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Section 1. Introduction and Summary 

In this paper we give conditions under which the distribution of the Gauss­

Markov estimator is more concentrated about the unknown mean vector than the 

distribution of any other linear unbiased estimator. In order to describe our 

results more precisely, let (V,(•,•)) be a finite dimensional inner product 

space. By a linear model for a random vector Yin V, we mean the specification 

of 

(i) a known linear subspace M <:: V in which the mean vector of Y is assumed 

to lie. 

(ii) a known set Y of positive definite linear transformations in which the 

covariance of Y is assumed to lie. 

Thus, the subspace M specifies the mean structure of Y in that µ = EY is in 

M. Similarly, Y specifies the covariance structure of Y so Cov(Y)EY. The use 

of Cov(Y) to denote the covariance of Yin (V,(•,•)) is consistent with Eaton 

(1983, Chapter 2). Throughout this paper it is assumed that the identity 

covariance is an element of Y. 

Definition 1: The linear model (M, Y) for Y is regular if I:(M)::: M for all I:EY. 

Under the assumption that Cov(Y) is non-singular, regularity of the linear 

model for Y is the necessary and sufficient condition so that a bes.t linear 

unbiased estimator of µEM exists (see Eaton (1983, Chapter 4) for a discussion). 

To state one form of the Gauss-Markov Theorem, let A be the class of linear 

transformations A on V to V which satisfy 

(i) Ax .. x for XEM 
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(ii) AyEM for yEV ( 1 • 1 ) 

The elements of ~ are the linear transformations which provide the linear 

unbiased estimates of µ subject to the condition that the estimator take values 

in M. 

Theorem (Gauss-Markov). 

Assume the linear model (M,Y) fs regular. Let A0E~ be the orthogonal 

projection onto the subspace M, and let L = Cov(Y)EY. Then for all AEA and all 

LEY, 

where ~ means that 

AEA' - A EA' 0 0 

is positive semi-definite. 

{ 1 • 2) 

The intuitive content of (1 .2) is that Cov(•) is a multivariate measure of 

size, and for all LEY, the element of A which minimizes Cov(AY) is A0 • A 

possible alterative criterion- for the selection of AEA is to ask that the 

distribution of the estimator AY be "most concentrated" about µ. One way to 

make this precise is to look at how concentrated the distribution of AY-µ is 

about OEM - that is, look at 
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ljJ (A) P{AY-ucc} ( 1. 3) 

where C is a symmetric (about 0) convex set in ~. 

Of course, we would like to pick Ac~ so that ljJ(A) is as large as possible no 

matter what convex symmetric set C happens to be. Because Ax=x for xcM, (1.3) 

can be written 

ljJ(A) = PjA(Y-µ)ccl (1.4), 

Essentially, the results in this paper give conditions, expressed in terms of 

the distribution of the error vector Y-u, so that A
0 
maximizes~ in (1.4) for 

all convex symmetric sets C contained in M. 

Here is an outline of the paper. Section 2 contains background material on 

peakedness of distributions, log concave distributions, and elliptical 

distributions. Also, Anderson's Theorem (Anderson (1955)) and a result from Das 

Gupta et al. (1972) are reviewed. 

Our main results are given in Section 3. For example, it is shown that if 

the distribution of the error vector Z = Y-u is elliptical (as defined in 

Section 2), then, with w given by (1.4), 

( 1 • 5) 

for all convex symmetric subsets C~M. With additional assumptions on the 

distribution of Z, the above result is extended to the case where the convex 

sets are allowed to depend on the data Y. This result is applicable to 
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confidence set problems. The results in this section are generalizations of 

results in Berk and Hwang (1984) who established inequality (1.5) for the 

classical univariate regression model. In addition to allowing a wider class of 

error distributions, our results are applicable to all regular linear models 

which include the MANOVA model as well as certain structured covariance linear 

models. 

Ut~lizing some invariance assumptions, the results in Section 4 establish 

monotonicity of the function~ in (1.4). This monotoni~ity is expressed in 

terms of a partial ordering on ~ which is induced by a group of transformations. 

These ideas lead to a strengthening of a majorization result due to Proschan 

( 1965) • 

Section 2. Concentration and Probability Inegualities 

The notion of peakedness (concentration) of a distribution on the real line 

was introduced in Birnbaum (1948). Sherman (1955) extended the notion to 

euclidean spaces. The vector space version of concentration runs as follows. 

For a finite dimensional real vector space W, let ~(W) be all the nonempty 

convex subsets of W which are symmetric about O- that is, subsets C 

are convex and satisfy C = -c. 

Definition 2.1: Given two r~ndom vectors Y1 and Y2 in W, Y1 is more 

concentrated about 0 than Y2 if 

(2 .1} 

W which 
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for all CEt(W). 

In what follows, when Y1 is more concentrated about 0 than Y2 , we will 

simply say Y1 is more concentrated than Y2• 

Now, consider the vector space W with a given inner product (•,·). In what 

follows, the word density means a probability density with respect to Lebesque 

measure on W. 

Definition 2.2: A random vector X in (W,(·,·)) has an elliotical distribution 

if X has a density f of the form 

(2.2) 

where 8 is some positive definite transformation on W to W and k is a non­

negative function defined on [O,m) which satisfies 

fw k[(w,w)]dw = 1 (2.3) 

Here is.a theorem due to Das Gupta et al. (1972) which is needed in the next 

section. In what follows, k(•) denotes the probability law of"·" 

Theorem 2.1: Fix the function kin (2.2) and let P8 denote the probability 

measure defined on (W,(•,•)) by the density in (2.2). For random vectors 



Xi, i = 1,2, assume that ~(Xi) = P8 _ where s2-s1 is non-negative definite. 
1 

Then x1 is more concentrated than x
2

• 
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Corollary 2.1: Let X in W have the density (2.2) and suppose ai, i = 1,2 are 

full rank linear transformations on W to (~,(·,·) 1 ). Set Xi = aiX, 

i = 1,2 and assume that a 2Ba2 - a 1sa; is non-negative definite where Bis given 

in (2.2). Then x1 is more concentrated than x
2

• 

Proof: Because a. has full rank, an easy argument shows that X. has a density 
1 1 

on U of the form 

where 

.C' 

Since B
2 

- B1 is assumed to be non-negative definite, Theorem 2~1 gives the 

result. D 

The final topic of this section concerns log concave functions and 

Anderson's Theorem on (W,(•,·)). 

Theorem (Anderson (1955)): Suppose f is a non-negative integrable function 



8 

defined on W (integrable with respect to Lebesque measure). Also, suppose that 

for each u > O, 

{wjf(w) ~ u} (2.4) 

is a convex symmetric subset of W. Then for each Ce~(W) and each eeW, the 

function 

a~ !IC (w) f(W-ae )dw 

is non-increasing for ae[O,m). 

(2.5) 

Recall that a non-negative function f defined on W is log concave if for all 

ad0,1), 

for all x and yeW. Observe that if f
1 

defined on W satisfies 

(i) f
1

(w) = f
1

(-w), weW 

(ii) f 1 is log concave on W 

(2.6) 

then (2.4) is a convex symmetric set, so Anderson's Theorem holds for such an 

f, when r, is integrable. 

Now, suppose f is a log concave density function of a random vector X with 

values in W. Write W = M$N where M and N are perpendicular subspaces of W whose 

sum is W. Thus, X can be written uniquely as X = Y+Z with YeM and ZeN. The 

marginal density of Z on the vector space N is 

f 2 (z) = fMf(y+z)dy 

where dy means Lebesque measure on M. Thus, one version of the conditional 
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density of Y given Z is 

if f
2
(z) 0 

where $(y) is the density of a standard normal distribution on ~. Because f is -

log concave, a routine verification shows that for each fixed z, f 1<·lz> is log 

concave on the vector space M. This observation is used in the next section. 

Section 3. Concentration of the Gauss-Markov Estimator 

This section contains three results all of which deal with concentration.of 

the Gauss-Markov estimator. Theorem 3.1 establishes inequality (1.5) for all 

regular linear models under the assumption that the error vector Z = Y-µ has an 

elliptical density. Using stronger assumptions, Theorem 3.1 is extended to 

cover some cases involving confidence statements about the unknown mean vector. 

The section closes with an example from the MANOVA model. 

Throughout this section, it is assumed that (M,Y) is a regular linear model 

for a random vector Y taking values in the inner product space (V,(•,•)). As 

defined in Section 1, A is the class of linear transformations defined on V 

which satisfy (1 .1). Further, A0 E~ is the orthogonal projection onto M. 

Theorem 3.1: Assume the error vector Z = Y-µ has an elliptical distribution on 

V. Then for each CE~(M), 
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ljJ (A) P{AY - JH:C} (3. 1 ) 

is maximized by taking A•A 0• That is, for each CEt(M), the inequality 

(3 .2) 

holds for all AE~. Thus the distribution of A
0

Y-u is more concentrated than the 

distribution of AY-u for all AEA. 

Proof: Because Ax=x for all XEM, AY-u = A(Y-u) so that 

ljJ (A ) = P { A Z EC } (3.3) 

Let E Cov(Y)EY. Since Z • Y-u, it follows that 

Cov(Z) = Cov(Y) • E (3 .4) 

But, Z has an elliptical distribution with a density given by (2.2) for some 

positive definite B. It follows easily th"at 

B = BE (3.5) 

for some real number B>O. 

Now, the regularity of the linear model and the Gauss-Markov Theorem imply 

that 
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(3.6) 

for all AE8. Thus (3.5) and (3.6) entail 

(3.7) 

for all AE8. Each AEA is a linear transformation on V to M and each A is of 

full rank since each A is an onto linear transformation. The claimed result now 

follows immediately from (3.7) and Corollary 2.1 applied to 

x1 = AOZ and x2 = AZ. 0 

It is possible to strengthen Theorem 3.1 by letting the symmetric convex set 

C in (3.1) depend on Yin certain ways, but this strengthening requires some 

modified assumptions on the distribution of Z .. To specify how the set C is 

allowed to· depend on Y, we have 

Definition 3.1: For each yEV, let C(y)E~(M). Then, C(y) depends residually on 

y if 

C(y) = C(y+x) (3.8). 

Theorem 3.2: Let C(Y) depend residually on Y and suppose the error vector 

Z = Y-µ has an elliptical density given by (2.2) where the function k is non­

decreasing on [O,m). Then for AE~, 

P{AY-µ E C(Y)} (3.9) 
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is ~aximized at A=A 0 • 

Proof: Because C(•) depends residually on Y, 

C(Y) = C(Y-u) = C(Z). 

As in the proof of Theorem 3.1, AY-u = AZ so (3.9) can be written 

~ 1 (A) = P{AZcC(Z)} (3.10). 

With A0 = I-A0 , the equation 

A = A + AA 
0 0 

(3. 11)· 

holds since Ae~. Also, 

since A0Z is in M. Hence, (3.10) can be written 

(3.12) 



With w = A0
z, the theorem will hold if we can verify the inequality 

P{A
0
z +Aw E C(w)jA

0
z = w} $ 

P{A
0
z e C(w)IA

0
z = w} (3.13) 

for each w in the orthogonal complement of M. 
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To establish (3.13), argue as follo~s. As in the proof of Theorem 3.1, the 

linear transformation F ln (2.2) occuring in the density of Z is some positive 

multiple of Cov(Z) = E, say 

B = BE (3.14) 

with S>O. Since n is invariant under E, M is also invariant under B. Thus, for 

any xeV, 

With U = A0
Z and W = A0Z, the marginal densi~y of W is 

f 
-112 -1 -1 

f
2

(w) = IBI k[(u,B u) + (w,B w)]du. 
M . 

Thus a version of the conditional density of U given W=w is 

f
1

(ujw) 
.. {[f2(w)J-1 IBl-1/2k[(u,B-1u) 

cp ( u) 

+ (w,B-1w)] if f 2(w) > 0 

if f 2
(w} = 0 

where cp is the density of a standard normal distribution on ~. For each w, it 
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follows immediately that 

(i) r 1cujw) = r 1c-ujw) ' u~ 

{ii) {ujf1Cujw) ~a} is convex. 

Thus, for each w, Anderson's Theorem yields (3.13) so the proof is complete. o 

The conclusion of Theorem 3.2 is also valid under log concavity and certain 

invariance assumptions on the density of Z. To state this result, let H be the 

group of two elements defined by 

Theorem 3.3: For each LEY, assume that the density f of the error vector Z 

satisfies 

(i) f is log concave 

(ii) f(x) = f(hx) for h£H, x£V. 

If C(Y) £ ~(r1) depends residually on Y, then •, defined in (3.9) is 

maximized at AsA0 • 

Proof: The argument given in the first part of the proof of Theorem 3.2 shows 

that the verificatio~ of inequality (3.13) suffices to establish the present 

result. This verification involves the conditional density of ~=A0 z given 

II = A0z. As argued at the end of Section 2, the marginal distribution of W is 

f 2(w) = f f(u+w)du, 
M 
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for w in the orthogonal complement of M. Further, one version of the 

conditional density is 

f 1Culw) { 

f( u+w) 
f

2
(w) 

cp ( u) if f(w) = 0 

where c:> is the density of a standard normal distribution on M. That f 1C-!w) is 

log concave was noted earlier. We now claim that 

f,<ulw) f 
1 
(-u I w) ,ue:M (3.15) 

for each w. Obviously (3.15) holds if f 2(w) = 0 so assume f 2(w) > O. Then 

f,<-ulw> 
f(-u+w) 
f

2
(w) 

f( c:A
0

-A
0

) (u+w)) f(u+w) 

f
2

(w) f 
2

(w) r,<ulw) 

Since f is invariant under the orthogonal transformation A0-A0 • The log 

concavity of f
1

C·lw) together with (3.15) show that for each a>O, 

{ul r,<ulw)~ a} 
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is a symmetric convex set. Anderson's Theorem shows that (3.13) holds so the 

proof is complete. o 

Remark 3.1: Given C(Y)e:r;(M) which depends residually on Y, again consider 

w
1

(A) = P{AY-µ e: C(Y)} (3.16) 

for Ae:~. As noted earlier, w
1 

can be written 

ljll (A) = P{AZ e: C(Z)} (3.17), 

where Z = Y-u is the error vector. Let [ be the class of densities of Z for 

which ~l (A) S $1 CA 0 ) no matter what choices are made for C(Y). Theorems 3.2 and 

3.3 give examples of densities fe:f. But it is clear that [ is a convex set. 

This convexity can be used to extend Theorems 3.2 and 3.3 in an obvious way-­

namely by taking convex combinations and limits. In particular, suppose f is a 

density of Z which satisfies 

(i) fxjf(x) ;::; a} i:s convex for each a>O (3.18} 

(ii) f(x) = f(hx) for he:H where H is the group in Theorem 3.3. 

For such an f, ljll defined in (3.17) is maximized for A=A0 • To see this, observe 

that 



where 

H(u,x) 

f(x) f H(u,x)du 

0 

if f(x) ;;: u 

otherwise. 

For u£(0,~) fixed such that fH(u,x)dx > 0, 

H(u,x) 
f vH(u,x)dx 

is a log concave density on V to which Theorem 3.3 applies. Since f is an 
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average (over u) of f 1(· ju), we see that ~l is maximized at A=A0 when the error 

vector Z has density f. 0 

Example 3.1 (MANOVA). For this example, the vector space Vis the space of all 

real nxp matrices with the inner product given by the trace--that is, for two 

nxp matrices x and y, the inner product between x and y is 

(x,y) = trxy' 

The regression subspace is M ~ lulu = TB, B is a kxp real matrix} where 

T: nxk is a fixed known rank k real matrix. The set Y of covariances of this 

model is 

Y = {I ®CjC is pxp and positive definite}. n 
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Here, ®denotes the usual Kronecker product as defined in Eaton (1983). Clearly 

the identity is in Y and Mis invariant under each element of Y. Thus, the 

linear model is regular. 

To apply the concentration results, it is necessary to add some 

distributional assumptions for the error vector Z = Y-µ. Since Cov(Z)cY, say 

Cov(Z) = I ®C, when Z has an elliptical distribution with a density, then the 
. n 

density of Z has the form 

-n/2 -1 
f(z) = ICI k0 (trzC z') , zEV (3.19) 

In this case, Theorem 3.1 holds, and when k0 is non-increasing on (0,=), Theorem 

3.2 holds. 

An interesting case where Remark 3.1 applies is when Z has the density 

f ( ) I l-n/21I zA-1z' ,-a/2, Z"'V 1 z "' CO. A n + .. (3. 20) 

where a > n+p-1 and A is a pxp positive definite matrix. Here, c
0 

is a 

normalizing constant. When Cov(Z) exists and Z has the density (3.20), it is 

easy to check that Cov(Z) EY. Now, observe that for each pxp positive definite 

matrix 8, Theorem 3.3 applies directly when the density of Z is 
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f 1 Czjrn (3.21) 

since f 1<·!S) is log concave and satisfies assumption (ii) in Theorem (3.3). 

Thus, by Remark 3.1, averages over S of f 1(·jS), also yield densities for which 

the inequality 

(3 .22) 

holds, where ljl1 is given by (3.17). For B positive definite choose the density 

lj>(B) = c(o) IBl(o-p-l)/ 2 exp[-1/2 tr 3] 

where o > p-1 and c(o) is a normalizing constant. Now, as easy integration 

gives 

(3.23) 

where a= n+o. Since o > p-1, a> n+p-1 so inequality (3.2) holds for the 

density {3.23). However, the density (3.20) is obtained from (3.23) via a 

simple linear transformation and so (3.2) holds for the density (3.20). This 

completes Example 3.1. o 

Section 4. Extensions 

In this section, we establish some extensions of results in the previous 
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section. In particular, a multivariate extension of a result due to Proschan 

(1965) is given whicn strengthens the multivariate extension of Olkin and Tong 

(1984, Theorem 3.2). The formulation of these extensions is expressed in terms 

of a partial ordering on the set ~ defined in Section 1. This partial ordering 

is defined by a group and a discussion of this ordering follows. 

Consider a finite dimensional inner product space (V,(•,•)) and let M be 

fixed subspace of V. As usual, A is the set of all linear transformations on V 

to V which satisfy Ax=x for xd1 and A(V): M. Also, let G be a closed group of 

orthogonal transformations en V to V which s~tisfies 

gx = x for all xe:M, ge:G (4.1). 

Now, define G acting on ~ by 

g (A ) -= Ag- l A A G ( 4 2) e:_, ge: ' • 

where Ag-l means the composition of the two linear transformations A and g-l 

It is easily verified that (4.2) defines a left group action on ~· The group 

action on ~ defines a partial ordering on ~ as follows. For Ae:~, let p(A) 
-1 denote the convex hull of the set {Ag lge:G} = {Agjge:G}. Since A is a convex 

set and is invariant.under G, it follows that p(A):~. 

Definition 4. 1 For A1, A2 €~, write A1 S A2 iff A 1 ~p{A2 ). 

Partial orderings of the sort given in Definition 4.1 have arisen in a 

number of contexts. For example, see Rado (1952), Eaton and Perlman (1977), 

Marshall and Olkin (1979), Alberti and Uhlmann (1981) Eaton, (1984) and Jensen 
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(1984). That the above ordering is appropriate for linear models is suggested 

by the following result. 

Lemma 4.1: Let A0 denote the orthogonal projection onto M. Assume that 

where 

Then, for each AE~, A0 ~ A. 

Proof: Let v denote the unique invariant probability measure on the compact 

group G. For AE~, set 

A* = f Ag v(dg). 
G 

We claim that A* = A0 • To see this, consider XEM. Then 

A*x = f (Ag)x v(dg) = f Ax v(dg) • x 
G G 

J.. 
since gx = x for XEM and gEG. For xd-1 , note that g0x = -x. Using the 

.!. 

invariance of v, we have for xEM , 
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y = A*x -y • 

.&. Thus y = A*x = o. Hence A* is the identity on M, zero on M and is linear. 

Thus A* = A • 
0 

But A* is an average of elements in the set {Ag I ge:G} so A*e:p{A)--

in other words, A
0 

= A* ~ A. This completes the proof. 0 

The above lemma shows that A0 is always the minimal element of ~ when g
0

e:G, 

and of course it is_A0 which yields the Gauss-Markov estimator for regular 

linear models. This suggests that to study concentration inequalitie~ for 

linear models, one should look at 

$ {A) .. P { AZ e: C} ( 4 • 3) 

where Ce:~(M), Ae:~ and Z is the error vector of the linear model. Conditions on 

Z which imply that ~ is decreasing in the ordering defined on A would 

automatically imply (3.2). (The statement that~ is decreasing means: A1 ~ A2 
implies ~(A 1 ) ~ ~(A2 ).) 

We now give our first result. With (V,(•,•)), M, ~and Gas above, let Z be 

a random vector in V. Rather than assuming Z has moments, it is more convenient 

in this section to express some assumptions concerning k(Z) in terms of 

invariance of k(Z). 

Theorem 4.1 

Assume that k(Z) = k(gZ) for ge:G and assume that Z has a density given by 

(2.2). Then A1 ~ A2 implies that ljl(A 1) ~ ~(A2 ) where~ is defined in (4.3). In 
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particular, if g0 e:G (g0 as defined in Lemma 4.1), then ~(A0 ) ~~(A) for all Ae:~. 

Proof: Because Z has a density given by (2.2) and b(Z) b(gZ) for ge:G, it 

follows that 

gBg' = B, ge:G (4.4) 

where B is given in (2.2). Recall that the function <P defined on A by 

<P(A) • ABA' (4.5) 

is convex in the Loewner ordering--that is, 

<t>(aA+(l-a)A) ~ aq>(A) + (1-a)~cA) · 

where 11 ~ 11 is in the sense of positive definiteness, ae:[0,1], and A, Ae:~. For a 

proof of this, see Marshall and Olkin (1979, p. 468). 

Now, since A1 ~ A2 , A1 is a convex combination of A2g, ge:G so A1 can be 

written 

where~ is some probability measure on G. Applying the convexity of <P in (4.5), 

we have 
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( 4 .6) 

But ~(A2g) = A
2
gBg'A2 = A

2
BA2 by (4.4). Hence A1BAi ~ A

2
BA2· A direct 

application of Corollary 2.1 yields y(A
1

) ;:: 1.;.i(A
2
). When g

0
eG, then Lemma 4.1 

shows that A
0 

~ A for all Ae~ which yields the second assertion. This completes 

the proof. D 

An immediate corollary of Theorem 4.1 which is useful in some applications 

is 

Corollary 4.1 Let ~OS A be convex and G invarient. Then~ is decreasing when 

restricted to ~0 • 

Example 4.1: As in Example 3.1, take V to be the vector space of nxp matrices 

with the trace inner product. Let 

where e is the vector of ones in Rn. 

Consider the group 

G = {gig= P@I , PeP } 
P n 

where P is the group of nxn permutation matrices. The group G acts on V in the n 

obvious way: (P8I )x ~ Px for xeV. Suppose Z is a random vector in V which has p 
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an elliptical density and satisfies L(Z) = L(PZ) for PcP • For example, if Z 
- - n 

has a density of the form (3.19), these two assumptions hold. Under these 

assumptions Theorem 4.1 applies directly, but it is interesting to 

consider ~O <.:; ~ given by 

Then, an element of ~O evaluated at Z is 

( eu' ©I )Z 
p 

where z;, ... , Z~ are the rows of z. 

n 
e(Eu.Z.)' 

1 l l 

The action of the group G on ~O is 

(P©I )[(eu'®I )] = (eu'~I )(P®I )-1 = p p p p 

( eu ' ®I ) ( P ' ©I ) 
p p eu'P'©I = e(Pu)'~I • 

p p 

( 4. 7) 

Thus, this group action induces the obvious group action of P on 
n 

U = {ulucRn, u'e = 1}, 

namely u ~ Pu, PEP • For ·a convex symmetric set C <;:Rn, let n 
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~(u) 
n 

=- P { ru . z . E c } . 
1 l l 

(4.8) 

Theorem 4.1 shows that ~(u) ~ ~(v) when u is in the convex hull of {PvlPEP }--in 
n 

other words, ~ is a Schur concave function of uEU. (See Marshall and Olkin 

(1979), p. 131 for a discussion of the equivalence of the usual definition of 

majorization and the one used above.) Since u'e=1 is just a normalization, this 

implies that~ is Schur concave on all of Rn. In Application 4.1 of Olkin and 

Tong {1984), this result was proved for the case p=1 when the function k in 

(2.2) (defining the elliplical distribution) is decreasing. Paraphrased, the 

above result says that if Z is elliplical and its distribution is invariant 

under permutation of the rows of Z, then ~(u) in (4.8) is Schur concave. In 

particular, for all uEU, 

ln 
p {-EZ. EC} 

n1 l 

This completes Example 4.1. 

n 
~ P { Eu . Z • EC } 

1 l l 

[J. 

Our final result extends a Theorem in Proschan (1965). Here is a statement 

of that theorem. 

Theorem {Proschan (1965)). Let Y1 ,.:., Yn be iid symmetric random variables 

with a common density which is log concave on R1• For a>O and non-negative real 

numbers u1 , ••• ,u
0

, let 



F; ( u) 
n 

P { I Eu . Y . I ~ a} 
1 l l 
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(4.9) 

where u is the vector with coo~dinates u1, ••• ,un. Then~(·) is a Schur concave 

function. 

Olkin and Tong (1984) extended this theorem to the case where Y1 , ••• ,Yn are 

iid symmetric random vectors in RP with a common log concave density. In this 

case ~ is defined as 

n 
;(u) = P{Eu.Y. £ C} (4.10) 

. 1 l l 

where C is a symmetric convex subset of RP. The Olkin-Tong conclusion is that 

~(·) is a Schur concave function of u, ucRn. 

To formulate our extension of the above results, let Z:nxp be a random 

matrix with rows z; , ... ,Z~. Let V be the v~ctor space of nxp matrices. 

given symmetric convex set C ~RP and vector ucRn, let 

n 
~(u) = P{Euizi £ C} = P{Z'ucC} 

1 
(4.11) 

For a 

Our result below is most conveniently expressed in terms of a special group of 

nxn matrices G0 • This group consists of all nxn permutation matrices and all 

nxn diagonal matrices with !l's on the diagonal. The group G0 defines a partial 
n n ordering on R as follows. For each vcR , let p{v) denote the convex hull of 

{gvjg£G0} and write u ~ v to mean ucp{v). This ordering is discussed at length 

in Eaton and Perlman (1977). A real valued function T defined on Rn is 
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decreasing relative to the above ordering if u ~ v implies T(u) ~ T(v). 

Theorem 4: Supppse that the density of Z, say f, satisfies 

(i) f(gz) = f(z) for all gEGO, ZEV 

(ii) f is log concave. 

(4.12) 

Then the function$ defined by (4.11) is decreasing for each convex symmetric 

set CC:: RP. 

Remark 4.1 

Before proving Theorem 4.2, it is useful to see how this result implies 

those of Olkin and Tong (1984) and Proschan (1965). First observe that if the 

rows of Z are iid symmetric random vectors in RP (as in the Olkin and To~g case) 

with a common log concave density, then the density of Z is easily shown to 

satisfy (4.12). Thus by Theorem 4.2 $ is decreasing. Now, if u, v are in Rn 

and v majorizes u, then u is an element of the convex hull of the set of all 

vectors of the form hv where h is an nxn permutation matrix. Hence, UEp{v) so 

~(u) ~ •<v) which shows that$ is Schur concave. Thus~(·) given in (4.10) is 

Schur concave. a 

Proof of Theorem 4.2: The proof is based on the theory developed in Eaton and 

Perlman (1977). Let t be either of the vectors 

1 1 
0 -1 

i 0 
or 

V2" 
0 0 
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in Rn. In order to show that$ is decreasing it is sufficient to show that for 

each vector u0 perpendicular to t, the map 

(4.13) 

is non-increasing for 8E(0, 00 ). (See Eaton and Perlman (1977); also see Eaton 

(1984), Section 3). 

Now 

P{Z'~ + BZ't E C} 
0 

(4.14). 

If u
0 

= O, (4.14) is obviously non-_increasing in BE(0, 00 ). For u
0

-to and t 

one of the vectors above, the joint density of 

(Z 1 u0 , Z't): px2 

in R2P is log concave. This follows from a result due to Prekopa (1973) which 

asserts that marginal distributions of log concave distributions are log 

concave. With 

there is a log concave version of the conditional density of w1 given w
2 

{see 

the remarks at the end of Section 2). Thus 
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~Pfw 1 + ew
2 

£ c1w
2 

= w} 

~P{W 1 + Bw £ clw2 = w} (4.15) 

Let f 0 (w11w> denote the version of the conditional density of w1 given w2 

described in Section 2. For the moment, assume that 

(4.16). 

This identity is verified below. Under this assumption, the log concavity of 

f
0

C·lw
1

) implies that 

is a convex symmetric set for each a > O. Thus, Anderson's Theorem shows that 

is non-increasing for 8£[0,m). Thus, averaging over w2 shows that (4.13) is 

non-increasing. Tnis completes the proof modulo the verification of (4.16). 

The verification of (4.16) goes as follows. The joint density of (W1, w
2

), 

say f 1 Cw1, w
2

) is log concave. Bec~use of assumption 4.12(i), 

so 



Picking 

L((gZ)'u (gZ)'t) = L(Z'g'u Z'g't) (4.17) - o• - o• 

Picking g' =-I in (4.17) shows that n 

g' I -2tt 
n 

(4.18). 

which is in G0 for the two possible values of t shows that 

( 4·. 19) 

and thus 

( 4. 20). 
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The relations (4.18), (4.19) and (4.20) show that the joint density of (W
1

,w
2

) 

can be chosen so that 

f 1 ( w 1 , w 2 ) = f 1 ( -w 1 • -w 2 ) 

f 1Cw1,-w2) = f 1C-w1,w
2

) (4.21). 

Tne relations (4.21) together with the discussion at the end of Section 2 show 

that (4.16) holds. The proof is complete. D 

Remark 4.2 

Theorem 4.2 can be extended via a convex combination argument in much the 

same way that Theorems 3.2 and 3.3 were extended in Remark 3.1. For example, 
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let [ 1 denote the class of densities f such that 

{i) f{gz) = f(z) for all gEGO' ZEV 

(ii) the function~ defined in (4.11) is decreasing. 

Obviously [ 1 is a convex set. By Theorem 4.2, [ 1 contains the log concave f's. 

Hence, [ 1 contains convex combinations of the log concave f's which satisfy (i). 

In particular, here is useful corollary. 

Corollary 4.2: Suppose that the density of Z, ~ay f, satisfies 

(i) f(gz) a f(z) for all geG0, z£V 

(ii) fzjf(z) ~a} is a convex set for all a > o. 

Then~ defined in (4.11) lg decreasing. 

f!:..22£: The argument is the same as that used in Remark 3.1. o 
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