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if H[i,1] > 0 then VADIPUFUNC(,0,3) else

if H[i,1] = -1 then |

begin PUTEXT1((}); FLOP(3,1,HC[HIi,3])s PUTEXT1({)}}) end else VADIPUST(i,0,3);
real procedure VADIPUCOMPFORM(i.n,l); value i3 integ.ef in,l3

begin real a,b; integer p,qs switch SS:= value,diff,output,sum,product,quotient;
procedure A(a,b,st)s real aj integer b; string sts
begin if 1 = 1 then VADIPUCOMPFORM:= a else if 1 = 2 then 1:= b else

begin PUTEXT1(st); OUTPUT(H[i,3]); PUTEXT1({)}) end; goto END

end; VADIPUCOMPFORM:= 1; goto SS[i]; |

value: a:= VALUE(H[i,1]); b:= VALUE(H[1,3]); goto SS[H[i,2}+3];

diff: p:= DIFF(H[i,1],n); q:= DIFF(H[i,3],n); goto SS[HI[,2}+3];

output: PUTEXT1({(}); OUTPUT(HI1i,1]); goto SS[H[i,2]+3];

sum: A(a + b,S(p,q),<If+:!>);

product: A(a x b,S(P(p,HIi,3]),P(H[i,1],q) .4

quotient: A(a / b,if p = 0 A q = 0 then 0 else Q(D(P(p,H[1,3]),P(H[i,11,q)),
P(H[1,31,H[1,3D).4/H)s | :

END: ends

real procedure VADIPUFUNC(i,n,l); value i; integer i,n,l3 if 1 = 3 then

begin VADIPUFUNC:= 1; INFORM‘FUNC(O,—H[i,l],i); PUTEXT1(();
OUTPUT(H[1,3])s PUTEXT1({)})

end;

real procedure VADIPUST(i,n,l); y_;a_g_x_g_ i integer i,n,ls
begin VADIPUST:= 0; if 1 = 3 then
begin if H[i,1] = -2 V H[i,1] = -3 then
begin if H[i,1] = -2 then PUTEXT1{xA(}) else
PUTEXT1(yA}); ABSFIXP(2,0,Hi,3]); PUTEXT1{)})
end else if HIi,1] = -10 then | .
begin if H[i,2] < 0 then PUTEXT1({d}); PUTEXT1({U[});
ABSFIXP(1,0,H[i,3]); PUTEXT1(4}); if H[i,2] < 0 then
begin PUTEXTL(/a}); if H[i,2] = -1 then PUTEXT1(4x}) else PUTEXT1(4y}) end
end end end; |

real procedure INFORM FUNC(a,i,j); value i,j; real a; integer i,j;
begin integer fk; Boolean PU; switch SS:= SIN,COS,EXP,LN,SQRT,ARCTAN;
Erocedure A(f,st,psi)s integer psi; real procedure f; strirg_ sts
begin integer n; if i = 0 then begin fk:= fk + 1; PSI[fk,1]:= psi; PSI[fk,0]:= 1 end
else if PU then begin PUTEXT1(st)s goto END end else




-1-

begin comment Test program for the Cauchy problem R1050 RPR 310565/39492;
integer kmaxkemax; kmax:= XEEN(1023); kemax:= XEEN(1023 x 1024): 1024;
begin integer kkckakfXf; integer array PSI[1:6,0:2],PHI[1:2],H[0:kmax,1:3];

array HC[0:kcmax],fac[0:20];

integer procedure STORE(i,l,j); value i,j; integer i,1,j3
begin STORE:= k:= k + 13 if k > kmax then begin PUTEXT1({k too large}); stop ends
Hlk,1]:= i3 Hk,2]:= 13 Hk,3]:= j

end;

integer procedure S(i,j); value i,j; integer i,j; S:=

if i =0 then j else if j = 0 then i else STORE(,1,j);
integer procedure D(i,j); integer i,j; D:= S(i,P(NUMBER(-1),j));

integer procedure P(i,j); value i,js integer i,j; P:=

ifi=0V j=0then O else if i = 1 then j else
if j =1 then i else STORE(,2,j);
integer procedure Q(i,j); integer i,j; Q:= STORE(L,3,));

integer procedure SIN(i); integer i3 SIN:= STORE(1,0,i);

integer procedure COS(i); integer 1i; COS:= STORE(2,0,i);

integer procedure EXP(i); integer i; EXP:= STORE(3,0,i);

integer procedure LN(i); integer i3 LN:= STORE(4,0,i);

integer procedure SQRT(i); integer i3 SQRT:= STORE(5,0,i);
integer procedure ARCTAN(i); integer i; ARCTAN:= STORE(6,0,i);
integer procedure NUMBER(c); real c;

begin kc:= ke + 13 if ke > kemax then begin PUTEXT1(dkc too large})s stop endg
HC[kcl:= ¢c; NUMBER:= STORE(-1,0,kc)

ends

real procedure VALUEC(); value i integer i; VALUE:=
if H[1,2] > 0 then VADIPUCOMPFORM(1,0,1) else

if H[i,1] > 0 then VADIPUFUNC(i,0,1) else

if H[1,1] = -1 then HC[HIi,3]] else VADIPUST(i,0,1);
integer procedure DIFF(i,,n}; value i,n; integer i,nj

begin integer js j:= 2; if i = n then DIFF:= 1 elge if H[i,1] = -1 then DIFF:= 0 else
begin g_f_zH[iQZ]'> 0 then VADIPUCOMPFORM(i,n,j) else
if H[i,1] > 0 then VADIPUFUNC(,n,j) else VADIPUST(i,n,j); DIFF:= j

end ends ,

procedure OUTPUT(i); value i; integer is
if H[i,2] > 0 then VADIPUCOMPFORM(i,0,3) else
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S2: IP:= SUM(i,0,n[1],SUM(j,1,n[2],j X alrp,cli,jl] x a[lp,c[n[l]—i,n[?]—j]]));

END: a[lp,cln[1],n[2]1]:= alp; alrp,c[n[i]n[2]]}:= arp

end;

integer procedure CALC ARRAY(i); value i; integer i

if H[i,1] = -1 then begin CALC ARRAY:= ka:= ka + 13 a[ka,0]:= HC[H[i,3]] end

else if H[i,1] = -2 V H[i,1] = -3 then

begin integer p; p:= -H[i,1] - 13 CALC ARRAY:= ka:= ka + 13 alka,c[n[1],n[2]]]:=
if n[p] > H[i,3] V n[3 - p] # 0 then 0 else if H[i,3] = n[p] then 1 else FAC(HI[i,3])
/(FAC(n[p]) x FAC(H[i,3] - n[p])) x (if p = 1 then x0 else yO)MHIi,3] - n[p))

end else if H[i,1] = - 10 then ‘

begin integer p; p:= H[i,3]; CALC ARRAY:= ka:= ka + 1} i_f_type[p] = -H[i,2] A
n[1] = 0 A n[2] = 0) then f[ka]:= unknown(p] else alka,c[n[1],n[2]]]:= (if HI[i,2] =
0 then ulp,n[1],n[2]] else if H[i,2] = -1 then u[p,n[1]+1,n[2]}x(1 + n[1]) else
if H[i,2] = -2 then u[p,n[1],n[2]+1]x(1 + n[2]) else 1)

end else if H[i,2] > 0 then | |

begin integer ml,m2; switch SS:= sum,product,quotient;

procedure A(al,b,cl); real al,b,cl:
begin switch SP:= 50,51,52,53; goto SP[(sign(f[m1]+.1)+1);_ 2 + sign(f[m2]+.1)+2];
S0: alka,c[n[11,n[2]]]:= a1l + b x a[mi,c[n[1],n[2]]] + c1 X a[m2,c[n[1],n[2]]1];

goto END;

S1: flkal:= S(INUMBER(al + cl1 x a[m2,c[n[1],n[2]]]),P(NUMBER(b),f[m1]));
goto END; ‘

S2: f[kal:= S(NUMBER(al + b X a[ml,c[n[1],n[2]1]]),P(NUMBER(c1),f[m2]);
goto END;

S3: flkal:= S(NUMBER(al),S(P(NUMBER(b),f[m1]),P(NUMBER(c1),f[m2])));
soto END / \ ‘ ‘ &

ends ml:= CALC ARRAY(H[i,1]); m2:= CALC ARRAY(H[i,3]);
CALC ARRAY:= ka:= ka + 1} goto SS[H[i,2]];
sum: A(0,1,1);
product: A(IP(m1,m2,0),a[m2,01,(if n[1] = 0 A n[2] = 0 0 else a[m1,0]);
quotient: A(-IP(m2,ka.,d)/a[mz,O],l/a[mz,0],—a[ka,0]/a[m2,0])," |
END: end else if H[i,1] > 0 then |
begin integer p,j,ml; ml:= CALC ARRAY(H[i,3])); kpsi:= kpsi + 13 psilkpsi,~1]:= i
psilkpsi,0]:= mi1; for j:= 1 step 1 u_rl_ii}PSI[Hfi,ll,O] do philkpsi,jl:= ka:= ka + 13
CALC ARRAY:= philkpsi,1]; p:= if n[1] = 0 then 2 else 1;
for j:= 1 step 1 until PSI[H(i,1],0] do
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begin INFORM FUNC:= f(a); goto END end

end; INFORM FUNC:= 03 PU:= i < 03 is= abs(i)s if i = 0 then

begin fki= 03 goto SIN end else goto SS[il; ‘
SIN: if j = 2 then goto COSS; A(sin,¢sin},PHI[2]);

COSsS: Alcos, &b, P(INUMBER(-1),PHI[1]); PSI[1,2]:= PSI[fk,1]; fk:= 13 PSI[1,0}:= 23
COS: if j = 2 then goto SINN; A(cos,fcos},P(NUMBER(-1),PHI[2]));

SINN: A(sin,<},PHI[1]); PSI[2,2]:= PSIffk,1]; fi:= 23 PSI2,0]:= 23
EXP: Alexpsexp}, PHI[1]);
LN: A(ln,{In},Q(1,Xf)); \
'SQRT: Alsqrt.¢sqrt},QINUMBER. 5),PHI[1]);
ARCTAN: A(arctan,darctan},Q(1,5(1, P(Xf XON);
END: ends
procedure TAYLOR(dimension,M,F,N,x0,y0,u); value dimension,M,F,N,x0,y03

integer dimension,M,N; real x0,y0s array u; integer array F;
begin integer nu,m,kakpsi,K,KC,AB,L,j; integer array typell:M];

procedure INITIALIZE(i); value i; integer i
begin AB:= AB + 13 if H[i,2] > 0 then
begin INITIALIZE(HIi,1]); INITIALIZE(HI1,3]) end else if H[i,1] > 0 then
begin integer k,l3 kpsi:=- kpsi + 13 1NITIALIZE(H[i,3]); AB:= AB - 1;
k:= PSI[H[1,1],0]; nu:= if k > nu then k else nu; for 1:= 1 step 1 until k do
begin AB:= AB + 13 INITIALIZE(PSI[H[i,1],1)) end
end else if H[i,1] = - 4 then AB:= AB - 1 else if H[i,1] = -10 then
begin if H[i,2] = -2 then type[H[i,3]]:= 2 else if H[i,2] = -1 A type[H[i,3]] 4 2
then typelH[i,3]}:= 1
end end;
for 1:= 1 step 1 until M do typelll:= 05 AB:= 0; kpsi:= nu:= 03
for 1:= 1 step 1 until M do INITIALIZE(F[1);
begin array a[1:AB,0:(if dimension = 2 then ((N—l)x(N+2)) 2 else N-l)],
integer array c[0:N-1,0:N-1],tp[1:M,1:2], unknown formula[l M],n[1:2], f[l AB],
phi[0:kpsi,0:nul,psi[0:kpsi,~1:nul;
real procedure IP(lp,rp,diff); integer lp,rp,diffs

begin integer i,j; real alp,arps switch S:= S0,51,S2;

alp:= a[lp,c[n[1],n[2]]]; arp:= alrp,c[n[1],n[2]]];

allp,c[n[1],n[2]]]:= alrp,c[n[1];n[2]]]:= 0; goto S[diff+1];
S0: IP:= SUM(i,0,n[1],SUM(j,0,n[2],allp,cli,j]] x alrp,c[n[1]-i n[2]-i1D); goto END;
S1: IP:= SUM(i,1,n[1]1,SUM(j,0,n[2],i x a[rp,cli,jl] x a[lp,c[n[l]-1,n[2]-—J]])), goto END;
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N do begin PUSPACE(8); ABSFIXP(1,0,j) end; PUNLCR; PUSPACE(16);
PUTEXT1(dul}); ABSFIXP(1,0,1); PUTEXT1(,i,il}) .
end; PUNLCR | |
end
end TAYLOR;
real procedure FAC(n}; value nj integer nj;

begin integer i; A: if n < kf then FAC:= fac[n] else
" begin for i:= 1 step 1 until 5 do faclkf+il:= fac[kf+i-1] x (kf+i);
kfi= kf + 55 goto A ' |
end end;
procedure CHANGE(,j); value i,js integer i,j;
begin H[i,1]:= H[j,1]s H[i,2]:= H[j,2]; HIi,3]:= HIj,3] end;
procedure CALCULATE(n,i,uxﬂinown); value n3 integer n; integer array i,unknown;

begin integer j,m,K; array c[0:n]; K:= k3 m:= n - 1;
A: for j:= 1 step 1 until n do c[jl:== VALUE(DIFF(i[n],unknown[j]));
c[0]:= - VALUE(i[n]); if abs(c[n]) < ,-10 then
begin if m = 0 then begin PUTEXT1({system is unsolvable}); stop ends

k:= K3 j:= i[m]s ilml= i[n]; iln]:= j5 m:= m - 1; goto A
end; j:= NUMBER(c[0]/c[n]); for m:= 1 step 1 until n - 1 do
je= if abs(c[m]) < »-10 then j else S(j,P(NUMBER(-c[m]/c[n]),unknown[m]));
CHANGE(unknown[n],j); if n > 1 then .
begin CALCULATE(n-;l,i,unknown); CHANGE (unknown[n],NUMBER(VALUE(unknown[n])))

end end;

ke:= k:= -13 NUMBER(0); NUMBER(I?; kf:= 03 fac[0]:= 1; Xf:= STORE(-4,0,0);
PHI[1]:= STORE(—4,0,0); PHI[2]:= STORE(-4,0,0)s INFORM FUNC(0,0,0)s
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begin if flm1] < 0 then alphilkpsi,jl,cnli],n(2]]}:= (if n[1] = 0 A n[2] = 0 then
INFORM FUNC(a[m1,0],H[1,1],j) else IP(psilkpsi,jl.m1,p)/nlp] +
a[psi[kpsi,j],0] x alml,c[n{1],n[21]])
else flphilkpsi,jll:= SINUMBER(IP(psilkpsi,jl;m1,p)/n[p)),
P(NUMBER(a[psi[kpsi,jl,0]),f{m1]) ‘
end end else if H[i,1] = -4 then CALC ARRAY:= HIi,3];

comment Continuation of TAYLOR; K:= k; KC:= kc; n[1]:= 03 n[2]:= 0;

for k:= 1 step 1 until AB do

begin f[kl:= -13 for j:= 0 step 1 until (if dimension = 2 then ((N-1)x(N+2)): 2
else N-1) do alk,jl:= 0 |

g_@gp_r_l:#o_s_gggl until N-1 do for j:= 0 step 1 until N-1-1 do

clljli= ( x (2 X N + 1 - j); 2 + 15 for 1:= 1 step 1 until M do

begin tpll,1]:= typell] - 2 x (typell]: 2); tpl1,2]:= typell]: 2 end;

AA: k:= K; ke:= KC; for 1:= 1 step 1 until M do unknown[l]:= NUMBER(0);
kpsiz= kas= 03 for 1:= 1 step 1 until M do formula[il:= f[CALC ARRAY(F[]DI;
if n[1] = 0 A n[2] = 0 then goto CALC PSI; CALCULATE(M,formula,unknown);
for 1:= 1 step 1 until M do ufl,n[1}+tp[l,1],n[2]+tp[1,2]]:= VALUE(unknown[1)/(1 +
(if typell]l = 0 then 0 else nltypell]])); for j:= 1 step 1 until ka do
begin if f[i] > 0 then |

begin alj,c[n[1],n[2]]]:= VALUE(f[j); CHANGE(f[j], NUMBER(al[j,c[n[1],n[2]]])
end end; | | |
CALC PSI: for j:= 1 step 1 until kpsi do
begin 1:= Hlpsilj,-11,1]; H[Xf,3):= psilj,0]; flpsilj,0]1:= -1; for m:= 1 step 1
until PSI[1,0] do begin H[PHI[m],3]):= phi[j,m]; flphi[j,m]]:= -1 ends for m:= 1
step 1 until PSI[1,0] do psij,m]:= CALC ARRAY(PSI[l,m])

end; if dimension = 2 then ‘

begin n[1]:= n[1] - 15 n[2]:= n[2] + 15 if nf1] = -1 then
begin n[1]:= n[2]; n[2]:= 0 end; if n[1] # N then goto AA end else

begin n[1]:= n1] + 13 if n[1] + N then goto AA end;

k:= K3 ke:= KC; for 1:= 1 step 1 until M do

begin PUNLCR; for K:= (if dimension = 1 then 0 else if typell] = 0 then N-1
else N) step -1 until 0 do
begin PUNLCR; ABSFIXP(1,0,K); for J:= 0 step 1 until N - K — (if typell] = 0

then 1 else 0) do FLOP(5,1,ull,},K])

end; PUNLCR; PUTEXT1( j,i  ¥)s ABSFIXP(1,0,0); for j:= 1 step 1 until




PUTEXT1(
Results of test program for the Cauchy problem RPR 310565/39492});
begin integer K,KC,n,un,x,y,xys integer array F,U,dUdx,dUdy,xttp,yttp[1:2];
array u[1:2,0:4,0:41;
procedure A(d,M,F1,F2,x0,y0); integer d,M,F1,F2; real x0,y0;
begin ki= K3 ke:= KC3 F[1l:= F1; F2]:= F2; PUNLCR;
PUTEXT1({The differential equation(s}}); PUNLCR; OUTPUT(F[1]);
PUTEXT1(4 = 0}); if M = 2 then
begin PUNLCR; OUTPUT(F[2]); PUTEXT1¢ = 0}) end;
PUNLCR; PUTEXT1({dimension M x0 (y0)}); PUNLCR;
PUSPACE(2); ABSFIXP(1,0,d); PUSPACE(10); ABSFIXP(1,0,M); PUSPACE(6);
FLOP(2,1,x0); if d = 2 then FLOP(2,1,y0); TAYLOR(d,M,F,4,x0,y0,u)
end; for ni= 1,2 do |
begin U[n]:= STORE(-10,0,n); dUdx[n]:= STORE(-10,-1,n); dUdy[n]:= STORE(~10,~2,n);
xttp[nl:= STORE(-2,0,0); yttplal:= STORE(-3,0,n)
ends x:= xttp[1]; y:= yttp[1l; xy:= Plx,y); Ki= k3 KC:= ke;
n:= -13 for un:= 1,1,0,0,0 do begin ni= n + 13 u[1,n,0]:= un end; ul1,0,1]:= 03
A(2,1,8(P(U[1],dUdy[1]),x),0,0,0)5
ul1,0,0]:= 13 |
A(2,1,8(LN(U[1]),y),0,0,0);
ul1,0,01:= 1;
A(1,1,D(ARCTAN(Q(SIN(U[1]),COS(U[1]))),EXP(xttp[2])),0,0,0)3
u[1,0,0]:= u[2,1,1]:= O3 u[1,1.,0]:= u[2,0>,.d]:= 13 - .
A(1,2,D(dUdx[11,U[2]), S(dudx[2],U[1]),0,0);
ul1,0,0]:= 03 u[2,0,0]:= 1; ‘
A(2,2,D(U[1],LN(xy)), D(U[2],SQRT(xy)),1,1);
ul1,0,0]:= u[2,0,0]:= -1; S
A(2,2,5(Q(1,U[1]),Q(COs(x),S(xy,1))), S(S(xy,1),P(U[2],C0S(x))),0,0);
for n:= 0,1,2,3,4 do u[1,0‘,n]:= uté;n,o]:= 1/FAC(n); u[1,1,0]\:‘=‘ u[2;0,1]:= 03
A(2,2,D(LN(S(dUdx[1],8(dUdy[2],1))), LN(S(xy,1))),
D(SQRT(S(D(dUdx[1],dUdy{2]),1)),SQRT(S(xy,1))),0,0)

end

end

end
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Results of test program for the Cauchy problem RPR 310565/39492
The differential equation(s)

(UL 1 dU[ 1 Vdy)esM 1 N =0

dimension M x0 (y0)
2 1 +.00  +.00

4 -,00000

3 -.00000 -.00000

2 -.00000 +. 00000 -.50000,+0

1 +.,00000 -.10000,+1 +.10000,+1 -.10000,+1

0 +.,10000,+1 +.10000,+1 +.00000 +,00000 +.00000
i 0 1 2 3 4

ul 1 .i,j]

The differential equation(s)

(In(U[ 1 D+yM 1D =0

dimension M x0 (y0)
2 1 +.00 +.00

3 -.16667,+0

2 +.50000,+0 —.00000

1 -.10000,+1 -.00000  -.00000

0 +.10000,+1 -.00000  -.00000  —.00000

i 0 1 2 3 4
ul 1 .,1,i]

The differential equation(s)
(arctan((sin(U[ 1 ))/cos(U[ 1 D)+((-.100,+1 Jxexp(xAl 2 ))) =0
dimension M X0 (y0) ‘

1 1 +.00 '

0 +.10000,+1 -.00000  +.10000,+1 +.00000
i 0 1 2 3 4
ul 1 ,1,3]
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The differential equation(s)

(dU[ 1 1/dx+((-.1004+1 XU[ 2 1) = 0

@U[ 2 Vdx+U[ 1 ) = 0 '

dimension M %0 (y0)
1 2 +.00 .

0 +.00000 +.10000,+1 +.00000 -.16667,+0 —.00000

3ol 0 1 2 3
ul 1 ,i,j]

0 +.10000,+1 +.00000  —.50000,+0 —.00000
i 0 1 2 3
ul 2 ,i,j]

The differential equation(s)

(UL 2 }((-.100,+1 Ixsqrt(GA( 1 xyM 1)) =

dimension M x0 (y0)
2 2 +.10,+1 +.10,4+1

3 +.33333,+0
2 —-.50000,+0 +.00000
1 +.10000,+1 —.00000  +.00000

0

0 +.00000 +.10000,+1 -.50000,+0 +,.33333,+0

i 0 1 2 3
ul 1 ,i,j]

3 +.62500,-1
2 -.12500,+0 —.62500,-1
1 +.50000,+0 +.25000,+0 —.62500,~1

0 +.10000,+1 +.50000,+0 —.12500,+0 +.62500,-1

sl 0 1 2 3
u[ 2 :isj]

4

+.41667,-1
4
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The differential equation(s)
(((+.1005+1 )/UL 1 DcosGAC 1 NAGAC 1 xyA( 1 )+(+.100,+1 ) = 0
(AC 1 xyAC 1 )+(+.100,+1 N+UL 2 IxcosGA( 1 M) =0

dimension M x0 (y0)
2 2 +.00 +.00

3 -.00000

2 -.00000 -, 00000

1 -.00000 -.10000,+1 -.00000

0 -.10000,+1 -.00000 -.50000,+0 -.00000

i 0 1 2 3 4

ul 1 ,i,j]

3 -.00000

2 -.00000 -.00000

1 -.00000 -.10000,+1 -.00000

0 -.10000,+1 -.00000  —.50000,+0 —.00000

ji 0 1 2 3 4

ul 2 ,i,jl
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The differential equation(s)
(In((@U[ 1 V/dx+(dU[ 2 1/dy+(+.100,+1 M+
((-.100,+1 WIn((GeN 1 XgAC 1 ))+(+.100,+1 M =

(sqrt((dUT 1 1/ax+((-.100,+1 xdU[ 2 1/dy))+(+.100,+1 )))+
((-.100,+1 Ixsqr(((xA( 1 )xyA( 1 ))+(+.100,+1 ) =

dimension M x0 (yO)
2 2 £.00  +.00

4 +.41667,-1

3 +.16667,+0 —.00000

2 +.50000,+0 -.00000 -.00000

1 +.10000,+1 -.00000  +.50000,+0 —.00000

0 +.10000,+1 +.00000 -.00000 -. 00000 -.00000
ji o0 1 2 3 4

ul 1 ,i,j]
4 +.00000

3 +.00000 +. 00000
2 +.00000 +. 00000 +.00000
1 +.00000 +.,00000 +.00000 +.00000
0 +.10000,+1 +.10000y+1 +.50000,+0 +.16667,+0 +.41667,~1
i 0 1 2 3 4
ul 2 4,j]
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1, Introduction

Many physical problems lead to the so=called Cauchy problem (see ref [?J

p- 39), i.e. the - -r.inatica of functions Uk(x.y) satisfying the

partial differential equations

3Uk aUk
v . : = 1
Fl(ax * 3y * Uk’ x5 ¥) © (1.1)

fOI“k’—cﬁs 60y IVI and1=19 ST I{

and the initial conditions

Uk(x,o) = Gk(x) for k = 1, ses, Mo (1.2)
Sometimes it is possible to express the functions Uk in the form of
Taylor series
= y i j
Uk(x,y) ) uk,i,j X yY. (1.3)

i=0 j=0

In this report we will be concerned with the calculation of the Taylor

coefficients N
ukslaJ

In general this is an elementary but tedious calculation, we made there=-

fore an ALGOL 60 procedure (called TAYLOR), by means of which a digital

computer can calculate these coefficients.

Extensive use is made in this procedure of a set of ALGOL 60 procedures
by which one can do algebra with the computer. These procedures will be
described in section b4, they enable the user to store, differentiate,
evaluate, or output a rather general type of forrmlae, We remark that

a similar set of procedures was used by the author in ref [13, to
calculate a second-order approximation of the solution of a complicated

non=linear problem,

We require in the sequel that the Cauchy problem (1.1), (1.2) satisfies
the following conditions
1. The. differential equations (1.1) and initial functions (1.2) are

analytic in their variables in a nabourhood of the point x = 0, y = 0



BFl .
2, det- {aaaé;:} # 0 in x=0, y=0 (Tb)-l»)
o
3. The M eguations
BUk BUk
Fo (s 8 Ao s U (0,0),0,0) =0 (1.5)
1'ox Jx=0ay= ay.Jx=0,y=O k

oU.

are explicitely solvable for the quantities - s
Y = -
x=0,y=0
We require that these quantities are given as part of the initial

conditions,

There are two cases for which condition 2 is not satisfied, but for

which the Taylor coefficients may still be calculatable,
ou
i, For a certain k, the variable %=, does not occur in the equations

(1.1), but condition (1.4) still holds if Q. is replaced by
18]

£
ox ° ‘
The initial conditions should then be replaced by Uk(O,y) = Gk(y),
oU
and e should be given beforehand.
%=0 ,y=0 U, 3U
2, For a certain k neither one of the variables 5 or e enter in
equations (1.1), but condition (1.4) still holds if Q  is replaced
by Ukc

In this case one does not need an initial condition for U, .
We require however (condition 3) that Uk(0,0) is given.
Important examples of these cases are 3
i, ordinary differential equations: Fl(EEE » Ups x) =0

(u

k? Xy y) = 0,

2, implicit equations Fl

In section 2 we will define the process by which the Taylor coefficients
can be calculated,

In section 3 a motivation of the general form of the Cauchy problem
‘will be given,; together with a discussion of some literature,

Section 4 is devoted to the ALGOL 60 procedures for doing algebra on

the computer.



The procedure TAYLOR will be discussed in section 5 and in section 6

we reproduce the program by which some test cases were calculated,

We remark that the procedure TAYLOR is very inefficient with respect

to memory space and calculation time,

In a forth-coming report howevery we will describe a procedure which
generates an ALGOL program.

The generated ALGOL program is then intended for the actual calculation
of the Taylor coefficients, and it is made as efficient as is reascnably

possible with respect to memory space and calculation time,

2.1, The Cauchy problem

Consider the differential equations (1.1) and differentiate the Fl
n times with respect to x and m times with respect to y, obtaining

for n+m > O

u oF VPR ar Vg
L (BP = n,m 9 n m) *eeo =0 (2.1)
k=1 Tk alay™ % axPay
BUk aUk
in which Pk = 5 and Qk = 35— o
Terms 1nvolving derivatives of Pkg Qk and Uk
c 4
a1 ™y
Pk
1,3
] . . . <.
x 9y with i <n, j < m and i+] # n+m
i+]
9
. %
ox " 3y
Bi*jU
and — with i <n; J < m,
x By‘]
and terms involving partial derivatives of Fl with respect to x and y
are represented by the dots in (2.1),
The Taylor series for Uy is
= Y n_m { 2%
Uk z L uk,n,m Xy (1.3

n=0 m=0



{Here and in the sequel we denote the function by & capital letvier

and its Taylor coefficientsfby a small letter).

Since

a“*’“Pk

={n+ 1)} m!

anaym uk,n+1,m ‘\
and ' r (2.2)

an+ka |

n, m =ni (m+ 1) uk n mti

ax" 3y ss ® )

relation (2,1) is a linear relation betwesen the coefficients u,
o prat 1

and uk9n+1 9Inca
We may therefore ukgn5m+? express as a functicn of the ul'igjs with

1= 1, socy M and (iﬁj)gVn n (see figo 1)

9

i + + -+ - + +*

3 + + -+ + + -+
(nym+1)

2L + + + + +

i - - + + + + +

j=0 { { . | ! I ]

i= 1 2 3 L 5 6
fige 1

fig. 1 represents a grid of points (i,j) corresponding to the index

pairs 1,3,



Thus U pmbt A(ul,i,j) | (2:3)

3 ;S 3 (2024')
with (na)eV%m o

From the initial conditions and condition (1.5), the W s ge for
. 99
1 =04 1, 2, 000 and can be obtalned,
9 ? 9 uk50g1 ]
We are thus able to calculate consecutively the w for the
ot g1
points

(nym) = (1,0),; (0,1), (2,0)5 (141), (0,2), (3,0), (2,1), (1,2), (0,3),
(hao)s (391), (292)9 550 o

In the sequel we will use the ordering of the grid points (i,J) just
as is indicated by the above sequence.
This ordering is precisely the order of the grid points lying on the
broken line in fig. 2, drawn from (0,0) to (ngm).
To each grid point we assign an index S(n,m), egual to the number
of points preceding and including the point (n,m) on this broken line.
Then '

1

S(n,m) =3 (n+m+ 1){n+m) +n+ 1, (2,5)
i
s + + + + + +
3 + 4 + + + +
3R
§Q
\\
~N
NN
N (n,m
2 K, R ) + + + +
\Y
Q N \\ \\
\\ N b \
\( ~ < \\ ©
NI AN RN
~
q C g \» \\ ;‘\ + + +
N N AN NN
Iy N\ AN N e
N ~ \\\ \\\
’R \\ N\ N\ O
AN ~ N\ N A
j= N | i 2 i .
i= 1 2 3 4 .5 6



fige 3

The order in which the w are calculated, is such that S{n,m) .
$74 3%

increases,
in fig. 3 we illustrate which W s P are already calculated or known,
‘ ﬁ D i o <
if it is the turn to U o oaq B0 be calculated, these index pairs (1,J)
2l

lie in W o
nym

Above ye sketcgﬁd how the Taylor coefficients can be calculeted for
the case that e enters in the differential equations.

It is obvious that the whole procedure can also be derived in the

U ou oU
cases that Emﬁ or both === and === are lacking in the differential
v dy 9x

equations,

The method just described can be laid down in an ALGOL program, This PTo=
gram has to differentiate the differential equations and construct

from the derivatiwve, the function A in equ. (2.3), by which T
can be calculated. This is already done by Perlis, Iturriagia and
Standish [8] .

There is however a major disadvantage attached to this approach.

This disadvantage is that the derivatives of the differential equations,
on the form of which we do not want to impose heavy restrictions, will
in general become very lengthy so that the memory capacity of the

computer will soon be exhausted,



We chose therefore an alternative method, which is more arduous to
describe but which has the adventages that, firstly the memory capacity
will not as soon be exhausted and secondly it bears the possibility to
separate the algebraic part of the calculation from the numerical part
of the calculation in two different programs (which will be the subject

of a next report).

2,2, The structure of the differentisl eguations

Before going on, we have to define the structure of the differential
equations.
In section 4 this structure will be defined by means of Backus notation,

we will define it now in a less stringent way.

Roughly speaking, the differential equations are formulae in which the
only operations are the algebraic operations: sum, difference, product
and quotient,

These operations will be assumed to be binary.

The other constituants of the formulse are: real numbers, the variables
aUk aUk ‘ . .

i 3;* N ng %, ¥ and functions of a single parameter (the parameter
may be a formula itself).

Since the difference of two formﬁiae: A = B, can be replaced by

A+ {=1)¢B, we will assume that the difference operation does not occur

in the differential equations.

Putting 1t more precisely, the differential equaticns may have the form
of the formula F, which is recursively defined in the table below in
which A and B are also of the form F. We require that A and B are less
"complicated", or contain less algebraic operations and function symbols
than F. In other words, F should be built up with a finite number of

symbols.



case F

1 A+B

2 A.B

3 A/B

L c ¢ is some real number

5 Uk k is some positive integer
oU.

6 k " "
3x
au

7 k i1 A1
ay

8 Py p is some positive integer

9 yP " "

10 o(A) ¢ is some function symbol

table 1

If F is of the form 1, 2 or 3 we call F a compound formula, in the case

4, F is called a number, in the cases 5 until 9, F is called a simple

term and in the case 10, F is called a function,

For the function ¢ we require firstly, that there exists a set of first

order ordinary differential equations

d@k
?X.J = \}'k(X‘ @1’ coog @v) for k=1gseo,\) (266)

of which ¢ = ¢1(X) is a solutiony and secondly that the value of the
functions @v(x) is well-defined for every real X,

Tor the form of the functions ¥, we require that it is the same form as
the form of the function y, defined in table 2, in which A and B are also
of the form V.

Also for VY require that it has a finite structure.



zase Y

1 A+B

2 AsB

3 A/B

b ¢ & :
5 @G & &3
é X

teble 2

1

The functions used in this report are the standard functions of the

I~

ALGOL 60 report {ref DJ) {excluding abs and sign).

The differential equations of these functicons are listed in table 3.

¢, v ¥
sin 2 ?T = ¢2; WE = =¢, 3 @2 = COoS
cos 2 ¥, = m¢?a Wg = ¢?, ®2 = sin
1 S
exp %1 ©§
1n i L = /X
sqrt 1 ¥, = .5/0,
arctan 1 ¥, = /01 + X:X)
Leble 5

Let us illustrate the form of F by means of the following examples,

sich will alsc be used further on,

Example 1. The differential equation F, = U, 35— * x = 0 can be brought
in the form of a formula by defining the A, 0103 A5
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Ay =1,
au,

b =5
AQ = A,s ° A2
Ah = x

Fﬂ = A5 = A3 + Ah

Example 2. The implicit equation F1 = 1n U1 +y =0

“A1 = U1
A, = n(a,) = ¢,1(A1)
A3 =y

F1 = A& = A2 + A‘3

Aca i

o

A6=X
d¢1
T T A T A5l

We will now describe the recursive process for calculating the Taylor

coefficients f of Fy if it is assumed that the w, ; ; are known for
o nym slsd

all (i,7).

In section 2.2.5 we will c¢larify this odd assumption,

2,2,1 The zer’c)z'fg order Taylor coefficients

To start the calculation process we have to define fo 0°
]

If F is of the form 4 untili 9 in table 1, then fy o follows from
®

table 5 at the next page.
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let F be of the form 1; 2, 3 or 10 in table 1,

Assume a and b are already calculated then f follows from
0,0 0,0 0,0
case fOSO
1 +
! 8,0 ¥ Po,0
2 25,0 ~ 0,0
29,0/%0,0
10 ¢(a090)
table L

Using the fact that A and B are defined in the same way as F but are
"less complicated”, it follows that all zeroit order Taylor coefficients

of the formulae constituting the differential equations {1.1) are defined.

2.2,2 The Taylor coefficients of a number or a simple term

If F is of the form L until 9 in table 1, then fn can be calculated

ol
by means of
case fn n
as
o § © PR ] %
I c n,0 GmgO 6193 is the Kronecker §
> ukgngm
6 (n + 1)uk,n-!"lgm
7 {m + ‘!)ukpnwH )
8 ) §
n,p GmDO
9 n,0 m,p

table 2



2.703 The Tavive ooeliliiisnis o) & compound

Let F be of the form 1, 2 or 3 in table 1.
We assume:
to all f; . are already calculated Iov 8{i,3) s 8inm) = 1 in

1,3 -

S is defined in (2.5}

fedo

“ o 25 2% < ey
2, all a, . and b. . are alresdy eswculsted for S{i,50 < 8l=.m’

1¢d lad ) -
Then T follows from the following table
nym
case f
n,m .
3
iy ngm
noom
2 L E & f=1 ¢Me
1=0 j=0 5d 1] J
n n
]
3 LR -1 Yogow
bOQG nem 0 n.m 120 gmp  ted D=lgme=]
RN
{The symbol )} 1is defined by :
3
nooom, a m i
1 1 c = ] 1 ¢ c c )
L L o o = woe I =
. . 1 . . 1 0,0 nym !
i=0 j=0o **Y  i=np j=0 oY g > |
]

3- 1

By means of this table f . iz recursively defined, firstly with respect
to 1ts indexss and secondly with riopect to thewsy in which F ig definsd,

P

If the original differential equations (1.°) did not contain

symbols, then the calculation process, concerning fn - would be
® 1
zompletely defined,

Let us 1llustratz therefore this case by means of example .

If the coefficients u, were known then each right-hand side

8
s
b
-
¢

133
TH e f
L= 08

asquations below is a we

w

5.5 - ¢ g b
LLed nunoer.



%,,0,0 = °

fa0.0 5 %5,0,0 " ?3,0,0 " %,0,0
n= 1 m=0

'ajaﬁao B *19190

a"?@ﬁfﬁo - ilitué‘éi

83.9,0 © 21,0,0 %2,1,0 7 #,1,0 %2,0,0

5,1,0 0
fﬁ@ 50 ) a59190 N #3,1,0 ’ ahz“ao '
ette

2.2.4 The Tayler coefflcients of a functicn

let F be of the form 10 in table 1,

Assume:

o

'} The Taylor coefficients a, . are already calculated for 8{

P ¢
2d) < Sin,
o3 bd i = ;

2! The Taylor coeffilclents ¢, . ., scey O - -
: T31sd Velad

for 8{i,j) < S 1

are already calculated

P

n,m) = 1

3} The Taylor coefficlents ¢, . ., oosy Y . . are already calculated
tolgd Yelgd

for 8(i,j) < S(n,m) = 1

~ and ¥ low

easily fol
,0,0 k,0,0 J

We remark that the zero=th coefficlents ék

from
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o {(2.8)

¢ k(aogo)

k,0,0

- { )
and *e,0,0 = Yel80,00 #1,0,000 008y 0,0 129

Differentiating the functions @k(A) with respect to x, we obtain

9%

=R = v (a 0(A), ooy 0 (A)) < 2R, K=,V (2010)
Hence we have for n # 0
1 ¢ 7 g
¢kangm = §’i2? jZO wkgnwigmmj 1 aiaj° (2.11)
from which ¢k9n9m and thus fngm = ¢?an.m can be calculated.

If n = 0 then we may differentiate ¢k(A) with respect to y and we get

g Boom
¢ = oo 11) o o ] - o (AO‘?Q)
ky,nom m izo jzj kon=ipm=j ¢ %i,j <
The ¢k9n9m now being defined, we will determine wkgnvm°

Comparing table 2 and table 1, we observe that if F does not contain
function symbols, then Wk would be an F, but for the variables X and ¢go
The Taylor series for these variables are however known, therefore

the wkangm
is calculated.

can be calculated in the same way as fn o in section 2.2.3
®

We have completely defined now the calculation process of T
?

We close this section with the continuation of example 2,

Example 2. {continued) n =0 m=0

25,0,0 - "1,0,0

4,0,0 = %00 " ln(azgogo)
&30,0 = ©

£3,0,0 = 8,0,0 = %.,0,0 ¥ 23,0,0
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~ a
£,0,0 ~ 21,0,0

Y = =
Y 0.0 = 27,0,0 = 95,0,0/%6,0,0

#4,1,0 © %1,1,0
®,1,0 = %2.1,0 = #7,0,0 %1,1,0
191s plp (U5 Poie
y =0
#3,1,0
f . = = . + g
,1,0  ®,1,0 0 ®2,1,0 7 #3,1,0
a = 0
5,1,0
2€,1,0 ~ %1,1,0
Y = = ! a a, a
1,7,0 © #7,1,0 B6.0,0 | 50160 1500 6,150

eto,

2,2,5 The Taylor coefficients of the unknown functions

At the end of section 2.2 we assumed that W ;s were known for all {i,j).
D=8

We shall now treat the more realistic case that the u_ . . with (igj}¢gwn

Kylyd 5T

5
. .
{fig. 3) are known and the ukbnsmﬂ are unknown.,
Replace these ukgngm%? by the quantities Xko

Calculate now in an algebraic way, all Taylor coefficients fn _agcording
ol

&

to the remarks in the sections above.

In particular the Taylor coefficients f of the differential equatiocns

leyngm

F1 themselves can be calculated,

The £ will be functions of the Xko
l,n,m

From table 6 and formulae {2.11) and (2.12) it follows that these

functions are linear in the Xko
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From equation (1.1} it follows that f = 0,
lgn,m

We have therefore M linear equations in the M unknown quantities X o

The condition {1.4) guarantees that the quantities X, can be calculated.

Thus the u can also be calceulated. (We remark that in the program
ukgngm-%‘ﬁ

ot

the quantities (m&?)uk are replaced by the quantities X , since

ol gkt

then the matrix of the set of equations f = 0 is independent of

l,n,m
n and m)o,
Repeating now the same arguments as in section 2.1 we see that all the

coefficients U oo 8Te calculatable,
Dhad]

For the examples 1 and 2 we have

Example 1. (continued) Let us choose 4 0,0 = 1, Uy 9,0 T 1e

Then u, o 4 =0 {here we use the requirement {1,5)),
"pM9

&y 0,0 = 1% 82,0,0 E{O; *3,0,0 - % ?ubogo =03
f19030 :fasgogo = 0 {as 1t should be),
81,10 = 13 Bp g0 T Kes 83 9.0 T Kb By g0 % T8

= =¥ * ] = = = = =1,
£ 4.0 = %,1,0 % 1 =0thus X ==l amdu, ==

82,1,0 - ~'3 83,90 = =T
Example 2. (continued) Requirement (1.5) gives 4 50 = 1o
) A

21,0,0 = '3 %400 T ®2,0,0 = 05 83.0,0 = 03

= q, £ ( 1+ 3o
f@aogo 2).0,0 0 (as it should bej;

= 13 = 1; ¥, = = 1,
%:,0,0 3 %,0,0 7 1 ¥i0,0 T 21,00 T
%5,1,0 %15 ¥y 90 T 8,00 % K3 834,070
f?g'QO = ahS?DO = XT = 0, thus X? = 0 and aﬁgfao =0,
21,1,0 = 9% %y,1,0 T 82,1,0 = O3
85.9,0 - 98 86, 5,0 T 05 Va4 0 T 87 5,07 0



3. A less general Cauchy problem

Gibbens [3], Richtmyer [5] and Moore [6] constructed (not in ALGOL)

programs for the calculation of Taylor coefficients.

The Cauchy prcblem for which these programs are constructed have
the form
oU_ 31,
L ;X T : . P rr y
=é=§=c - H:L‘TT ® Ukang> Wwith 1=%5c00 M and w=t, .. 4 (3.1

together with initial conditions of the form {1.2}.

This 1s & less general type than equations (1.7}
If the functicas Hl are of the form of a formula as defined in
this section,then we may in the way as described in section 2.2,
calculate the Taylor ccefficients h. .

lgnym

These coefficients are independent of the u of course, we

k,n mt?
can therefore calculate immediately the Y o from
Kon,m+?

|

u R s

kynymti (mt ) [P
and we do not have to manipulate algebraicaily with unknown gquantities
Xk; This simplifies the program considerably, it 15 not even necessary
to use the procedures for differentiating and evaluating a formula in

the computer.

A pecullar fact 1s that the genersl form {'.!') can be brought into the

above form {2.1).

18)
Introduce namely M new functions Vk = E?m » differentiate {(1.1) with
respect to y, obtaining
M IF. eV aF. V¥, aF ar
Ty 1 X + 1 Ko L A 1 0 (3.2
“ 3P Bx 3¢, ay 2U k! 3y T OU¢ “e
k=1 “Tg °F B f v
,aqu ,
Let the inverted matrix of %?ﬁ”? be éai .ty then we pet the systen
aQ pd" -



Ezi M . M SFl SVk oF BFl
= = = a = cxremms - commrem V 4 cmemen
W 153 ngikﬁ@ %= 50, RS2
(2.3}
3;?;{: =V
oy k

@t

which is of the desired form.
Thus we could have based ourselves upon the form (3.1).

There are however, three disadvantages connected with the translation

of the equations {(1.1) into (3.3).

1, One has to do the differentiating and inversion (of a matrix of

functions) oneself, with the risk of making errors,

2, The formulae at the right<hand side of (3.3) will in general be far

more lengthy than the original formulae Fy in (1,1)

3, The initial conditions for the functions Vk should be calculated

beforehand, which is in general not easy.

These three disadvantages show clearly why we chose in favour of the

more general form (1.1), though the program becomes more complicated.

The difficult calculations however, are completely overtaken by the
program,

As for the more complicated form of the program, we remark that the
procedures for doing algebra within the computer, enable us to

construct still a rather lucid program.

In the articles of Richtmyer and Moore, the attention is drawn to an
important feature, namely that the calculated Taylor coefficients of
higher order, may become inaccurate, due to cancellation of significant

digits in additioning and subtracting.

They recommend a method of calculation, in which the accuracy is also
calculated, 7

In this report we do not enter upon this gquestion, since we are
mainly concerned with the general method of calculating implicitly

defined Taylor coefficients.
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We remark however, that it is possible to comstruct a program (see the
end of section 1) which generates a machine code program in which this

method of calculation is bullt ino

We close this section by remarking that the conditions 1 and 2 of the
introduction are sufficient for convergence of the Taylor series for
Uy in a nabourhood of the point x=0, y=0,

This follows at once from the Cauchy=Kowalewski theorem (see Courant
Hilbert ref [2] p. 39).

We can in fact apply this theorem for the Cauchy problem (3.3), which,
as was shown, is equivalent to the Cauchy problem (1.1).

We do not enter upon questions of rate of convergence or regicn of

CONVeTEence

L, Deing algebre with the computer

¥We define a formula by means of Backus notation (see the ALGOL 60
report ref [1]),

€p> ;=  <unsigned integer> 1)
<simple term> s:= U[<p>] | auax[<p>] | avay[<p>] | xttp[<p>] | yetp[<p>]
<function identifier> ::= sin | cos | exp | 1n | sqrt | arctan

<function> ::= <function identifier> (<formula>)
<operator> s:=+ | = | % | /
<compound formula> :3=(<formula><operator><formula9

<formula> ::= <simple term>|<number>|<function>|<compound formula>
For the definition of number and unsigned integer see the ALGOL 60 report.

Each formula is represented within the computer by a non-negative number,
which we will call the index of the formula.
The representation 1s such that different formulae have different indexes,

we may therefore identify the formula with its index.

1 .
") We assume that p is unequal to zero.
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L.1 Storing a formuls

The set of procedures for storing a formula consists of the integer
procedures S, D, P, Q, SIN, COS, EXP, LN, SQRT, ARCTAN and NUMBER.
The ALGOL 60 definition iz given in section 6.

The first four procedures shors o compound formula, the next six
& £ L

procedures store a function and the procedure NUMBER stores a number.

The word "store” must be understood as to mean assigning to each

formula an index and storing relevant information in the arrays

integer array HEb ¢ kmax, 1 3 3]

and the real array HC{@ g kcmaxjo

The integers kmax and kcmax should be chosen large enough.
As pointers for the arrays H and HC; the non=local integers k and kc

are used,

Let the index of the stored formula be f, the indexes of the formulae
a and b in the table below be a and » and ¢ a real number, then we
see from this table the ALGOL statement to be used and the information

stored in the arrays H and HC,

£ = ALGOL statement | H[f,1= |H[f,2]= | #[f,3]= |HC[kc]=
a+b f = S(a,b) a 1 b
a=">= f s= D{a,b) a=b is converted by D into a+(=1)sDb
a*b f := Pla,b) a 2 b
a/b f := Q{a,b) a 3 b
sinfa) f := SIN(a) 1 0 a
cos(a) f := C0S(a) 2 0 a
exp(a) f := EXP(a) 3 0 a
in(a) f s= LN(a) L 0 a
sqrtf{a) f := SQRT{a) 5 0 a
arctan{a) | f := ARCTAN{a) 6 0 a
c f ¢= NUMBER(c) =1 0 ke c
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- i : sin(3.047, _ , .
Example 3. The formula [ = arctan Qfﬁ?fﬁé?f?} = 3.14 1s stored by
[ega i) o i

means of the statement
t ¢= D{ARCTAN(Q(SIN{NUMBER(3,14)),COS{NUMBER{3.1k4)))) ,NUMBER(3.14})

The effect of this statement can be seen from the following table
for H and HC

k | Hk,1] [8k.2] § u[k,d] ko 82 [ke]

NUMBER | 2 | =i 0 2 2 3.1k
SIN 3 1 0 2

NUMBER | L | =1 0 3 3 3,14
cos 5 2 0 I
Q 6 3 3 5
ARCTAN | 7 6 0 6

NUMBER 8 =1 0 L L =1

NUMBER | 9 | =1 0 5 5 3.1k
DY op 10 8 2 9
s 19 7 1 10

table 8

The ultimate effect is that f gets the value i1,

We use in the program two formulae with fixed indexes O and 1.
These formulae correspond to the ngmbers 0 and 1 respectively,
They may be considered as the zero and the unit element in the set
of formulae.

The procedures S and P are constructed such that the formulae
O 4 a,a+0, “sa,a=1,0==4a, a=0 are replaced by
a a a a 5 0 4 0
Use of this zero and unit element is made within the procedure

DIFF {for DIFFerentiating).
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Concerning the simple terms we remark that within the program we

declare

integer array U, dUdx, dUdy[1:M], xttp, yttp[1:POWER],

in which M and POWER are integers > 1 (see equation (1.1)),

Before the differential equations are stored within the computer,
these array elements get the values of the indexes correSponding
to the simple terms,

The representation in the array H and the ordinary meaning of these

simple terms follow from the table below, in which p 1s some positive

integer,

ordinary k Hlk,1] |H[k,2] |#u[k,3]

notatlion
U u[p] =10 0 P
U
==k duax [p] =10 =1 D
3U ,
3;2 audy [p] =10 =2 P
xF xttpEd =g 0 P
P yttp[p] =3 0 p

table 2

U
: . 1 .
Example 1 (continued). F? = U? 3;& + x 1s stored by the statement

F1 := s(pu[i], avay[i]), =xetp[1])

Example 2 (continued), F, = ln(U?) + y 1is stored by the statement
F[1] = stw(ul1]), yetp[i]).
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4,2 Operations with a formils

In this section we describe procedures for the following operations

i, Evaluating a formula i (which can only be done if the formula has
a numerical value, such as formula f in example 3 po 21)¢

This operation is carried out by the real procedure VALUE(i).

The calculated value is assigned. to the procedure identifier itsslf.

2., Differentiating a formula 1, with respect to scme other formula n.

This is done by the integer procedure DIFF(i,n).

The index of the stored derivative is assigned to the procedure

identifier itself.

3, Definition of the output form of a formula i on output paper tape.

This is the task of the procedure OUTPUT(i),

OUTPUT is used here only for checking if the stored formula is
correctly stored.

It will however, be used in a next paper for generating an ALGOL 60

program,

All these procedures use the real procedure VADIPUCOMP FORM, VADIPU
FUNC and VADIPUST,

The procedure VADIPUCOMP FORM determines for a compound formula the
value , the derivative and the output.

The procedure VADIPU FUNC determines for a function only the output
{use is made of the procedure INFORM FUNC).

The procedure VADIPUST determines only the output for a simple term,

One may regard the procedures VALUEy DIFF, OUTPUT and VADICOMP FORM
as to be rather basic, they may be used for other problems,

The procedures VADIPU FUNC and VADIPUST, however, are special
purpose procedures, their definition depends strongly on the
particular problem under consideration,

L .3 The procedure INFORM FUNC

Within the real procedure INFORM FUNC(a,i,j) is defined all necessary

information for the functions used in this report.
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1, If i > 0 then the value ¢{a) is assigned to the procedure identifier.
2, If 1 < 0 then relevant output is punched on the output paper tape.
3. If 1 = 0 then the functions Wk

therefore a call INFORM FUNC (0,0,0) should precede the actual

in table 3 are stored in the computer,

computation,

It should be remarked that the functions Wk do not have the form of a
formula as defined in sectlon U,

We define therefore a Esi formula by means of

<p> :02= <unsigned integer>
<psi simple term> ::= PHI[<p>] | Xf

i
<psi feormulia> s3= <psl simple term>[<number>l

{(¢psi formula><operator><psi formulas)

and require that ¥ has the form of a psi formula.

k
In the same way as in section L.? we can store a psi formula and assign
an index to 1t, by means of the procedures S, D, P, Q, and NUMBER.

The internal representation of the psi simple terms is listed below,
use 1s made of the non=local integer Xf and the non=local integer array

PHI[" : 2]

ordinary notation k 2k, 7] |ulk,2] |8[k,3]
®, PHI [p] b
X Xf =4 0
table 10

We remark that the array elements szgﬁj get values later on, in
TAYLOR,

The indexes of the psi formulae are stored in the non=local integer

array PSI[1 ¢ 6, 0 5 2],
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o

n thiz report we use six different functions, the number v for each
function symbeol 1s stored in PSIEngjg
the indexes are stored in PSI[j,1] and in PSIEj,2j

{the PSI[b,éj is only used for asine or acosine function, see tabls 3.

5. The procedure TAYLOR

The heading of TAYLOR reads: procedure TAYLOR (dimension M,F,N xC,7%,u).
The differential equations (1.1) can be stored in the computer by means
of the procedures of section b1,

There are M differential equations, the indexes of the left=hand sides
of these differential equations are stored in the integer array F.
Although we treated in sections 1.2 and 3 the case that the point x=C,
y=0 is the poict 1o which the Tayior serles are expanded, we shall
assume here that the point where the Taylor series will be expanded

ci1s x=x0, y=y0.

In principle we want to calculate an infinite number of Taylor coeffitients,
1ln practice we can ouly calculate a finite number of them, namely c.g.

thossz fur whiczh n+m < U, for a certain positive integer N,

5
.KEI:'-. gln
The parameters M, F, I, x0 and y0 are now introduved, the parameter
dimension equals 1 for one=dimensional problems and 2 for 2-=dimensi snal
probiems. The parvameter u is a real array, the array elements u[ﬁananﬂ
should become equal to the w {equ.{1.3)); moreover the initiel
a E $83

conditicns are stored la ue

Each differential eguation is built up by means of several formuizc.

For sach of these formulae the Taylor coefficlents will be calculated,
We have to know therefoure the number AB of these formulae.

it is necessary to know the type of the Caurshy problem with respect

to a vertaln uwknown Function Uk (see sectinn 1), Ye therefore igtradoce

R
the inveger arrsy tyrelld : ﬂﬂo
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It is the task.cf the procedure INITIALIZE(i) to calculate

i, the number of formulae with which i is built up

2, to define the array elements typeﬁ{] according to the following
table

oU oU
-1 -1 U type [k]
ox oy k The symbols +, ? and = mean:
_ _ + 0 + the quantity occurs in i
. _ 0 ; ? the gquantity may occur in i
o + 9 5 -~ the quantity does not occur in 1.

table 11

After the statement

for 1 := 1 step 1 until M do INITIALIZE(F[1])

the number AB and the array elements are known,

Moreover, the number of function symbols in the differential equations

and the maximum of the v's of these function symbols (see table 3) are
9

calculated and are assigned to the integers kpsi and nu resp. )

Since we are interested in the Y n,m for which n+m < N, it follows

that the Taylor coefficients fngm of the formulae which build up the
differential equations are needed for n+m < N=i.

There are AB formulae we could therefore store the Taylor coefficients
in the array a{ﬁ ¢ AB, 0 s N=1, 0 3 Nm‘EI9 however, about half the number
of array elements would then be unused.

Therefore we store these Taylor coefficients in the two=dimensional
§££g£=azﬁ : AB, 0 : if dimension = 2 then ((N=1) = (N+2)) % 2 else N='1,
in which the number 1 + {(N=1) s (N+2)) % 2 is just the sum of all
Taylor coefficients o with n+m < N=1,

8
The administration in the array a is governed by the integer array

a[p 3 N=1y O ¢ N={]§ whose values are equal to

cl1,3] = (3= (2=m+1=3)) =2 + 1,

'} Note that TAYLOR is independent of the special choice of the functions,

P
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In this way the array element a[}ch},jI]. represents the Taylor
coefficient with indexes 1 and j, of a certain Tormula; we call k

the Taylor index of this formula.

We note that this is the only time that we think in terms of efficiency.
The fact that we use for a number, or a simple term correspending to the
variable x¥, €.g., a full array, almost completely filled with zeros,

is very inefficient but this will be of no interest in this report.

It 1s the purpose of a next report to take away these inefficiencies.

As is already saild the initial conditions should be stored in the
array u, corresponding of course to the type of the Cauchy problem.
We remark that instead of equations (1.2) we require that the Taylor

coefficients U 50 should be given, for J = 0, so0cy No
PRUS]

2

One has to calculate thersfore the Taylor coefficients of Gk(x}D
beforehand, possibly by means of the procedure TAYLOR.

It is further required that ukaogf is given, which follows from the
solvability condition (1.5).

It dess not need saying that the above remarks concern the case that
typeik} = 2, in the other cases we need similar requirements for the
uksnamm .
It should be remarked that the integer array elements n[}] and n[{}g

serve as the current indexes n and m respectively.

The pisce of the procedure body of TAYLOR from the procedure

declarations until the label AA is now described,

5.1 Outline of the calculation process

We shall briefly repeat the calculation process just as it is defined

in section 2,

1. All zero~th order Taylor coefficients for n{?] = 0, n[?j =0
are calculated.
This is possible, due to the initial conditions.

It is done after a call for the procedure CALC ARRAY,
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3

5o
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For a certain nE‘EI and nEZL, the calculation of the Taylor
coefficients aEL@c[n [:119 nEQZ[IIs should be performed.

The unknown quantities (n[2]+1)u@:,n [1],n [2]-!-’!] are beforehand
replaced by the formulae with indexes unknown [k] s for

K = 1, ooop Mo (The unknown [k] plays the role of the X, in
section 20205),

Some coefficlents can then actually be calculated by means of
the remarks in section 2 (e.g., the coefficient corresponding
to a number or a power of X)s

Other coefficients may not be calculatable, in the place of them
however, formulae in the unknown'’s are stored in the integer
array f[‘i $ ABJO

This is done again by the procedure CALC ARRAY,

Let the indexes of the formulae in the unknown's for the Taylor
coefficients of the differential equations themselves, be stored
in the array elements formula [lj for 1 = 1, so0p Mo

These formulae are linear in the quantities unknown [k] with

kK =175 000y Mo

We may therefore calculate the unknown quantities.

This is done after a call for the procedure CALCULATE,

The unknown quantities being known, we can calculate firstly the
u[k,,n[ﬂ , n[2]+1] and secondly the until yet uncalculated
coefficients a[l,c[n[1], n[2]]1, for which in £[1] a formula

was stored,

The eventually used Taylor coefficients for the functions ¥ in

section 2.2.4 can be calculated, again by means of CALC ARRAY,

The n[1] and n[2] are changed such that S(nt‘l] » n[2]) in equ.(2.5)
is augmented by one, and the process is repeated until n[‘!]

becomes N,



5.2 The procedure CALC ARRAY

The integer procedure CALC ARRAY({i) performs the following operations

i, By means of the non=local integer ka (non=local with respect to
CALC ARRAY), CALC ARRAY determines the Taylor index ka of the
formula i, The number ka is assigned to the procedure identifier
itself,

P or yp then

2,1 If 1 is & number or a simple term of the form x

bl

& sza\.Eﬁ. D]a n[ZIH is calculated according %o table 5.

1Y) au
2.2 If 1 is a simple term of the form Ugs 5= or :SF; then it may be

that a[kagc[n [1] s n[?]}] can be calculated by aid of the array
elements uikglaj] o

If however, the corresponding u[k;l,,j] is not known, then the array
element ftkaj is set equal to the index unknown Ez:} of the formula
corresponding to the Xk in section 2,2.5,

Note that all f[ﬂ are set beforehand equal toc =Y in TAYILCR.
Therefore if f[j] > 0, it is necessarily equal to the index of a

formuls,

2.3 If 1 is a compound formula say A * B, then CALC ARRAY determines

firstly the Taylor indexes m? and m2 of A and B resp.

Z03,1 We first treat the case that both f[mi] and f[mé} are negative,

then almi,e[n[1], n[2]]] and alm2,e[n[1], n[2]]] are already
calculated and a[kagc[nfﬂ s n[?]l] can be calculated by the statement

aEkaicEnEﬂ 9 nl:Q:Dj := at + b e aEmi,c[n['ij 5 n[2}:[:[ +
cl = a[m2,c[n£‘?:] 5 n[?]]]

o

1
)
—

in which

i

a1l

ngﬁjng%ja[m?.,c[i@jjj s aEmQ;c[:n[ﬂuig nf:?.’jmj]j

i=0 j=0

[

IP(mt, m2, O) (see section (5.k4)).

(The symbol j)' is defined in table 6).
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b = aEmQSOj = a[m?actog()jj
and
et = a[m1,0] = a[mi,¢[0,01]

2.3,2 Secondly we treat the case that one or both fEm?j and f’[mzj
are non-negative, e.g. f[mi] > 0 and f[m2] < 0,
Then afmi,c[n[1], n[2]]] is not yet calculated, insteed of it,
a formula is stored with index f[m1].
In this case a[kagc[nﬁ:[@ n[E]jl can neither be calculated and
we have to store a formula which has in ordinary notation the
form {5.1)

The following statement stores this formuls
f[ka] := S(NUMBER(al + c¢1 = a[m2,c[n[1], n[2]]]).
P(NUMBER(b), f[m1]))
Note that the actual parameters of NUMBER are ordinary real numbers.
The other cases for which fth] > 0 are treated similarly.

If 1 is of the form A+B or A/B then we proceed in the same way as

for A * B,

2.4 Let i be a function, say ¢(A).
The Taylor index ml of A is calculated, the integer kpsi is
augmented by one (in TAYLOR, kpsi gets beforehand the value zero).
The index 1 and the Taylor index ml1 are stored in the non=local
array elements psiﬂkpsi@ mﬂ and psi g:kjpsiQ O] respo
The Tayler indexes of the functions ° (see equation (2.6} are
determined and stored in the non=local array elements
phi[kpsi, 3],
If f{m?} < 0, then a[mﬁbcfnﬁj$ n[2jj] is already calculated
and the aEphiEkpsi@jj 5 c!:n]:“-s] 5 nEQJI] can be calculated by the
formula (2.9) or (2,70),
If f;:m?j > 0, the Taylor coefficients for the functions ¢, can not
be calculated and formulae will be stored instead of them.

For another time use is made of the real procedure IP,



31

2,5 The case that i is a psi simple term.(H[?,ij = =4) will be treated

in section 5.8,

5.3 The procedure IP

The real procedure IP(lp, rp, diff) becomes equal to
if diff = O then

n nl. ’
Eﬂ Z?] a[lp,c Ei aJJJ °a[rPsc [n [.13"’1 11 [21‘*'3:11

i=0 j=0
if diff = 1 then
ngﬂ n%ﬂ )
' alip,c[n[1]-i,n[2]-i]]-i-alrp,c(i,3]]
i=1 j=0
if diff = 2 then

B e Bt -1 5oalrpve ]

i=0  j=1

5.4 The procedure CHANGE

The procedure CHANGE(i,j), changes the formula i into Jj.

5.5 The procedure FAC

The real procedure FAC(n) becomes equal to ni,

Use is made of the non~local integer kf and the non=local array
fac[b $ 203o kf and fac[@] get the values O and 1 beforehand,

5,6 The procedure CALCULATE

The procedure CALCULATE(n, i, unknown) calculates in a recursive way
the n unknown quantities Xke whose indexes are stored in the integer

array unknown, from the n linear equations symbolically written as

“iEjI" =0 j = 1; eoog II (502)
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in which the 1[31 are the indexes of the formulae in Xy o

The indexes unknown [3] are actually the indexes of numbers zero

{not the gzero element 0),
By means of the statement

for j s= 1 step 1 until n do

¢[3] += VALUE(DIFF(i[n], unknown[3]))

The real array elements c[il get the values of the coefficients of
the n unknown quantities Xko

In the following statement use is made' of the fact that the integers

unknown Iﬁ] are indexes of numbers zero,

c[0] = ~VAWUE(i[n])

The equation {(5.,2) with index n can now be written as

) (5.3)
L 0[5]7(5 = c[o]. 203
=1

It c[ﬁ] # 0 then this equation may be solved for Xn9 and we have

. n=1 o
X, = gy teld - jz c[3%;1 (5.4)

The array element unknown [ﬁ]e is now set equal to the index of a
stored formule corresponding to the right=hand side of (5.4), and the

number of equations and unknown's is reduced by 1.

By the procedure call {in the case n > 1)
CALCULATE(n=-1, 1, unknown)

the unknown [ﬁz become indexes which correspond to numbers whose
values are precisely the values of the solution vector Xj
(j = Ty coo3 nmﬂ%)o

By means of the statement
CHANGE (unknown [n] , NUMBER(VALUE(unknown[n]))),

the unknown [ﬂ] becomes equal to the index of the number whose value

is the value of Xno
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If n = 1, the right<hand side of (5.4) was already a number, and
the unknown Iﬁj was already set equal to the index of the number

whose value 1is X,Bo

Ir c[}l = 0 then the formula with index i[§=1] is interchanged
with the formula with index i[;lo And the process is repeated,
if again c[hl turns out to be zero then i[}»Q] is interchanged
with i[hlg etc., until a formula is found ror which ciﬁ} # 0 or
until the set of formulae is exhausted,

In the latter case the n equations (5.2) are singular,

The following sentence 1s then punched on the output paper tape:

"system is insolvable",

We remark that a direct matrix inversion method would certainly
lead to a faster calculation process of the unknown on

The compact and charming procedure which results from using the
procedures for doing algebra in the computer, urged us to publish
it in this report and to use it in the program of section 6 which

after all, we do not recommend for general use,

5,7 Filling up the open places

We now come to stage 4 of the calculation process of section 5.1
By means of CALC ARRAY some Taylor coefficients a[j@cfnﬂilbxlﬂﬂ]j
are calculated, and some are not.

For the last ones, a formula is stored with index f[ﬁ]c

The formulae with indexes unknown [k|, (k = 1, seo, M), correspond
now to the known numbers X of section (2:2+5),

We may therefore write down the statement

alise[n[], n[2]]] := vawue(s[3])

and the uncalculated Taylor coefficient gets its value.
In the same way we can calculate the unknown Taylor coefficients
u[lgigi]g This is done with the auxiliary integer array elements

tp[;SjJ having the values
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type[1l | tpl,1] | tp[3;2]
0 0
1 1
2 0 1
table 12

We write

uf1,00] + tp[1,1], n[&] + wp[32]) :=

VALUE(unknown [1])/(1 + (if type[1]=0 then 0 else n[type(2]]))

5.8 Calculating the Taylor coefficlents of ¥

Recalling secticn 4.3 and secticn 5.2 point 2.4, we know that in all
the differential equations (1.1) the number of times a function symbol
occurs 1s kpsi.

‘Let us describe the calculat;oi of the d}ka D] [2 for the function
i = ¢(A) which occurred the j== time.

In CALC ARRAY the index i of ®{A) and the Taylor index mi of A are
stored in psi[,jgmﬂ and psi[jaoj ; moreover in phi[:jgpj, with

D= 1; 0coy vV, the Taylor indexes of the functions @p(A) are stored.
(Note that v = PSI[1,0] and 1 = H[1,7]). We now define the H[¥f,3] and
I*IEI”HIEJ9 31 as to be egual to mi and phlEJDp] respectively,

Looking now at the last linz of CALC ARRAY which reads

if H[i,7] = =4 then CALC ARRAY := H[i,3]

it becomes obvious that CALC ARRAY interprets the psi simple term

Xf as the formula A with Taylor index m?! and the psi simple terms

PHI [p] as formulae with Taylor indexes phi[j,p].

Finally the Taylor indexes nsijgp] and the Taylor coefficients
a 'Oﬁlj,]ap‘ig Gﬁl; T, n[?]:ﬂ of the formulae ¥ (AD 9 veop O ) are

determined by the statement

for p ¢= 1 step 1 until PSI[1,0] do psi[J,n]
CALC ARRAY(PSI[1,p])
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6. The ALGOL 60 program

The test cases worked out by the program are chosen rather arbitrarily.

The results are reproduced after the program.

The following problems were calculated:

1o

2,

3o

ou
1 9y

with initial conditions Uj(x,o) =1+x,

U +x=0

The solution of this problem is obviously

1

an1+y=0

from which we have

= - 1.2 1.3 1 L
Uy =expl=y) =1 =y + 3y =2y +ory = ooo
sin U 5
arctan (cos 7, ) = exp(x®) =0
thus
U1 = exp(xz) =1+ x2 + %xh + 650
3U1
T " U =0
U
2 =
9x * U1 =0

with initial conditions U1(O) =0 and U.(0) = 1

2
it is easily seen that
3

1 1 5
X=X FAp Xt e

U1 = sin(x)

and

_ 1 2 1 )
U2 = cos(x) = 1 =3 X tEp X = ceo

U, = \/(1+x)2 =2xy =1+ x = xy + x2y - %xzy2 -

x3y + % x3y2

1.3.3

= 3X"Y" * ceo0
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5. U, = In{xy) = 0
U2 = ¥xy =0

Expansion in the point x=1 and y=1 gives

0, = (1 + (x=1)) ¢ (14 (y=1)) =
(%=1} = %=(xw132 *=% (x»i)s = 500 *
; : 1 2 1 3
(=1} = = {(v=1 + = =1 = 500
ly=1) = 5 (y=1) 3 (y=1)

U, = Vs (x=1))(0 + (y=1)] =

+ (Xx“ﬁ)a + om}ﬂ +92=(y=‘¥) w@(ym?) +

A
b

o

1. 1 . 1 L2
1+3 (x=1) = g:(xmn}

1 oy 3 ]
<T§<YQU) + ool =
1, . 1, \ T, .2 IR . 1 (2
= 9 el e o e 1) = - +* = =1} = =1 +
o+ lx=1) 4 sly-1) - plx=1) T x=1){y=1) = gly=1)

mp(x=1)? = plxe )P lya1) ez 1) (y=1)7 (=t
TElx-1)T = gl Tl Dyt gyt e

u;:z:s-} =
U1 Xy + 1 0
xy + 1 % U2 ccs x =0
from which 1t follows that U, and U2 are equal.
= :xw:&‘?:igm xcé:mhxcl3+ R
U, = U, cos % - Al e AL
U, eu,
: S T ) =
To 1n (Sx + 5 + 1) = 1In (xy + 1) =0
3
\[E)U_,,5 3U2 \ ‘ —
Eraia S £

with initiali conditions

U (0,y) = ¢ and U
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oU
. T _ - J .2 N
Evidently e xy thus U1 5 Xy +e
U, <
and == = 0 thus U. = e",
oy 2

6,1 Description of standard procedures

As input procedure we use the integer procedure XEEN(n).

XEEN can be given an integer value by means of the console,

The procedure stop, stops the calculation of the machine.

As output procedures we use the procedures:

PUTEXT1{st) , punching the string st on the output paper tape.
(Note that as string quotes the symbols § and % are used).

PUNLCR, punching a "new line carriage return® symbol.

PUSPACE(n}, punching n space symbols.

FLOP{i,j,a), punching the real number a in floating point notation,
i decimals of the mantissa and j decimals of the exponent,
ABSFIXP{i,j,a), punching the absolute value of the real number a
in fixed point notaticn, 1 decimals before and j decimals behind the

decimal point.

The real procedure SUM{i,n,m,ei) becomes equal to

m e
2 ei ifm>n, if m < n then it becomes equal to zerc.

1=n

. [¢]

For the integer division symbol = , the symbol = is used.
Running the program on the Electrologica X! computer of the Mathematical
Centre lasted about half an hour,
The integers kmax and kcmax got the values 320 and 64 resp. with the

ald of XEEN.

Note that the pages of the program are ordered in such a way that one

can see every two consecutive pages in one view (except pages 6 and T).
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