flow shop with an arbitrary number m of machines. Each job of 
J has to be processed on each machine. The job order is the same for all machines. The processing times 
X;,J for job i on machine j, i = 1, ... , n, j = 1, ... , m, are independent stochastic variables. The due dates 
D; of job i, i = 1, 2, ... , n, are independent, identically distributed stochastic variables. The due dates are 
independent of the processing times. Job i has weight w i· Let C;,m represent the completion time of job i 
on the last machine. When C;,m > D;, the decision maker incurs a penalty w; for job i; otherwise the 
decision maker incurs no penalty for job i. We define U;(S) := 1 when C;,m > D;, and U;(S) := 0 otherwise. 
In this flow-shop case the objective again reduces to (1.1). The usual assumptions for job sequencing 
problems are made, including non-preemption of jobs and unlimited storage between machines. For this 
case we prove the following intuitively appealing results: (i) when all jobs have the same processing time 
distributions (which may vary from machine to machine), the expected weighted number of tardy jobs is 
minimized by sequencing the jobs in decreasing order of weights, (ii) when all weights are equal, the jobs 
should be sequenced according to an increasing stochastic ordering of the processing time distributions. 

Notes on related literature 
Karp [4) has studied the complexity of the deterministic version of the single-machine tardiness 

problem. He has shown that the problem of minimizing the weighted number of tardy jobs is binary 
NP-hard. Recently several results have appeared in the literature for stochastic versions of single-machine 
problems with tardiness. 

Balut [l] studied the case in which the job processing times are independent, normally distributed 
stochastic variables and the objective is to find a job sequence which minimizes the number of tardy jobs 
(or maximizes the number of early jobs) with probability not smaller than a given constant. The due dates 
are constant, and the jobs are numbered in ascending due date order. Balut developed an algorithm that he 
claimed. determines the optimal job sequence. In this sequence the early jobs are sequenced in ascending 
due date order, whereas the tardy jobs are sequenced in any order. However, Kise and Ibaraki [6] 
presented a counterexample involving three jobs for which Balut's algorithm fails to provide the optimal 
job sequence. They then proved that the problem Balut formulated is NP-complete, implying that an 
efficient and exact algorithm for this problem probably does not exist. Kise, Shiomi, Uno and Chao [7] 
analyzed almost the same problem as Balut, but to avoid an NP-complete problem, they assumed m; < m1 
implies v? ~ vJ and w; ~ w1. Herem;, v? and w; are the mean, variance and weight for job i. The objective 
is to determine the job sequence which minimizes the weighted number of tardy jobs, subject to the 
constraint that some specified jobs must not be tardy. By modifying Balut's algorithm, Kise et al. 
developed a straightforward algorithm to determine the optimal job sequence. 

Katoh and Ibaraki [5] also considered a problem similar to Balut's, except that all jobs have a common 
due date d. The objective is to find a job sequence which minimizes the number of tardy jobs with 
probability not smaller than a given constant which is between 0.5 and 1. The authors developed an 
algorithm to find the optimal sequence, which can be computed in polynomial time. 

Pinedo [8] analysed a single-machine problem in which the job processing times are independent, 
negative exponentially distributed stochastic variables with rate k;. Each job has a weight w; and a 
stochastic due date; each due date has the same probability distribution (hence the expected due dates are 
identical for all jobs). Pinedo proves that processing the jobs in decreasing order of k;w; minimizes the 
expected weighted number of tardy jobs. Pinedo's rule is also optimal when the jobs have a common due 
date d, which may be constant or random. 

Glazebrook [3] has derived several results for the single-machine case with due dates, in which job 
preemption is allowed. 

To our knowledge, no results have yet appeared in the literature for the model of Section 3, viz. the flow 
shop where the objective is to minimize the expected weighted (or unweighted) number of tardy jobs. 
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2. The single-machine case 

Consider the single-machine case described in Section 1. We first discuss a simple special case, to give 
an indication of the complications that can arise. 

Let J consist of n = 2 jobs, and let the processing times X1, X2 be negative exponentially distributed 
with mean 1. Let the due dates D1, D 2 be constants d 1, d 2 , respectively. Compare the two sequences 
S = (1, 2) and S* = (2, 1) w.r.t. expected weighted number of tardy jobs. Then, 

E[N(S)] - E[N(S*)] 

=w 1 Pr{X1 >di} +w 2 Pr{X1 +X2 >d2 }-w1 Pr{X2 +X1 >di}-w 2 Pr{X2 >d2 } 

(2.1) 

To simplify matters further, take w1 = w2 . Then, 

(2.2) 

Job 1 should be processed before job 2 iff the r.h.s. of (2.2) is non-positive. The condition d1 e -d, ~ d 2e -d2 

cannot be further simplified without additional information concerning d 1 and d 2 . Indeed, the function 
g(z) := ze-z is increasing on [O, 1) and decreasing on (1, oo); so S is the optimal sequence in the case 
d2 ~d1 ~1, but also in the opposite case d 2 ~ d1 ~ 1. The first case shows that it is possible that, if two 
jobs have identical weights and processing time distributions, the job with the smaller due date should be 
processed last. 

Thus warned, let us turn to the general case (different weights, different due date distributions, different 
processing time distributions). In the following D/ ·) and Fj( ·) shall denote the due date distribution and 
job processing time distribution for job j. We compare E[N(S)] for job sequence S = 

(j1, ..• , js, i, u, js+ 3 ,. •. , jn) with E[N(S*)] for job sequence S* = (j1 , ... , js, u, i, j 5 +3 ,. • ., jn); so we 
discuss the effect of interchanging the neighbouring jobs i and u, presently in positions s + 1 and s + 2. 
Since all job processing times are independent, it is clear that the expected weighted numbers of tardy jobs 
in the collections {j1, ... ,js} and Us+ 3 , •.. ,jn} are the same for Sand S*. Therefore we need only 
consider the expected weighted number of tardy jobs in the collection { i, u }. Hence, with C;* and Cu* the 
completion times of job i and job u, respectively, for S *, 

E[N(S)] - E[N(S*)] 

Introducing 

= w; Pr{ C; > D;} + w u Pr{ Cu> Du} - W; Pr{ C/ > D;} - w u Pr{ Cu*> Du} 

=w; Pr{Xj, + ··· +X), +X;>D;} +wu Pr{Xh + ·· · +X1, +X;+Xu>Du} 

F(t):=Fj,(t)* ··· *FJ,(t), t~O, 

we observe that job i should be processed before job u iff 

E[N(S*)] - E[N(S)] =w;j~0dD;(t)[F(t) * F;(t)-F(t) * F;(t) * Fu(t)] 

-wuj~0dDu(t)[F(t) * Fu(t)-F(t) * F;(t) * Fu{t)] ~O. (2.4) 

Formula (2.4) is the starting-point for our further investigations. Unfortunately, it is too general to allow 
useful statements. We investigate two important special cases in more detail, viz., I: all due dates are i.i.d. 
(independent, identically distributed), and II: all job processing times are i.i.d. 
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I: All due dates are i.i.d. 
Assume that D;(t) = D(t), i = 1, 2, ... , n. Formula (2.4) reduces to 

E(N(S*)] - E[N(S)] 

= f 00 dD(t)[F(t)* { W;F';(t) - W;F';(t)* Fu(t) - wuFu(t) + WuF;(t)* Fu(t) }] ;?; 0. (2.5) 
t=O 

We consider four subcases which can be analyzed completely. 

la: X; - exp(X;) 
Pinedo [8] has studied Case I under the additional assumption that all processing times are negative 

exponentially distributed with mean l/A;. Formula (2.5) then implies that 

E[N(S*)]-E[N(S)] ;?;0 iff A;W;~AUWU. (2.6) 

As this condition is transitive, it follows that the jobs have to be sequenced in decreasing order of X1w1 [8]. 

lb: D; - exp(d) 
Consider a subcase which in a sense is complementary to la: all due dates have the same negative 

exponential distribution, with mean 1/ d, but the processing times have arbitrary distributions F';( ·) with 
Laplace-Stieltjes transforms (LST) f;(s) == f1~ 0 e-st dF;(t). Formula (2.5) now yields 

E(N(S*)] - E(N(S)] ~ 0 iff w;f;(d)(l - fu(d))-wufu(d)(l - f;(d));?; 0, 

so 

E[N(S*)] - E[N(S)];?; 0 iff w;/[l/f;(d) -1];?; wuf[l/fu(d) -1]. (2.7) 

As this condition is transitive, we can formulate: 

Theorem 2.1. In the case of i.i.d. due dates with a negative exponential distribution with mean l/d, the 
expected weighted number of tardy jobs is minimized when the jobs are sequenced in decreasing order of 
w/[l/fj(d) - l]. 

Remark 2.1. The sequencing condition in Theorem 2.1 reduces to the one in (2.6) if the processing times 
are negative exponentially distributed with mean 1/A;. 

le: F;(-)=F(·), i=l,2, ... ,n 
When due dates and processing times are i.i.d. (with distributions D( ·) and F( · ), respectively), then 

(2.5) reduces to 

E[N(S*)] - E[N(S)] = ( W; -wu) £~0dD(t)[F(s+l)*(t)- p(s+ 2l'"(t)] ;;:., 0. (2.8) 

Hence: 

Theorem 2.2. In the case of i.i.d. due dates and i.i.d. processing times, the expected weighted number of 
tardy jobs is minimized by sequencing the jobs in decreasing order of weights. · 

In Subcases la, lb and le, simple criteria are obtained which completely determine the optimal job 
sequence. The following subcase leads to a stronger ordering relation. 

Id: w;=w, i=l, 2, ... ,n 
When all weights are identical, (2.5) reduces to 

E[N(S*)] - E[N(S)] = w £~0dD(t)[F(t) * (F;(t) - Fu(t))];;:., 0. (2.9) 
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Introduce the stochastic ordering relation F;.;;; si Fu, denoting 

F; ( t ) 3- Fu ( t ) for all t ? 0. 

August 1986 

(2.10) 

See Stoyan [9] for a discussion of this ordering, including some examples. The following theorem 
immediately follows from (2.9): 

Theorem 2.3. Assume that all due dates are i.i.d. and all weights are identical. If the jobs can be sequenced 
according to an increasing stochastic ordering, then this yields the minimal expected weighted number of tardy 
jobs. 

Remark 2.2. Theorem 2.3 is intuitively clear: when all jobs have the same weights and due date 
distributions, the 'smallest' jobs should be processed first. 

The stochastic ordering condition (2.10) is obviously of a different character than Condition (2.7). 
Contrary to Condition (2.7), Condition (2.10) need not always be fulfilled for (at least) one of the n! 
possible permutations of J. Unfortunately, Condition (2.10) cannot be weakened to the condition 

(2.11) 

as the following trivial example with n = 2 jobs shows. Let wi = w 2 and Di - D2 - exp(l); hence both 
Subcases lb and Id apply. Let fi(s) = exp(-s) and f 2 (s) = l/[1 + ,Bs], s 3- 0: X1 is constant (equal to 
one), and X2 is negative exponentially distributed with mean ,B. Condition (2.10) is not fulfilled. 
Application of the simple Condition (2.7) shows that the optimal sequence is (1, 2) iff E[Xul = .B 3- e - 1, 
which implies that Condition (2.11) cannot be used to determine which of the two orderings is optimal. 

Remark 2.3. The foregoing derivations for Case I reveal that, in fact, we do not need the independence of 
the due dates; it suffices to assume that the stochastic variables Di, ... , Dn are exchangeable, i.e., 
Dii' ... , D1,, have the same joint distribution for all sequences Ui, ... , Jn) ( cf. [8]). 

II: Al/job processing times are i.i.d. 
Assume that F; ( t) = F( t ), i = 1, 2, ... , n. Formula (2.4) reduces to 

E[N(S* )] - E[N(S)] = J~)F(s+i>*(t) - F(s+ 2)*(t)] [ W; dD;(t) - Wu dDu(t)] 3- 0. (2.12) 

One manageable subcase has been discussed in le (all due dates i.i.d.). However, as already suggested by 
the simple example of n = 2 jobs in the beginning of this section, it is very hard to make general ordering 
statements when due dates are not identically distributed. We consider two subcases, Ila and lib, for 
which some partial results can be obtained. 

Ila: Constant due dates; X; - exp(/...) 
When all due dates are constants, viz., D; = d;, etc., and all processing times are negative exponentially 

distributed with mean 1/.\, then (2.12) reduces to (exploit the relation between the negative exponential 
distribution and the Poisson process) 

( 'd )s+i -A.d, ('d )s+I -A.d" 
W;I\; e 3-Wul\u e, 

and, with 

j=l,2, ... ,n, 

(2.13) 

(for s = O, compare with (2.1)). This inequality clearly shows the influence of the position of job i (position 
s + 1). Condition (2.13) should hold for neighbouring jobs i and u in all possible positions, which leads to 
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the following two sets of transitive conditions: 

{ Y;~Y .. , 
w,.yie-Yi ~ WuYue-Yu, 

(2.14a) 

(2.14b) 

In other words, don't interchange two neighbouring jobs i and u if (2.14a) holds, and neither if (2.14b) 
holds; and if (2.14a) holds for all i, u, then it determines an optimal sequence (similarly for (2.14b)). 

Note that an optimal sequence need not satisfy (2.14a) or (2.14b); these conditions are sufficient, not 
necessary. Also note that, in the case of identical due dates, (2.14a) and (2.14b) reduce to the criterion 
W;~W 11 • 

llb: D; - exp(d;) 
Assume that the due date D; is negative exponentially distributed with mean l/d;, i = 1, 2, ... , n, and 

denote the LST of the processing time distribution by/(·). Formula (2.12) reduces to 

wJs+l(d;)(l - /(d;)) ~ wuf'+ 1(du)(l - /(du)). 

Similarly as in Ila we obtain two sets of transitive conditions for job i to be processed before job u, 

{
/(d;) ~f(d,,), 
wJ(d;)(l - f(d;)) ~ wJ(d11 )(l - f(d..)), 

(2.15a) 

{
/(d;) ::;,.f(d,,), 

wJn- 1(d;)(l - f(d;)) ~ wJ"- 1{d..)(1 - f(d..)). 
(2.15b) 

Note that /(d;) ~ f(d 11 ) iff d; ~ d 11 • 

3. The flow-shop case 

We now turn to the case of a flow shop with m machines, as described in Section 1. Each job of a set J 
of n jobs has to be processed on all machines. The objective again is to minimize E[N(S)], the expected 
weighted number of tardy jobs. We shall prove flow shop generalizations of results for Subcases le and Id 
of Section 2. First consider a generalization of le: 

(i) All due dates are i.i.d., the job processing times X;,j of job i on machine j, i = 1, ... , n, j = 1, ... , m, 
are independent, and processing times of different jobs on the same machine are identically distributed. 

We shall prove the following generalization of Theorem 2.2: 

Theorem 3.1. In order to minimize the expected weighted number of tardy jobs in case (i), the jobs should be 
sequenced in decreasing order of their weights. 

Proof. We compare E[N(S)] and E[N(S*)] for the job sequences S=(j1, ••. ,j,, i, u, },+ 3 , ••• ,j,,) and 
S* = (}1, ••. , },, u, i, },+ 3,. .. , },,); so we discuss the effect of interchanging the neighbouring jobs i and 
u, presently in positions s + 1 and s + 2. Since all job processing times are independent, and the processing 
times of different jobs on the same machine are identically distributed, interchanging jobs i and u will 
only affect the expected weighted number of tardy jobs in the collection of two jobs {i, u }. Hence, with 
Ctm and Cu~m the completion times of job i and job u, respectively, on machine m for the job sequence 
S*, 

E[N(S)] - E[N(S*)] 

= W; Pr{ ci,m > D;} +Wu Pr{ cu,m >Du} - W; Pr{ C;~m > D;} - Wu Pr{ Cu~m >Du}. (3.1) 
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Since all due dates are identically distributed, with distribution D( · ), 

E[N(S)] - E[N(S*)] 

= /~odD(t)[ W; Pr{ ci,m > t} +Wu Pr{ cu,m > t} - W; Pr{ ci;m > t} - w,, Pr{ cu:m > t}]. 

(3.2) 

In order to understand the structure of terms like Pr{ C;,m > t }, we first consider the case m = 2. Then 
C;,m = C;,2 is the maximum of (s + 1) sums of (s + 2) stochastic variables, 

C;,2 = max( Xh,i + XJ,,1 + ... +X},,1 + xi.1 + X;,2• 

and similarly, 

XJ,,i + XJ2,1 + · · · +X},,1 + XJ,,2 + X;,2, 

XJ1 ,1 + XJi.1 + X},,2 + · · · + X;,,2 + X;,2' 

X;,,1 + X;,.2 + XJ2.2 + ... + XJ,,2 + X;,2]' 

Cu,2 = max[ X11 ,1 + Xh. 1 + · · · +X).,1 + Xi.1 + Xu,1 + Xu, 2 , 

XJ,,1 + XJ2,i + · · · + XJ,,1 + X;,1 + X;,2 + Xu,2, 

X},,1 + Xh,1 + X},,2 + · · · +JS,,2 + X;,2 + Xu,2• 

(3.3) 

XJ1 ,1 + XJi,2 + XJi.2 + · · · + XJ,,2 + X;,2 + Xu,2] · (3.4) 

The definition of C;;2 implies that Ct2 is obtained from Cu,2 by interchanging i and u. Hence C/2 and Cu.2 
are identically distributed. Similarly, C;,2 and c":2 are identically distributed. Similar formulas as (3.3) and 
(3.4) are obtained for general m ~ 2. E.g., for m = 3 consider C;,3 in the s + 1 possible cases in which 
machine 3 is idle for the last time before processing job i; before processing job is; ... ; before processing 
job j 1• In the first case, add X;, 3 to the maximum of all completion time sums corresponding to machines 1 
and 2 and jobs j 1, •.• , j,, i (the sums in (3.3)); in the second case, add X1,.,3 + X;, 3 to the maximum of all 
completion time sums corresponding to machines 1 and 2 and jobs j 1, .•. , is; etc. Taking the maximum of 
all these sums amounts to taking the maximum of (s + 1) + s + (s - 1) + · · · + 1 = ("~ 2 ) sums of (s + 3) 
stochastic variables. We leave it to the reader to check that, for general m ~ 1, C, m can be written as the 
maximum of C~'.'.'] 1 ) sums of (s + m) stochastic variables. , 

Returning to (3.2) and exploiting the structure of C;,m and its companion terms as sketched above, the 
following - obvious - results can now be formally proved: 
(1) ci,m and cu:m are identically distributed, 
(2) Cu,m and Ctm are identically distributed, 
(3) ci,m ~SI cu,m (cf. (2.10)), so for all t ~ 0, Pr{ ci,m > t} ~Pr{ cu,m > t }. E.g,, from (3.3) and (3.4), 

Cu,2 = max[ Xh,i + Xh,i + · · · + XJ,,1 + X;,1 + Xu,i + Xu,2, C;,2 + X,,,2]. 

Finally, from (3.2), 

E[N(S*)]-E[N(S)] =(w;-wJ/~0dD(t)[Pr{Cu,m>t}-Pr{C;,m>t}] >0 

iff W; ~ w U' (3 .5) 

This concludes the proof of the theorem. D 

(ii) All due dates are i.i.d., w; = w, i = 1, ... , n, the job processing times X;,J of job i on machine j, 
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i = 1, ... , n, j = 1, ... , m, are independent, and X;,1 .... , X;.m are identically distributed with distribution 
F; (. ), for i = 1, ... , n (i.e., a job has the same processing time distribution on each machine). 

Analogous to Theorem 2.3 (Subcase Id) we prove: 

Theorem 3.2. If, in case (ii), the processing time distribution Fk( ·) can be sequenced according to an 
increasing stochastic ordering, this yields the minimal expected weighted number of tardy jobs. 

Proof. Again we compare E[N(S)] and E[N(S* )] for the job sequences S = ()1, •.. , Js, i, u, is+ 3 ,. • ., in) 
and S* = ()1, ••. , },, u, i, ls+)• ... , Jn), discussing the effect of interchanging the neighbouring jobs i and 
u, presently in positions s + 1 and s + 2. Although it is clear that interchanging jobs i and u does not 
affect <;.,m and c;:,m• for k = 1, ... , s, this is not a priori clear for k = s + 3, ... , n. We'll return to this 
point later, for the moment just claiming that (3.2) is indeed still valid. We further claim that Cu,m and 
C;*m are identically distributed. For m = 2 this readily follows from (3.4): interchanging i and u in (3.4) 
d~es not change the last s sums, while the first (second) sum of Cu,2 has the same distribution as the 
second (first) sum of C/i. For general v;;?; 2 the same result is obtained by carefully exploiting the 
structure of Cu.v and C;':0 'as explained earlier in this section. We thus not only find that Cu,m and C/':m are 
identically distributed; we also find that cj.,m and cj:,m• k;;?; s, are identically distributed, which justifies 
our claim that (3.2) is valid. Note that Ch,m and cj:,m for k;;?; s are in general not completely identical, 
contrary to their k ~ s counterparts. 

It follows from (3.2) that 

E[N(S*)]-E[N(S)] =wf~0dD(t)[Pr{Cu~m>t}-Pr{C;,m>t}]. (3.6) 

cu~m is obtained from C;,m by replacing all indices i by u. It trivially follows from F;.;;; St Fu that 

Pr{ Cu~m > t} ;;::. Pr{ C;,m > t}, t;;?; 0. 

This concludes the proof of the theorem. D 

Remark 3.1. We have no general results for flow shops with non-identically distributed due dates - which 
is not surprising in view of the far from promising results for the corresponding single-machine models in 
Section 2. See Forst [2] for an analysis of one particular case with m = 2 machines. 
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