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Sojourn Times in Feedback and Processor Sharing Queues 

J.L. van den Berg, 0.J. Boxma 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

This paper considers an M/M/1 queue with a general probabilistic feedback mechanism. When a customer 

completes his i-th service, he departs from the system with probability 1 - p(1) and he cycles back with pro­

bability p(1). The mean service time of the customer is the same for each cycle. If this mean service time 

shrinks to zero, while the feedback probabilities approach one in such a way that the mean total required 

service time remains a positive constant, then the behaviour of the feedback queue approaches that of an 

M/G/1 processor sharing queue. Different choices of the feedback probabilities lead to different service 

time distributions in the processor sharing model. 
In a recent paper we have derived the joint distribution of the successive sojourn times of a customer in the 

feedback queue. We now exploit those results to analyse sojourn times in the M/G/1 queue with proces­

sor sharing. In particular, new results will be presented for the sojourn time variance of a customer with 

given total service request. 

1980 Mathematics Subject Classification: 60K25, 68M20. 
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Note: This report will be submitted for publication elsewhere. 

1. INTRODUCTION 

This paper considers an MIMI 1 queue with a general probabilistic feedback mechanism. When a 

newly arriving customer, to be called a type-I customer, has received his service, he departs from the 

system with probability 1-p(l) and is fed back to the end of the queue with probability p(l); in the 

latter case he becomes a type-2 customer. When he has received his i-th service, he leaves with proba­

bility 1-p(i) and he cycles back with probability p(i), in the latter case becoming a type-i + 1 custo­

mer. The service times of each customer at all visits are identically, negative exponentially, distributed 

stochastic variables. The resulting queueing model has the property that the finite-dimensional joint 

queue-length distribution of type-i customers, i = 1,2, ... , is of product-form type. This property has 

been exploited in [2,3] to derive the Laplace-Stieltjes Transform (LST) of the joint stationary distribu­

tion of the successive sojourn times of a customer. 
Feedback queues are useful for modelling many phenomena in computer-communication systems. 

An important example is timeshare scheduling in computer systems. Kleinrock [6, Vol. 2] contains 

several early references; Nelson [7] considers queues with a feedback mechanism as described above, 

but with varying service times, to study the effect that assigning increasing numbers of time quanta to 

jobs has on mean sojourn times. Other examples of feedback systems are found in telecommunica­

tions. For instance, a telephone call may generate several tasks for processing. Such tasks can some­

times be considered as feedbacks. From a customer's viewpoint, a very important performance meas­

ure is the response time or sojourn time, here defined as the time spent by a particular sequence of 

tasks from its arrival to its service completion [4]; and not just its mean is of interest, but also (the 

tail of) its distribution. 
If the mean service time in each loop shrinks to zero, while the feedback probabilities approach one 

in such a way that the mean total required service time remains a positive constant, then the 

behaviour of the feedback queue approaches that of an MIG/l processor sharing queue (MIG/l PS). 

Different choices of the feedback probabilities lead to different service time distributions in the pro­

cessor sharing model. 
The queue length process in a round-robin type of queue is usually less amenable to mathematical 
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analysis than the queue length process in its limiting case, a PS queue. This has been the main reason 
for the queueing analysis of processor sharing. The determination of the sojourn time distribution in a 
PS queue has turned out to be a much harder problem. Only recently the sojourn time distribution in 
the M/G/l PS queue has been derived, cf. [5, 8, 9, 10] and the survey of Yashkov [ll]. In our case 
the situation is reversed, as far as complexity is concerned. The feedback model under consideration 
can be completely analysed [3], and we exploit this to present a new approach to the sojourn time 
analysis in the M/G/l PS queue. 

The organization of the rest of the paper is as follows. Section 2 presents a detailed model descrip­
tion and a summary of those results of [3] that are essential for the analysis in Section 3. In the latter 
section we study sojourn times in the MIG/I PS queue, by taking appropriate limits in the M/M/l 
queue with feedback. We restrict ourselves in Section 3 mainly to the sojourn time variance. In a 
future paper [I], a more extensive analysis of the sojourn time distribution in the M/G/l PS queue 
will be presented. 

2. MODEL DESCRIPTION AND PRELIMINARY RESULTS 
We consider a single server queueing system with infinite waiting room. Customers arrive at the sys­
tem according to a Poisson process with intensity A>O. After having received a service, a customer 
may either leave the system or be fed back. When a customer has completed his i-th service, he 
departs from the system with probability I - p(i) and is fed back with probability p(i). Fed back cus­
tomers return instantaneously, joining the end of the queue. A customer who is visiting the queue for 
the i-th time will be called a type-i customer. 

The successive service times of a customer are independent, negative exponentially distributed, ran­
dom variables, with mean {J. These service times are also independent of the service times of other 
customers. 
Introduce 

q(l) := I, (2.1) 

q(i):= frp(j), i=2,3, .... 
j=I 

Note that q(i} is the relative arrival rate of type-i customers, i = 1,2,... . The offered load to the 
queue per unit of time is p:=A/J~q(i). For stability it is required that p<l. For future reference we 

i=I 
introduce the generating function of the probabilities of visiting the queue exactly i times, i = 1,2, ... : 

Q(z) := ~ q(i)(l-p(i))zi, jzjo;;;;;I. (2.2) 
i=I 

We now summarize those results from [3] which will be needed in Section 3. Let Sj be the time 
required for the j-th pass through the system (j-th sojourn time), j= 1,2, .... 

THEOREM 2.1 The LST of the joint distribution of the first k successive sojourn times of a customer who is 
fed back at least k - I times, is given by 

E{ -(w1S,+ ... +w,S.)} = 1- (2.3) e ~2 ~2 ' 
(l+/Jw1)Mk(k-l,w) - A/3 2 q(k-j-l)Mk(j,w) - (p-A/J 2 q(i)) 

j=I i=I 

with Re w;;;;;.O, i = l, ... ,k, w : = (wi. ... ,wk), and 
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Mk(.j,w) = (l+{Jwk-J+1)Mk(.j-l,w) + t..{J[Mk(.j-1,w) - q(.j-1) - (2.4) 

:~
1

q(.j-l)(l-p(.j-l))Mk(l-l,w)], j = l, ... ,k-1, 

Mk(O,w) = I, q(O) : = I. 

This result can be derived from (3.13), (3.14) and (3.15) of [3]. The present form is somewhat simpler, 

and more suitable for analysing sojourn time distributions in the M/G/l PS queue. Some of the 

implications of the theorem are: 
(i) the sojourn times 81, j = l, ... ,k, are negative exponentially distributed with mean {J!(l-p). 

(ii) The LST of the joint distribution of Si and 81, I:s;;;;i <j:s;;;;k, is given by 

E{ e -(w,S,+w1S1>} = 1- 2 ' 1 :so;; <j:s;;;;k, 
1-p+ /Jwi + /Jw1 + fJ W;W1CJ-i 

where c1 -i is determined by 

C1 =I, 

~I 
Cn = I +t..{J 2-A q(n -j)C1, n =2, ... ,k -1. 

j=I 

Note that E { e -(w,s, +w;S;)} only depends on i and j through the difference j - i. 

From (2.5) the correlation coefficient, corr(Si,SJ), can easily be obtained: 

(2.5) 

(2.6) 

(2.7) 

It follows from (2.6) and (2.7) that corr(Si,SJ) as a function of i and j only depends on j-i, and that 

it decreases if j - i grows. 

(iii) The Laplace-Stieltjes transform of the distribution of a customer's total time spent in the system 

until the end of his k-th pass, s<k): = 81 + ... + sk> can be obtained from (2.3) by substituting 

w1 =w0 , j = l, ... ,k. To derive an expression for the variance of this sojourn time, var(8<k>), it is con­

venient to use the formula 

var(S<k>) = k var(S1) + 2± ± cov(Si,S). 

From this formula, (i) and:(ii), 
i 

i=lj=i+I 

var(S(k)) = (~)2[k2 -2(1-p) ~
1jCk-J], 

p j=I 
(2.8) 

with C 1, ••• , Ck - I given by (2.6). In fact [3] does not give (2.6), but a somewhat more complicated 

recurrence relation for the iCn: 

C1 =I, (2.9) 

Cn =(I +A.{J)Cn-1 -A.{J~
1q(n -/)(1-p(n -l))C1-1> n =2, ... ,k-1. 

/=2 
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Noting that q(n -/)(1-p(n -/))=q(n -1)-q(n -I+ 1), and splitting the sum in (2.9), we obtain 

Cn-A/f~q(n -I+ l)C1-1 = Cn-1-A/1~ 1

q(n -l)C1-i. 
/=2 /=2 

from which (2.6) follows. Taking generating functions and using (2.2) leads to 

C(z) := ~Cnzn = z = z 
n=I (1-z)(l-A/J~q(i)zi) (1-z)(l-A/1 l~z(l-Q(z))) 

i=I 

lzl <1. (2.10) 

The sequence Ci.C2 , ... is non-decreasing and, cf. (2.7), limited from above. Hence lim Cn exists; an 
Abelian theorem now implies that 

lim Cn = lim (I - z )C (z) = -
1
-
1
-. 

n-+oo z-+I - P 

3. THE MIGll PROCESSOR SHARING QUEUE 
3.1 Introduction 

n-+oo 

(2.11) 

In this section we show how the results given in Section 2 for the MIMI 1 queue with feedback can be 
used to analyse the sojourn time in the MIG/I PS queue. We apply a limiting procedure, in which 
p~o ':Yhile the feedback probabilities approach one in such a way that the mean total required service 
time, p, remains a positive constant. We restrict ourselves to those service times, .,PS, in the PS queue 
which are composed of negative exponentially distributed stages: 

(3.1) 

with a 1, ••• ,am>O, ~ aj=l, ri, ... ,rm positive integers (cf. K.leinrock [6, Vol. 1, p. 145]); note that 
·-1 

this class of distribut1~ns contains the Erlang, hyperexponential and Coxian distributions, and that 
arbitrary probability distributions of nonnegative random variables can be arbitrarily closely approxi­
mated by distributions from this class. This choice of service time distribution enables us to choose 
the feedback probabilities (hence Q(z)) such that .,PS and the total required service time -?B in the 
FB (feedback) queue have exactly the same distribution - not just in the limit p~o. but for a wide 
range of values of p. Observe that, cf. (2.2), 

Now choose 

_ ~ r (1-bij)z 
Q(z) - 2.. aj J1 1-b .. z ' 

j=I i=I 11 
(3.3) 

with 
A 

bu = 1-PIPij > 0, i=l, ... ,rj,j=l, ... ,m (3.4) 

Then 
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A 

E{exp(-c.>o.,F8 )}= ~ aj ft {3l{3ij A = ~ aj ft A =E{exp(-w0-?8)}. (3.5) 

j=I i=I l+f3wo-(l-{31{3ij) j=I i=I 1+{3ijwo 

As an example, consider the case of Bernoulli feedback: Q (z) = ( 1 -p )z I ( 1-pz ). In this case, 

1 
E{exp(-w0-?8

)} = E{exp(-w0.,F
8
)} = 1 +({3l{l-p))wo 

1 
A 

l +Pwo 
(3.6) 

Hence the total required servjce times in both the FB queue and the PS queue are negative exponen­

tially distributed with mean {3={31(1-p). When p~o, p~l, performance measures in the FB queue 

clearly approach corresponding performance measures in the PS queue (although it should be noted 

that we have not formally proved this). 
In principle we could obtain the LST of the distribution of the sojourn time, E{exp(-c.>oSP8 )}, in 

the MIG/I PS queue from (2.3) and (2.4). For the MIDI 1 case this has been done in [2], and for the 

MIM!l case the procedure has been outlined in [3]. The general case will be studied in [I]; here we 

restrict ourselves to the (conditional) mean and variance of the sojourn time. 

3.2 The mean sojourn time 
In the MIG/I PS queue, the mean sojourn time, E{SPS}, of a customer with service demand -?8 =x 

is linear in x (cf. Kleinrock [6, Vol. 2]): 

(3.7) 

In this subsection we show how this result immediately follows from the feedback results of Section 2. 

Consider a newly arriving customer, say C, who will obtain exactly k services. Statement (i) below 

Theorem 2.1 implies that the mean sojourn time of C is given by 

E(S<k>} = -15.JL. 
1-p 

(3.8) 

Choose Q(z) as in (3.3) and apply the limiting procedure of Subsection 3.1, taking P=xl k and let­

ting k~oo. The total required service time of C approaches the constant x (indeed, (1 + f3c.>o)-k = 

(1 + X"'o I k)-k ~ e -xw.). Hence, for k~oo, C can be viewed as a customer with service request x in 

the MIGII PS queue with service time distribution characterized by (3.1). Formula (3.7) now 

immediately follows from (3.8). 

3.3 The variance of the sojourn time 
The s~oum time variance for a customer with service request x in the MIG/I PS queue, 

var (SP 1-?8 = x ), can be obtained from (2.8) by takin~ f3 = x I k and letting k ~ oo in the way 

described in Subsection 3.1. Below we first derive var(S 8 j-?8 =x) for the MIMII PS queue, and 

then for the MIG/I PS queue. This leads to a simple explicit expression for the asymptotic 

behaviour of var(SP8 j-?8 =x) for very large (x~oo) and very small (x~O) service requests. Details 

of the analysis, and numerical results, are given in [1]. 

The Ml Mll PS queue 
As observed in (3.6), the choice Q(z) = (1-p)zl(l-pz) leads, in the FB queue as we)l as the PS 

queue, to a negative exponentially distributed total service time with mean {31(1-p) = [3. To obtain 

an explicit expression for var(S<k>), see (2.8), we derive Cn, n = 1,2, ... , from (2.10). Substituting 
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Q(z) = (l-p)z/(1-pz) into (2.10) yields 

_ 1-pz 
C(z) - z (l-z)(l-(A./3+p)z). (3.9) 

Rewriting the right-hand side of (3.9) as 

I l 
z[U1 1-z + U2 1-(>i.f3+p)z ], 

it follows that 

Cn = U1 + U2x~-I, n=l,2, ... , (3.10) 

with U1 =1/(l-p), U2=-p/(1-p), x 2=>i.{3+p. Substituting(3.10)into(2.8)yields 

a x~+k(l-x2)-l var(S<k>) = (-L-)2[k - 2(1-p)U2 ] = 1-p (1-x2>2 (3.11) 

(_/L)2[k + ~(-k- - 1-(>i.(3+pt )]. 
1-p 1-p 1-p (1-p)(l-p)2 

A 

Let /3 be the mean service time for the MIMI 1 PS queue and let ~ be the service time of a tagged 
customer (cf. Subsection 3.2). Substitute /3=x/ k and p = 1-xl k/3 into (3.11) (cf. (3.4)). Letting k~oo leads to var(SPSl..-"s=x): 

var(SPS l-r1's =x) = lim var(S<k>) = 2PPx - 2PJi [1-e-x(l-p)/fJ], (3.12) 
k->oo (l-p)3 (1-p)4 

a result previously obtained by Ott [8]. Note that the sojourn time variance depends linearly on x for 
x~oo: 

x~oo, 

(see also K.leinrock [6, Vol.2, p. 170]), whereas it depends quadratically on x for x~O: 

var(SPsl-r1's=x),...., (l_!!p)2 x
2 - 3(l~p)x3 , x~o. 

(3.13) 

(3.14) 

The MIG/ 1 PS queue 
We now derive an expression for var(SPs I ,.PS =x) for the M/G/l PS queue, in particular showing 
that the above asymptotic.properties hold for general service time distributions. We only give a brief 
outline of the analysis. Dqtails are given in [1]. We consider service time distributions with LST as in 
(3.1), by choosing Q(z) as/in (3.3), (3.4): 

A 

_ ~ J1r (l-bij)z _ ~ J1r f3z I /3;; Q (z) - 2' aj 1 -b·. - 2' aj A • j=I i=I ljz j=l i=I 1-(l-/31 /3ij)z 
(3.15) 

Analogously to the M/M/l case analysed above, (2.10) and (3.15) lead to: 

" Cn = U1 + U2x~-I + · · · + ULx'L- 1, n = 1,2, ... , with Lat most ~rj + I, (3.16) 
j=l 
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z 
I-")...{3-(1-Q(z)) = 0. 

1-z 
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(3.17) 

Note. We assume that there are no multiple roots. This can be easily shown for the Erlang and 

hyperexponential cases, and seems to be true generally; we'll go into this in detail in [I]. 

We now prove some properties of x; and U; that will be used in the sequel. 

LEMMA 3.1 
(i) lxd < 1, i =2, ... ,L; 
(ii) x; can be written as 

X; = }-{3a;, 

with a; independent of /3, and Re a; > 0, i = 2, ... ,L; 

(iii) U; is independent of {3, i =l, ... ,L, and U1=11(1-p). 

PROOF 

Noting that (see (2.10)), 

1-")...{3-z-(l-Q(z)) = 1-A/3~ q(i)zi, 
1-z i=I 

(3.18) 

and A/3~ q(i) = p < 1, it follows immediately that lx;!<l, i=2, ... ,L. To prove (ii), substitute 

i=l 
(3.15) into (3.17) and replace z by l/(l-/3z). Then (3.17) reduces to 

A A~ ' 1 1 + - - - a• rt A = 0. 
- - J a -
Z Zj=I i=l 1-,...ijz 

(3.19) 

Since I Ix; is a root of (3.17), (1- x;)I f3 is a root of (3.19). The fact that f3 does not occur in the left­

hand side of (3.19) implies that 1 - x; depends linearly on {3. The statement concerning Re a; > 0 

now follows from (i). 
Because llx; is assumed to be a single root of (3.17) it follows from (3.16) and (2.10) that 

} • . X; } 

U;- = lim (1-zx;)C(z) = lim(l---_)C(--_). 
X; z->llx, z->a, l -/3z l -/3z 

Observing that f3C (-1-_ ) is independent of p, it is found that 
l-/3z 

U; = lim X;(l -~ )C(-1-_) 
z->a, l-f3z l-/3z 

is independent of {3. 
Finally, U 1 = 1 I ( 1 - p) follows from (2.11 ), (3 .16) and (i). 

Substituting (3.16) into (2.8) yields (cf. (3.11)) 
" 

(3.20) 
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a J.. x~+k(I-x-)-1 var(S(k)) = (_t!_f[k - 2(1-p).z,;U 1 1 ]. 
1-p j=2 I (1-xj)2 

(3.21) 

Now, let x be the service time of a tagged customer, and take /J=xlk. For k~oo, var(SP5 j-?5 =x) 
follows from (3.21) and (i) of Lemma 3.1; integrating over x yields the unconditional sojourn time 
variance. We collect these results in 

THEOREM 3.1 In the MIG/ 1 PS queue with service time LST given by (3.1), 

var(SP5 1-r"5 =x) = 
1

.:_p_f(11aj)2l!;[l-xaj-e-xaj], 
1=2 

var(SPs) = - 2-J..(1 I a-f U[I -Pa· - E{e -a/•}] + E {(-r"
5 f }-ji. I - pj ~ '/ I '/ (1 - p )2 

From (ii) and (iii) of Lemma 3.1 it follows that 

lim _2_f(I1 aj)2l!;e-xaj = 0. 
X-+00 1-pj =2 

Hence, the sojourn time variance is asymptotically linear in x: 

From (3.16) and (3.18), 

f o I aj)l!; = Pf l!; 1 ~ x· = /J~(Cn - 1 ~ ) , 
j=2 j=2 '/ n=I p 

and 

f(llajfl!; = P2fl!; 1 
= /12 ~n(Cn--1 1-). 

j=2 j=2 (l-xjf n=I -p 

It can be derived from (2.10) that 
" a~ C __ I_ _ _ 'A/J2 

~~!( n 1-p) - 2(1-p)2 ' 

and 

2 ~ I - 1 A A 2 I "2 1 A A fJ n~ln(Cn- 1-p) - - 2(1-p)3 [3/J3+A <2P2-3/J/J3)]' 

with '/J; := E{(-r"8Y}, i =2,3. 
Hence, from (3.24), 

(3.22) 

(3.23) 

(3.24) 



9 

Noting that, in (3.22), 

l -xa--e-xa1 = - ~ (-xaj)i . 2 L 
J 2' . ' ' J = , ... , ' 

i =2 I. 

and using 

J..U = C1 --1- = _ _p_, 
_2..i J 1-p 1-p 

J =2 

~Ux = C2--1- = "A/3-_p_ 
. JJ 1-p 1-p' 

J =2 

it is found that 

(3.26) 

This expression appears to be independent of the service time distribution, apart from its first 

moment (cf. also (3.14)). The quadratic behaviour of var(SP5 j-r"5 =x) for small service requests x 

should be contrasted with the linear behaviour for large x. 

Note added in proof Formula (3.26) slightly generalizes Theorem l of Yashkov [12]. Formula (3.25) 

is contained in Theorem 2 of [12]; but for the service time distributions defined in (3.1), Yashkov's 

theorem follows immediately from (3.22). 
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