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!!., H[i,1] > 0 then VADIPUFUNC(i,0,3) ~ 

!!_ H[i.1] = -1 ~ 

l:)egin PUTEXTl({t!·h FLOP(3,1,HC[H[i,3]]); PUTEXTl({tj.) ~ ~ VADIPUST(i,0,3); 

real procedure VAlDIPUCOMPFORM(i,n,1); ~ i; integer i,n,1; 

begin ~ a,b; ~~ger p,q; ~!!.£h. SS:= value,diff ,output,sum,product,quotient; 

procedure A(a,b,st); ~ a~ integer b; string st; 

begin !i,1 = 1 ~~ VADIPUCOMPFORM:= a~ !!_1 = 2 ~ 1:= b ~ 

begin PUTEXTl(st); OUTPUT(H[i,3]); PUTEXTl({):i,) W goto END 

end; V ADIPUCOMPFORM:= 1; goto SS[l]; 

value: a:= VALUE(H[i,1]); b:= VALUE(H[i,3]); ~ SS[H[i,2]+3]; 

diff: p:= DIFF(H[i,l.],n); q:= DIFF(H[i,3],n); goto SS[H[i,2]+3]; 

output: PUTEXTl({(:i►); OUTPUT(H[i,1]); goto SS[H[i,2]+3]; 

sum: A(a + bQS(p,q),{+:i►); 

product: A(a x b,S(P(p,H[i,3]),P(H[i,1],q)),{x:i,); 

quotient: A(a / b,if p = 0 A q = 0 then 0 else Q(D(P(p,H[i~3]),P(H[i,ll,q)), 
-- ------ =-- . ·-

P(H[i,3],H[i,3])),{f,f.); 

END: end; 

~ procedure VADIPUFUNC(i,n,1); ~ i; integer i,nJ,; !,LI = 3 ~ 

l:)egin VADIPUFUNC:= 1; INFORM FUNC(0p-H[i,1],1); PUTEXTl({{:i►); 

OUTPUT(H[i,3]); PUTEXTl({):i►) 

end; -· 
~ procedure VADIPUST(i,n,1); ~ i; integer i,n,I; 

begin V ADIPUST := 0; !!,_ I = 3 ~ 

begin !!., H[i,1] = -2 V H[i,1] = -3 ~ 

begin !!_ H[i,1] = -2 ~ PUTEXTl({~{:i►) ~ 

PUTEXTl({y~{:i►); ABSFIXP(2,0,H[i,3]); PUTEXTl({)i,) 

end else if H[i.01] = -10 then ......__........___ ----
begin !!., H[i,2] < 0 ~ PUTEXTl({ctj.~; PUTEXTl({Ul;t); 

ABSFIXP(l,0,H[i,3]); PUTEXTl({):i►); !!_ H[i,2] < 0 ~ 

begin PUTEXTl({/ctj.); !!., H[i,2] = -1 ~ PUTEXTl({x::t,) ~ PUTEXTl({y:i,) ~ 

~~end; 

~ prqcedure IN:E~ORM FUNC(a,i.j); ~ i,j; ~ a; integer i.j; 

begin integer flc; ~:oolean PU;~~ SS:= SIN,COS,EXP,LN,SQRT,ARCTAN; 

procedure A(f,st1,psi); integer psi; ~ procedure f; ~tri?¥ st; 

begin integer n; !!., i = 0 ~ begin flc:= flc + 1; PSI[flc,1]:= psi; PSI[fk,0]:= 1 ~ 

~!!_PU~!!. begin PUTEXTl(st); goto END ~ ~ 
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pegin ~!!l~l!.. Test program for the Cauchy problem R1050 RPR 310565/39492; 

integer kmax,kcmax; kmax:= XEEN(1023); kcmax:= XEEN(l023 x 1024);_ 1024; 

begin integer~ k9kcJ(a,kf,X:f; integer array PSI[l:6,0:2] 9PHI[l:2],H[0:kmax,1:3]; 

array HC[0::kcmax],fac[0:20]; 

integer pro!~edure STORE(i,l,j); ~ i,l; integer i,l,j; 

begin STORE:= k:= k + l; !!_k > kmax ~ begin PUTEXTl({k too large:}); stop end; 

H[k,1]:= i; H[k,2]:= l; H[k,3]:= j 

el:!£!} 
integer :erocedure S(i,j); value i,j, integer i,j; S:= 

!f..i = 0 ~~ j ~ !f.j = 0 ~ i else STORE(i,l,j)., 

integer procedure D(i~j); integer i,j; D:= S(i,P(NUMBER(-1),j)); 

!nteger procedure P(i,j); ~ i,j; integer i,j; P:= 

:i.f i = 0 V j = 0 then O else if i = 1 then j else 
~ --- -- ~ -
!£ j ""' 1 ~~ i ~ STORE(i,2,j); 

integer procedure Q(i~j); integer i,j; Q:= STORE(i,3,j); 

integer procedure SlN(i); integer i; SIN:= STORE(l,0,i); 

integer procedure COS(i); integer i; COS:= STORE(2 ,0 ,i); 

integer procedure EXP(i); integer i; EXP:= STORE(3,0,i); 

!!!.,teger procedure LN(i); integer i; LN:= STORE(4,0 9i); 

integer procedure SQRT(i); integer i; SQRT:= STORE(5,0,i), 

integer procedure ARCTAN(i); integer i; ARCTAN:= STORE(6,0,i); 

integer procedure NUMBER(c); ~ c; 

begin kc:= kc + 1,; if kc > kcmax ~ begin PUTEXTl({kc too large:}); stop end; 

HC[kc]:= c; NUMBER:= STORE(-1,0,kc) 

end 0 __, 
~proced~ VALUE(i); ~ i; integer i; VALUE:= 

!!. H[i,2] > 0 ~ VADIPUCOMPFORM(i,0,1) ~ 

if H[i,1] > 0 ~ VADIPUFUNC(i,0,1) ~ 

if H[i,1] = ·-1 ~ HC[H[i,3]] ~ VADIPUST(i,0,1); 

integer E,rocedure DIFF(i,n); ~ i,n; integer i,n; 

begin intege£_ j; j:= 2; if i = n ~ DIFF:= 1 else if H[i,1] = -1 ~ DIFF:= 0 else 

begin !L H[l.?2]> 0 ~ VADIPUCOMPFORM(i,n,j) ~ 
if H[i,1] > 0 ~ VADIPUFUNC(i,n,j) ~ VADIPUST(i,n,j); DIFF:= j 

~end, 

procedure OUTPUT(i); ~ i; integer i; 

if H[i,2] > 0 ~ VADIPUCOMPFORM(i,0,3) ~ 
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S2: IP:= SUM(i,O,n[l],SUM(j,1,n[2],j x a[rp,c[i,j]] x a[lp,c[n[l]-i,n[2]-j]])); 

END: a[lp,c[n[l],n[2]]l:= alp; a[rp,c[n[l],n[2]]J:= arp 

end; 

integer procedure CALC ARRAY(i); ~ i; integer i; 

!!,_ H[i~l] = -1 ~ begin CALC ARRAY:= ka:= ka + 1; a[ka,O]:= HC[H[i,3]] ~ 

~ !!., H[i,1] = -2 V H[i,1] = -3 then 

begin integer p; p:= -H[i,1] - 1; CALC ARRAY:= ka:= ka + 1; a[ka,c[n[l],n[2]]]:= 

g_n[p] > H[i,3] V n[3 - p] f O ~ 0 ~ !!_H[i,3] = n[p] ~ 1 ~ FAC(H[i,3]) 

/(FAC(n[p]~ X FAC(H[i,3] - n[p])) X (!f_p = 1 ~ xO ~ y0~1'(H[i,3] - n[p]) 

end else if H[i,1] = - 10 then ~-- --
begin integer p; p:= H[i,3]; CALC ARRAY:= ka:= ka + 1; !!_ type[p] = -H[i,2] A 

l(n[l] = 0 A n[2] = 0) then f[ka]:= unknown[p] else a[ka,c[n[l],n[2]]l:= (if H[i,2] = - - -
0 then u[p,n[l],n[2]] else if H[i,2] = -1 then u[p,n[l]+l,n[2]]x(l + n[l]) else 
~ - - - ~ 

if H[i,2] = -2 then u[p,n[l],n[2]+1]x(l + n[2]) else 1) 
~ - .--.. 

end else if H[i,2] > 0 then ----~- -
begin integer ml,m2; ~!!£!!. SS:= sum,product,quotient; 

procedure A(al,b,cl); ~ al,b,cl; 

begin~..!.£!!, SP:= SO,Sl,S2,S3; goto SP[(sign(f[ml]+.l)+l~:..,2 + sign(f[m2]+.1~+2]; 

SO: a[ka,c[n[l],n[2]]]:= al + b x a_(ml,c[n[l],n[2]]] + cl x a[m2,c[n[l],n[2]]]; 

goto END; 

Sl: f[ka]:= S(NUMBER(al + cl x a[m2,c[n[l],n[2]]])"P(NUMBER(b),f[ml])),; 

goto END; 

S2: f[ka]:= S(NUMBER(al + b x a[ml,c[n[l],n[2]]]),P(NUMBER(cl),f[m2])); 

goto END; 

S3: f[ka]:= S(NUMBER(al),S(P(NUMBER(b),f[ml]),P(NUMBER(cl),f[m2]))); 
. . . . 

goto END 

end; ml:= CALC ARRAY(H[i,1]); m2:= CALC ARRAY(H[i,3]); 

CALC ARRAY:= ka:= ka + 1; goto SS[H[i,2]]; 

sum: A(0,1,1); 

product: A(IP(ml,m2,0),a[m2,0],(if n[l] = 0 A n[2] = 0 then O else a[ml,O])); 
' - - -.:a= 

quotient: A(-IP(m2,ka,O)/a[m2,0],1/a[m2,0],-a[ka,O]/a[m2,0]),; 

END: end else if H[i,1] > 0 then 
..-....:;a __ .... ---

begin integer p,j,ml; ml:= CALC ARRAY(H[i,3]~; kpsi:= kpsi + 1,; psi[kpsi,-1]:= i,; 

psi[kpsi,O]:= ml; !.2!:, j:= 1 step 1 until PSI[H[i,1],0] 22, phi[kpsi,j]:= ka:= ka + 1; 

CALC ARRAY:= phi[kpsi,1]; p:= if n(l] = 0 then 2 else 1; - - -
~ j := 1 step 1 ~ PSI[H[i,1 ],O] ~ 
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begin INFORM FUNC:= f(a); goto END~ 

end; INFORM FUNC:= O; PU:= i < O,; i:= abs(O; if i = 0 then 
~ --- ---
begin fk:=: 0; goto SIN ~ ~ goto SS[i]; 

SIN: !f. j = :2 ~ goto COSS; A(sin,{sin:i,,PHI[2]); 

COSS: A(cos,*,P(NUMBER(-1),Pffi[l])); PSI[l,2]:= PSI[fk,1]; fk:= 1; PSI[l,0]:= 2; 

COS: !£j = 2 ~ goto SINN; A(cos,{cos*,P(NUMBER(-1),PHI[2])); 

SINN: A(sin~*,PHI[l]); PSI[2,2]:= PSI[fk,1]; fie:= 2; PSI[2~0J:= 2; 

EXP: A(exp.,{expi,,PHI[l]); 

LN: A(ln,{lni,,Q(l,Xf)); 

SQRT: A(sq:rt,{sqrtj,,Q(NUMBER(. 5),PHI[l])); 

ARCT AN: A(arctan,{arcta.n:t,Q(l,S(l,P(Xf,Xf)))); 

END: end; 

procedure TA YLOR(dimension,M,F ,N ,xO ,yo ,u); ~ dimension,M,F ,N ,xO ,yo; 

integer dimiension,M,N; ~xO,yO; array u; integer array F; 

begin intege:E_ nu,m,kaJ{psi,K,KC,AB,1,j; integer array type[l:M]; 

procedure~ INITIALIZE(i); ~ i; integer i; 

begin AB:= AB + 1,; !LH[i,2] > 0 ~ 

begin INITIALIZE(H[i,1]); INITIALIZE(H[i,3]) ~ ~ !!._ H[i,1] > 0 then 

begin g1teger k,l; kpsi:= kpsi + 1; INITIALIZE(H[i,3]); AB:= AB - 1; 

k:= PSI[H[i,1],0]; nu:= !f.k > nu~ k ~ nu; !2£. l:= 1 step 1 ~k 22, 
begjn AB:= AB + 1; lNITIALIZE(PSI[H[i,1],1]) ~ 

end elsie if H[i,1] = - 4 then AB:= AB - 1 else if H[i,1] = -10 then 
---- ~ ---=:.... -
begin !L H[i,2] = -2 ~ type[H[i93]]:= 2 ~ if H[i,2] = -1 A type[H[i,3]] + 2 

~ type[H[i,3]]:= 1 

~end; 

!2£. l:= 1 step 1 ~M ~ type[l]:= O; AB:= O; kpsi:= nu:= O; 

!.2£. l:= 1 step 1 ~M ~ INITIALIZE(F[l]); . 

begin ~~ a[l:AB,0:(!L dimension = 2 ~ ((N-l~x(N+2~),:.. 2 ~ N-1)]; 

integer array c[O:N-1,0:N-1],tp[l:M,1:2],unknown,formula[l:M],n[l:2],f[l:AB], 

phi[O:kpsi,O:nu],psi[O:kpsi,-1:nul; 

real ~ocedure IP(lp,rp,diff):; integer lp,rp,diff; 

~ !_!1teger i,j; ~ alp,arp; ~!!£!! S:= so.s1,s2; 

alp:= a[lp,c [n[l ],n[2 ]]]; arp:= a[rp,c [n[l ],n[2 ]]]; 

a[lp~c[n[l],n[2]]]:= a[rp,c[n[l],n[2]]l:= O; goto S[diff+l]; 

SO: IP:== SUM(i,O,n[l],SUM(j,O,n[2],a[lp,c[i,j]] x a[rp,c[n[l]-i,n[2]-j]])); goto END; 

Sl: IP:== SUM(i,l 0n[l],SUM(j,O,n[2],i X a[rp,c[i,j]] x a[lp,c[n[l]-i,n[2]-j]])), goto END; 
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N 22, begin PUSPACE(S~; ABSFIXP(l,0,j~ end; PUNLCR; PUSPACE(16~; 

PUTEXTl({u[i.); ABSFIXP(l,0,l); PUTEXTl({,i,jJi) 
. . . 

end; PUNLCR -
end -
~ TAYLOR; 

!'.!:!! procedure F AC(n~; ~ n; integer n; 

begin integer i; A: !!. n s_ kf ~ F AC:= fac[n] ~ 

begin !2t i:= 1 step 1 until 5 22, fac[kf+i]:= fac[kf+i-1] x (kf+i~; 

kf := kf + 5; '2!2, A 

~end; 

procedure CHANGE(i,j~; value l,j; integer i,j; 

begin H[i.1]:= H[j,1]; H[i,2]:= H[j,2]; H[i,3]:= H[j,3] ~ 

procedure CALCULATE(nJ,unknown); ~ n; integer n; integer array !,unknown; 

~ integer j,m,K; array c[0:n]; K:= k; m:= n - 1; 

A: !.2£. j:= 1 step 1 until n 22, c[j]:= VALUE(DIFF(i[n],unknown(j])); 

c[0]:= - VALUE(i[n]); if abs(c[n]) < JO-i0 then - . -
~ !!.,m = 0 ~ begin PUTEXTl({system is unsolvable;!,); stop end; 

k:= K; j:= i[m]; i[m]:= i[n]; i[n]:= jJ m:= m - 1; goto A 

end; j:= NUMBER(c[0]/c[n]); !2!:, m:= 1 step 1 until n - 1 22, 
j:= if abs(c[m]) < J0-10 then j else S(j.,P(NUMBER(-c[m]/c[n]),unknown[m])); - - - - - ·-
CHANGE(unknown[n],j); if n > 1 then .- -
begin CALCULATE(n-1,i,unknown); CHANGE(unknown[n],NUMBER(VALUE(unknown[n]))) 

~end; 

kc:= k:= -1; NUMBER(0); NUMBER(!); kf:= 0; fac[0]:= 1; Xf:= STORE(-4,0,0); 
. . 

PHI[l]:= STORE(-4,0,0); PHI[2]:= STORE(-4,0,0); INFORM FUNC(0,0,0); 
. . . 
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~ !!_f[ml] < 0 !!!!!!, a[phiflq,si,j]0c[n[l],n[2]]J:= (!!.,n[l] = 0 /\ n[2] = 0 ~ 

INFORM FUNC(a[ml,0],H[i,1].j~ else IP(psi()cpsi,j],ml,p)/n[p] + 

a(psi[kpsi,j].0] x a[ml,c(n[l],n[21]]) 

else f(phi[kpsi,j]l:= S(NUMBER(IP(psi[kpsi,j],ml,p)/n[p]), - -
P(NUMBER(a[psi[kpsi,j],0]) ,f[ml])) 

end end else if H[i.,1] = -4 then CALC ARRAY:= H[i,3]; --- --- -- -- -
comment Continuation of TAYLOR; K:= k; KC:= kc; n[l]:= 0; n[2]:= 0; ---f.2!. k:= 1 step 1 ~AB 22, 
begin f[k]:= -1; !£;:. j:= 0 step 1 ~(!,!_dimension = 2 ~ ((N-l)x(N+2)):.. 2 

~ N-1~ 22, a[k,j]:= 0 

end; !2!:_ I:= 0 step 1 ~ N-1 22, !2,t j:= 0 step 1 ~ N-1-1 22, 
c[l,j]:= (j x (2 x N + 1 - j)).:.. 2 + I; f2!. l:= 1 step 1 !!!!!!!. M 22, 
begin tp[l,l]:= type[].] - 2 X (type[l],L 2); tp[l,2]:= type[l],L 2 ~ 

AA: k:= K; kc:= KC; ~ l:= 1 step 1 ~ M 22, unknown[l]:= NUMBER(0); 

kpsi:= ka:= O; !2!_ l:= 1 step 1 ~M 22, formula[].]:= f[CALC ARRAY(F[l])]; 

!!,_n[l] = 0 /\ n[2] = 0 ~ goto CALC PSI; CALCULATE(M,formula0unknown); 

!2!:, I:= 1 step 1 ~ M !!2_ u(l,n[l]+tp[l,1],n[2]+tp[l,2]J:= VALUE(unknown[l])/(1 + 

(!!., type[l] = 0 ~ 0 ~ n[type[l]])); !2!:_ j:= 1 step 1 ~ka 22_ 

begm !t f[j] ~ 0 ~ 
begin a(j,c[n[l],n[2]]]:= VALUE(f[j]); CHANGE(f[j],NUMBER(a(j,c[n[l] 0n[2]]])) 

end end; --
CALC PSI: !2£. j:= 1 step 1 until kpsi 22, 

begin I:= H[psi(j,-1],1]; H[Xf,3]:= psi[j,0]; f[psi[j,0]]:= -1; t2£, m:= 1 step 1 

~ PSI[l,0] 22, !?s!!!, H[PHI[m],3]:= phi[j,m]; f[phi[j,m]]:= -1 ~ !2!, m:= 1 

step 1 ~PSI[l,0] 22, psi[j,m]:= CALC ARRAY(PSI[I,m]) 

end; if dimension = 2 then -- -
begin n[l]:= n[l] - 1; n[2]:= n[2] + 1; !t n[l] = -1 ~ 

begin n[l]:= n[2]; n[2]:= 0 end; !t,n[l] l N ~ goto AA ~ ~ 

begin n[l]:= n[l] + 1; !!_n[l] l N ~ 12!2. AA~ 

k:= K; kc:= KC; !2!:, I:= 1 step 1 ~ M 22, 
begin PUNLCR; !2!:, K:= (!!_ dimension = 1 ~ 0 ~ !t type[l] = 0 ~ N-1 

~N~ step -1 !!!lt!!.0 !!2_ 
begin PUNLCR; ABSFIXP(l,0,K~; !2!:, j:= 0 step 1 ~ N - K - (!!, type[l] = 0 

then 1 else 0) do FLOP(5,1,u[l,j,K]) 
~ ~ . ---

end; PUNLCR; PUTEXTl({ j,i *); ABSFIXP(l,0,0~; !2!:, j:= 1 step 1 ~ 
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PUTEXTl({ 

Results of test program for the Cauchy problem RPR 310565/39492:i,); 

begin integer K,KC,n,un_x,y,xy; integer array F ,U,dUdx,dUdy,xttp,yttp[l:2]; 

array u[l:2,0:4,0:4]; 

procedure A(d,M,Fl,F2,x0,y0~; integer d,M,Fl,F2; ~x0,y0; 

begin k:= K; kc:= KC; F[l]:= Fl; F[2]:= F2; PUNLCR; 

PUTEXTl({The differential equation(s};l,); PUNLCR; OUTPUT(F[l]); 

PUTEXTl({ = o;i,); !f. M = 2 ~ 

begin PUNLCR; OUTPUT(F[2]); PUTEXTl({ = o;i,~ end; 

PUNLCR; PUTEXTl({dimension M xO (y0};l,); PUNLCR; 

PUSPACE(2); ABSFIXP(l,0,d); PUSPACE(l0); ABSFIXP(l,0,M); PUSPACE(6); 
. . 

FLOP(2,1,x0); if d =. 2 then FLOP(2,1,y0); TAYLOR(d,M,F ,4,x0,y0,u) 
. - - . -

end• for n:= 1 2 do ~- ' -
begin U[n]:= STORE(-10,0,n~; dUdx[n]:= STORE(-10,-1,n); dUdy[n]:= STORE(-10,-2,n); 

xttp[n]:= STORE(-2,0,n); yttp[n]:= STORE(-3,0,n) 
. . 

end; x:= xttp[l]; y:= yttp[l]; xy:= P(x,y~; K:= k; KC:= kc; 

n:= -1; !2!:_ un:= 1,1.,0,0,0 !!2_ begin n:= n + 1; u[l,n,0]:= un end; u[l,0,ll:= 0; 

A(2,1,S(P(U[l],dUdy[l]),x),0,0,0); 

u[l,0,0l:= 1; 

A(2,1,S(LN(U[l]),y),0,0,0); 

u[l,0,0]:= 1; 

A(l,1,D(ARCTAN(Q(SIN(U[l]),COS(U[l]))),EXP(xttp[2])),0,0,0); 
. . -. . 

u[l,0,0]:= u[2,1,1]:= 0; u[l,1,0]:= u[2,0,0]:= 1; 

A(l,2,D(dUdx[l},0'[2]), S(dUdx[2],U[l]),O,0); 
. . 

u[l,0,0]:= 0; u[2,0,0]:= 1; 

A(2,2,D(U[l],LN(xy)), D(U[2],SQRT(xy)),1,1); 
.. . . . 

u[l,0~0]:= u[2,0,0]:= -1; 

A(2,2,S(Q(l,U[l]),Q(COS(x).,S(xy,1))), S(S(xy,1),P(U[2],COS(x))),0,0); 
. . . 

for n:= 0,1,2,3,4 do u[l,0,n]:= u[2,n,O]:= 1/FAC(n); u[l,1,0]:= u[2,0,1]:= O; - - . 
A(2,2,D(LN(S(dUdx[l],S(dUdy[2],1))),LN(S(xy,1))), 

D(SQRT(S(D(dUdx[l],dUdy[2]),1)),SQRT(S(xy,1))),0,0) 
.. . 

end 

end -
end -
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Results of test program for the Cauchy problem RPR 310565/39492 

The differential equaUon(s) 

((U[ 1 ]xdU[ 1 ]/dy)+X4( 1 )) = 0 

dimension M x0 (yO) 

2 

4 -.00000 

3 -.00000 

2 -.00000 

1 

-.00000 

+.00000 

+.00 

-.5000010+0 

1 +.00000 -.1000010+1 +.1000010+1 -.1000010+1 

0 +.1000010+1 +.1000010+1 +.00000 +.00000 +.00000 

jJ. 0 1 2 3 4 

u[ 1 ,i,j] 

The differential equat:i.on(s) 

(ln(U[ 1 ])+y~( 1 )) = 0 

dimension 

2 

M 

1 

x0 

+.00 

3 -.1666710+0 

2 +.50000ro+O -.00000 

1 -.1000010+1 -.00000 

0 +.1000010+1 -.00000 

jJ O 1 
u[ 1 ,it>j] 

The differential equation(s) 

-.00000 

-.00000 

2 

(y0) 

+.00 

-.00000 

3 4 

(arctan((sin(U[ 1 ])/cos(U[ 1 ])))+((-.10010 +1 )xexp(x.4,( 2 )))) = 0 

dimension M x0 (y0) 

1 1 +.00 

0 +.1000010+1 -.00000 +.1000010+1 +.00000 

jJ O 1 2 3 4 

u[ 1 ,i,j] 



The differential equation(s) 

(dU[ 1 ]/ruc+((-.1OO10+1 )xU[ 2 ])) = 0 

(dU[ 2 ]/ruc+U[ l ]) = 0 

dimension 

1 

0 +.00000 

j,i 0 

M 

2 

xO 

+oOO 

+.lOOOOID+l +.00000 

1 2 

u[ 1 ,i,j] 

(yO) 
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-.16667ID+O -.00000 

3 4 

0 +.lOOOOID+l +.00000 -.5OOOOID+O -.00000 

j,i O 1 2 3 

u[ 2 ,i,j] 

The differential equation(s) 

(U[ 1 ]+((-.10010 +1 )xln((x.1t( 1 )xy,1\( 1 ))))) = O 

(U[ 2 ]+{{-. lOOID+l )xsqrt((x,1\( 1 )xy,1\( 1 ))))) = 0 

dimension M xO (yO) 

2 2 +.1010+1 +.1010+1 

3 +. 3333310+0 

2 -.5OOOOID+O +.00000 

1 +.lOOOOID+l -.00000 +.00000 

0 +.00000 +.lOOOOID+l -.5OOOOID+O +.33333ID+O 

j,i O 1 2 3 4 

u[ 1 ,i,j] 

3 +.625OOID-1 

2 -.125OOID+O -.625OOID-1 

1 +. 5OOOOID+O +. 25OOOID+O -. 625OO10-l 

0 +.lOOOOID+l +.5000010+0 -.1250010+0 +.625OOID-1 

jJ 0 1 2 3 4 

u[ 2 ,i,j] 
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The dliferent:i.al equation(s) 

(((+.10010 +1 )/U[ 1 ])+(cos(~( 1 ))/((~( 1 )xy,i( 1 ))+(+.10010 +1 )m "" 0 

(((~( 1 )xy,4.( 1 ))+(+.10010 +1 ))+(U[ 2 ]xcos(x,i( 1 )))) = O 

dimension M x0 (y0) 

2 2 +.00 

-.00000 

3 -.00000 

2 -.00000 

1 -.00000 -.1000010+1 -.00000 

0 -.1000010+1 -.00000 -.5000010+0 -.00000 

jJ O 1 2 3 

u[ 1 ,i,j] 

-.00000 

3 -.00000 

2 -.00000 

1 -.00000 -.1000010+1 -.00000 

0 -.1000010+1 -.00000 -.5000010+0 -.00000 

jJ O 1 2 3 

u[ 2 ,i,j] 

4 

4 
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The differential equation(s) 

(ln((dU[ 1 ]/dx+(dU[ 2 ]/dy+(+.10010+1 ))))+ 

«-.10010 +1 )xln(((x4( 1 )xy~( 1 ))+(+.10010 +1 ))))) = O 

(sqrt(((dU[ 1 ]/dx+((-.10010+1 )xdU[ 2 ]/dy))+(+.10010+1 )))+ 

«-.10010 +1 )xsqrt(((X4( 1 )xy~( 1 ))+(+.10010+1 ))))) = O 

dimension M xO (yO) 

2 2 +.oo +.oo 

4 +. 4166710-1 

3 +.1666710+0 -.00000 

2 +.5000010+0 -.00000 -.00000 

1 +.1000010+1 -.00000 +.5000010+0 -.00000 

0 +.1000010+1 +.00000 -.00000 -.00000 -.00000 
j,i 0 1 2 3 4 

u[ 1 ,i,j] 

4 +.00000 

3 +.00000 +.00000 

2 +.00000 +.00000 +.00000 

1 +.00000 +.-00000 +.00000 +.00000 

0 +.1000010+1 +.1000010+1 +.5000010+0 +.1666710 +0 +.4166710-1 

j,i O 1 2 3 4 

u[ 2 J.,j] 
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1 o Introduct~ 

Many physic.al problems lead to the so-called Cauchy ;groblem (see ref [2] 

p, 39), Lee the <~.,::.1.-;.3.t,1(.;U of functions Uk(x,y) satisfying the 

partial differential equations 

( 1 0 1 ) 

fork = M and 1 = 1, OOOj M 

and the initial conditions 

fork= 1s ooo, Mo ( 102) 

Sometimes it is possible to express the functions Uk in the form of 

Taylor seri1es 

( 1 0 3) 

In this report we will be concerned with the calculation of the Taylor 

coefficient:s u. " "o K,J.,J 
In general this is an elementary but tedious calculation, we made there= 

fore an ALGOL 60 procedure (called TAYLOR) 9 by means of which a digital 

computer can calculate these coefficientso 

Extensive u:se is made in this procedure of a set of A.LGOL 60 procedures 

by which on,e can do algebra with the computero These procedures will be 

described in section 4, they enable the user to store, differentiate, 

evaluate~ or output a rather general type of formulae, We remark that 

a similar set of procedures was used by the author in ref [1J, to 

calculate a secon~order approximation of the solution of a complicated 

non=linear :problemo 

We require in the sequel that the Cauchy problem ( 1 c 1), ( 1 o2) satisfies 

the following conditions· 

1 e The, diffierential eg_uations ( i o 1) and initial functions { 1 o2) are 

analytic in their variables in a nabourhood of the point x = 0~ y = 0 
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ap 
det la~}~ o in x=O, y=O ( 1o 4) 

with 
auk 

'\ = ay 

3 o The M equations 

auk . . r 1 • uk ( a • o ) • o • o ) = o _ 
y jx=O,y=O 

( 1o5) 

auk 
are explicitely solvable for the quantities aj o 

y x=O•y=O 
We require that these quantities are given as part of the initial 

conditions o 

There are two cases for which condition 2 is not satisfied• but for 

which the Taylor coefficients may still be calculatable o 
auk 

1 o For a certain k, the variable -,:--, does not occur in the equations oy 
(101), 
auk 

but condition (1o4) still holds if~ is replaced by 

ax 0 

The initial conditions should then be replaced by Uk(0 8y) = Gk(y), 
auk 

and ax ~I__ _ should be given beforehando 
J .1'--0 ,y-o auk auk 

2 o For a certain k neither one of the variables rx- or ¼ enter in 

equation:~ ( 1 o 1), but condition ( 1 o4) still holds if ~ is replaced 

by Uko 

In this 1~ase one does not need an initial condition for Uk o 

We require however (cJndition 3) that Uk(O,O) is giveno 

Important examples of these cases are auk 
1 o ordinary 

2a implicit 

differential equationsg F1(~ 1 Uk, x) = 0 

equations F1 (uk, x, y) = Oo 

In section ;2 we will define the process by which the Taylor coefficients 

can be calculatedo 

In section 3 a motivation of the general form of the Cauchy problem 

will be gi vim I together with a discussion of some literature o 

Section 4 ii3 devoted to the ALGOL 60 procedures for doing algebra on 

the cpmputero 
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The procedure TAYLOR will be discussed in section 5 and in section 6 
we reproduce the program by which some test cases were calculatedo 

We remark that the procedure TAYLOR is very inefficient with respect 

to memory space and calculation time o 

In a forth-coming report however 1 we will describe a procedure which 

generates an ALGOL programo 

The generated ALGOL program is then intended for the actual calculation 

of the Taylor coefficients.,and it is made as efficient as is reasonably 

possible with respect to memory space and calculation timeo 

2o1o The Cauchy problem 

Consider the differential equations (1o1) and differentiate the F1 
n times with respect to x and m times with respect to y 1 obtaining 

for n+m > 0 

M oF an+1np aF an+mo_ 
r c-! - k + -1 --lt-> + o o o = o 

k=1 apk-oxnoym a~ axnaym 
auk auk 

in which Pk = ax and ~ = °ay o 

Terms involving derivatives of Pk 9 ~ and Uk 

and 

ai+jP 
k 

with i ~ n, j ~ m and i+j # n+m 

with ii n, j 1 m, 

and terms involving partial derivatives of F1 with respect to x and y 

are represented by the dots in ( 2 o 1) o 

The Taylor series for Uk is 

00 00 

Uk I i: nm 
(1o3) = ~ X y o 

n=O m=O 9n 9m 
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{Here and in the sequel we denote the function by a capital letter 
• • I 

and its Taylor coefficients_by a small letter)o 

Since 

and (2o2) 

relation (2o1) is a linear relation between the coefficients u.· 
K 8n 9m+1 

and u. o 
K 9n+1,m 

We may therefore u. + 1 express as a function of the u1 .. , with 
Ki)n 9 m 1 11tJ 

1 = 111 OOOi) Mand (i,j)~ V (see figo 1)o n 9m 

).i, - + + + + 

3 
... + + + + + -t 

(n 11 m+1) 

2 .... + + .. + 't 
(n,m) (n+1 9m 

1 ... ~ .f. + + + 
V 

n&m 

j=O 
I I I I I . 

i=O 1 2 3 4 5 6 

figo 1 

figo 1 represents a grid of points ( i .j) corresponding to the index 

pairs i 9 jo 
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Thus 

with 

From the in:i. tial conditions and condition ( 1 o 5) 11 the u. 0 s for 
K9J.i,O 

i ~ 0 9 1~ 2i ooo and ~,o., can be obtainedo 

We are thus able to calculate consecutively the u. + 1 for K~n,m, the 

points 

(2o3) 

(2o4) 

In the sequel we will use the ordering of the grid points {i 8 j) just 

as is indicated by the above sequenceo 

This ordering is precisely the order of the griu points lying on the 

broken line in figo 2~ drawn ff'rom (0 00) to (n 9m)o 

To each grid point we assign an index S (n 1m) i eq_ual to the munber-

of points preceding and including the point (n,m) on this broken lineo 

Then 

1 ( . S(n,m) = 2 n + m + 1)(n + m) + m + 1o 

4 + +- + .. 

3 + -1- + + + 
~ ,, 

<' ' ' ' 
' ' (n,m) ' ' 2 .,., ' ,_ + + + + 

' ' ' ' ' ' ,, ' ' ' ... ,, 
~ ' ' " ' ' "" 

' '- ' ' ' 
' ' ' ' 1 '+ lil, '>t- ' ~ + + 

' ' ' ' ' ' ' ' '- ' ,' ' ' ' ' 1-. 
,, 

~-' "-.& ' ' ti\. '- -... ' ,, ,, 
' 

,, ,, ~ 

j=O -... ' .. 
i=O 1 2 3 4 -5 6 

:t;,i,50 2 
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4 + + + 

3 t- + + 

2- ~+ + 
(n 9m) 

f-
(n+1 9m) 

+ + 

1 - +- + + + 
w n 8m 

j=O 
i=O 1 2 3 4 5 6 

figo 3 

The order in which the u. are caJ.culated, is such that S(n,m) 
Ktntm 

increases o 

In figo 3 we illustrate which u_ • • are already calculated or known~ 
. J:C,1 ~J 

if it is the turn to uk .. to be calculated i these index pairs ( i .,1) 
,n ~m+ ! 

lie in W a 
n©m 

Above v[e sketc~0a how the Taylor coefficients ca.11 be calculated for 

the case that ayk enters in the differential equationso 

It is obvious that the whole procedure can also be derived in the 
auk auk auk 

cases that - or both - and -~x are lacking in the differential ay ay o 

equations o 

The met,hod just described ca..11 be laid down in an ALGOL progra.mo This pro= 

gram has to differentiate the differential equations a.nd construct 

from the derivative~ the function A in equo ( 2 o 3), by which u. 1 K,n~m+,, 
can be calculatedo This is already done by Perlis, Iturriagia and 

Sta:ndish [BJ o 

There is however a major disadvantage attached to this approacho 

This disadvantage is that the derivatives of the differential equations & 

on the for:m of which we.do not want to impose heavy restrictions, will 

in gen~ral become very lengthy so that the memory capacity of the 

computer will soon be exhaustedo 
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We chose therefore an alternative method• which is more arduous to 

describe but which has the advantages that, firstly the memory capacity 

will not as soon be exhausted and secondly it bears the possibility to 

separate the algebraic pa.rt of the calculation from the numerical part 

of the calculation in two different programs (which will be the subject 

of a next report)o 

2o2o The structure of the differential equations 

Before going on, we have to define the structure of the differential 

equationso 

In section 4 this structure will be defined by means of Backus notation 8 

we will define it now in a less stringent wayo 

Roughly speaking, the differential equations are formulae in which the 

only operations are the algebraic operationsg sum, difference, product 

and quotient o 

These operations will be assumed to be binaryo 

The other constituants of the formulae areg real numbers 9 the variables 
auk auk 
ax ® ay • Ukll x 8 y and functions of a single parameter (the parameter 

may be a formula itself)o 
> 

Since the difference of two formulaeg A - B9 can be replaced by 

A+ (-1) 0 B8 we,will assume that the difference operation does not occur 

in the differential equationso 

Putting it more precisely~ the differential equations may have the form 

of the formula F, which is recursively defined in the table below in 

which A and B are also of the form Fo We require that A and B are less 

"complicatedn i or contain less algebraic operations and function symb::>ls 

than Fo In other words 9 F should be built up with a finite number of 

symbolso 
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case F 

1 A+B 

2 A6B 

3 A/B 

4 C C is some real number 

5 Uk k is some positive integer 

.6 
auk 

II II -ax 

7 
auk 

II " -ay 
8 xp p is some positive integer 

9 yp II II 

10 ~{A) ~ is some function symbol 

table 1 

If Fis of the form 1 1 2 or 3 we call Fa compound formula, in the case 

4, Fis called a number, in the cases 5 until 99 Fis called a simple 

~ and in the case 10, Fis called a functiono 

For the function~ we require firstly, that there exists a set of first 

order ordinary differential equations 

(2,6 ) 

of which~= ~1(X) is a solution 9 and secondly that the value of the 

functions~ (X) is well=defined for every real Xe 
\I 

For the form of the functions fk we require that it is the same form as 

the form of the function f 9 defined in table 2. in which A and Bare also 

of the form fo 

Al.so for f require that it has a f'ini te structure. 



case 

2 

3 
'I. 
'+ 

A+B 

A/B 

C 

9 

table 2 
~~ 

'l'he functions used in this :report are the standard ftmctions of the 

ALGOL 60 re:port (ref [l+]) (excluding abs and sign)o 

The differential equations of tbese functions sxe listed 

sin 

cos 

exp 

ln 

sqrt 

arctan 

2 

2 

If' 1 "' 

"¥ ' ·~• 

~f = 
"1 

ijl = "I 

'I' = 

ijl '1 
;:, 

,, 

qi 2' IJ!,., = =4> ,i ·- cos 
C. 

?, 

=<fl 2; '¥ = ¢, qi = sin 
2 ~ 2 

\P1 

1/X 

o5/<'P 1 

J(c: + XoX) 

table 3 ---

table :; c 

Let us illu:nrate t.he form of F by means of the following examples~ 

·,ich will a.lso be used ft:.rther nn, 

Example 1 b '.rhe differential equation = u. -ay + X -· 0 can be brought. 

in the form of a formula by defining the A, C C C t Ar 
) 
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A1 = u, 

<lU ~ 

A2 ' = ay' 

A-=l .., = A1 A2 

A4 = X 

Ex.ample _£c The implicit equation F1 = ln u1 + y = 0 

A1 = U 1 

A3 - y 

F, _, 
A11 = A2 + 

Ar -
,) 

A6 = X 

We will now describe the recursive process for calculating the Taylor 

coefficients f of F. if it is assumed that the u. . . are known for n 9m K 1 1 9 J 
all (i 9 j L 
In section 2c2o5 we will odd assumptiono 

To start the calculation process we have to define f 0 ,o e 

If F is of the form 4 until 9 in table 1 1 then r0 &O follows from 

table 5 at the next page o 
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Let F be of the form 11 2 8 3 or 10 in table 1e 

Assume a0 i 0 and b0 &0 are already calculated then r0 , 0 follows from 

case ro 8o 

1 ao&o + bo,o 
2 ao110 0 bo,o 
3 ao,o1bo 9o 

10 g,( ao o) 
t 

table 4 

Using the fact that A and Bare defined in the same way as F but are 
th "l~ss complicated", it follows that all zero-- order Taylor coefficients 

of the formulae constituting the differential equations (1c1) are definedu 

2o2o2 The Taylor coefficients of a number or a simple term 

If Fis of the form 4 until 9 in table 11 then f can be calculated 
n~m 

by means of 

case f n 9m 

4 C O O 0 cS 0. is the Kronecker o 
n,o m80 l. ~j 

5 ~in em 
6 (n + 1)~ 

9n+1 1m 
7 {m + 1)~ 

9n im+1 -

8 0 0 
n,p mtO 

9 0 
n,O 

0 
m,p 

table 5 



Let F be of the form r ~ 2 er 3 in table 1 e 

1 " all f" , are already (;!~J.:~·--: .s t-c:~: ;~'=n S (if; j J < S ( n ;m) 
1iJ 

S is de fined in ( 2 c 5 l 

ca:se 

2 

a 
n~m 

n 
\ 
l 

i=O 

+ 

m 
\ 
l 

j=O 

f 
n~m 

b 
n©m 

a, 
l,J 

1 
~ {a 
bO~O n,m 

b 
n=i im=j 

• ,-~ 'j 

n 
\" 
l 

i"-'O 

( The symt .. ·,: l2, J s de:t':ined by 

~ (.TJ \l n m 
\ ' I l l C, = l ci,j 

i=O j=O 1.~j i=O j=O 
= co~o = C n,m 

By mearis of this table f is rt'cursively dcfinedi firstly with respect n,m 
t.o its iudr:1,:;,s a.:nJ. sec..:,nd:.y w5 :ch z , 1.)f·Ct tc the way in which F is defin'="•j, 

If the orig;inal dif'f'erenti.aJ c:::,q_uatJ ·-~·ns ( .:! ") did nc,t ctnrtain funct 

symbols~ t.hen t-he calculat.ior1 procE•f:B • concerning f would 1)e 
n.m 

'..;Omplete.ly definedo 

Let us illustrat.c~ therefore tl1is caf!e by means of example 



CL2 $0 $0 

"L ~.3,io.o 

al " 0 f .,v ~ 

f,, -· ac: 0 0 ;;O .o ;,; $ ~ 

etc( 

= u~ 0 ~ 

'~. !) 
g 

= a .o.o 

= 0 

'=o a~ 0 0 
,J ~ " 

= i 

"" a3 1 0 
~ ~ 

n - G m = 0 

a,.., 0 0 t:.:,; !) 

+ a 
41)0,0 

n = m - 0 

Let F' be of the form O in table 

Assume;: 

' ' ent.- 'T'. aylor f.P' ' t· - dy 1 • ~ ·· f c ( ' ' \ c : .i ·J..ae • -· coe .:.1c:ien s a, , are a.lrea c:a.cu1ac;ect or o ,.1 ,)J 1 !, ,) 
l ;,J 

? The Taylor coeffieients ¢ . , ~ a" o. <P .. ; , are already calcu1ated 
1ltJ v1~ ■~ 

3) The Taylor coefficients w, : , t o o, 1 1J; , , are already calcu.lated 
,,i~J V~ltJ 

We remark that the zero=th coefficients ¢k 0 ,, and w easily folieiw 
,,v ;'J k .o ,0 

from 
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and ~k,0 10 = 1¥k(ao.o 0 $1,0 10• 000 •~v,0 10) 

Differentiating the functions wk(A) with respect to x, we obtain 

Hence we have for n ~ 0 

a. . • 
l9J 

from which $k and thus f &n 0m nim 
= $1 can be calcula.tedo 

9n ,m 

(208) 

(2o9 ) 

(2o 10 ) 

(2o11) 

If n = 0 then we may differentiate wk(A) with respect toy and we get 

The $k now being defined, we will determine ~k o lln 0m 9n 5m 
Comparing table 2 and table 11 we observe that if F does not contain 

function symbols ll then 'l'k would be an F • but for the variables X and w O o 

The Taylor series for these variables are however known, therefore 

the~ can be calculated in the same way as f in section 2o2o3 klln 0m n 9m 
is calculatedo 

We have completely defined now the calculation process off o n!)m 
We close this section with the continuation of example 2o 

Example 2o (continued) n=0 m=0 

a = u 
1 ®o ®o 1 90 90 

cp = a = ln(a1 0 0 ) 
1 so 00 2!)0iJO !) i) 

a = 0 3,)01)0 

f = a4 00i>O = a + a 100s0 2,)0!)0 3,000 



a5.,0t0 = 

t:ir = a~i)080 ,,,:-.~0,0 

- al o o = a /a6 ~o,Jo ·~ ~ 5 90 io ~o ,o 

n = i m = 0 

a, 1 n = u, 1 0 
II~ I ~V " I · S 

¢, = a2" 0 = a7 0 0 a<j , 0 
,i ~, ,lo ~ ,! @ I\ ~ ' i ,, t 

a3~ = 0 
gO 

f, "" a4 = a2 1 0 + a 
u t ~o ~ 1.,0 ® • II 3.1$0 

a = 0 5 Ii ,,0 

1~6.1~0 
= a,.1 10 

1/i 
1 

{a5 1 0 a6 i o} = 13.7 I 
= = a 

~; vO ®o a6~0 10 ~ ' $ 7~0g0 t " • 

2 o 2 o 5 ~ '.£8:Ylor coefficients of the unknown functions 

At the end of section 2c2 we assumed that u. , c were k.1:wwn for al1 (i©j)c 
K~l. jJ 

We shall now treat the more realistic case that the u.,. , , with ( i ~j J ~ W 
K 1 1 1 J n 1m 

{fig, 3) are known and the uk +" are unknowno 
~n!lm , 

Replace these ~~n~m+ 1 by the quantities ~c 

Calculate now in an algebraic way t all Taylor coefficients f 
ntm 

to the remarks in the sections aboveo 

In particular t.he Taylor coefficients f of the differential equations 
1 ,n ~m 

F1 themselves can be calculatedo 

The f 1 
~~n~m 

will be functions of the 

From table 6 and formulae ( 2 c 11 ) and ( 2 c 12) it follows that these 

functions are linear in the Xko 
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From equation (1o1) it follows that r1 = Oo 
. iln •m 

We have_therefore M line~ equations in the M unknown quantities ~c 

The condition ( 1 o 4) guarantees that the quantities Xk can be calcu.1.atedo 

Thus the u.. +1 can also be caJ.culatedo (We remark that in the progrr:i:m 
K 8n 0m 

the quantities (m+1-)1\.ilnilm+i are replaced by the quantities ~, since 

then the matrix of the set of equations f 1 = 0 is independent of 
,n~m 

n and m) o 

Repeating now the same arguments as in section 2o1 we see that all the 

coefficients u. are calculatableo 
Ken®m . 

For the examples 1 and 2 we have 

Example 1o (continued) 

Then u1 ®0 ® 1 

= i; a2®0e0 = O, 
= a5 0 0 = 0 (as 

Let us choose u 1tOeO = 1e u 1 , 110 = 1o 
= 0 (here we use the requirement (1o5))o 

a = O; a4 = O, 3 90 00 ,OeO 
it should be) o 

i) !) 

a -
11 ' 

a = x11, a3®1 00 = x,. a4,1il0 = 1 • 
11 ® 1 00 2 0 1 i)o t 

f = a -: X + 1 = 0 thus x, = =1 and ui t 1 t 1 = =1o 
1 e 11 ;iO 5e 1 ,lo 11 

a = =1, a = =10 
2e 11 ®o 3 0 1 i)o 

Example 2o (continued) Requirement (1o5) gives u = 1o 
1 ~o .o 

a = 'l 0 

4> 1 0 0 = a = o, a = o, 
11)0 0 0 

, 
2®0~0 3,0.0 "® ii 

r,1 ©o 00 = a4~0®0 = 0 (as it should be), 

a = 1 • a6@o,,o = 'l • 
i/i.1 .. 0,0 = a = 1 0 

5~090 • 7io,o 
a = X " 4> = a = x,, a = 0 . 1 ® 1 ,o 1 t 1il1~0 2 1 1 ~o 31, 1,0 

r, -~ o = a4~ 1®0 ·- x~ = o,, thus x, = 0 and 
u1 ~ l ®O = Oo 

@ il • 
a = o, $.j 1 0 = a = 0 0 

1,i 1 »O 2il 1.,0 ' '® i) 

a = 0 0 a6~ n i)o = Qo lJI = 87 Q 1 ,o = 0., 59 1 ;iO II- • 1 il 1 ,o 



7 

.:5c A less g:££eral Cauchy proble~ 

Richtmyer [5] and Moore [6] constructed (not 1n ALGOL) 

progriuns fer the calculation of Taylor coefficients, 

'Ihe Cauchy problem fer which these programs are .::or.r,tre,;c ted have 

the form 

au 
l 

ay= = with l= ar.rl 

toc;ether with inida:i.. conditions of the form ( 1.,2') 

This is a less general type than equations ( 'f c ·1 o 

If the functions IL are of the form of a formi.lla as defined 1n 
.L 

this section,then we may in the way as described 1n section 2,2s 

calculate the Taylor coefficients h , 
lgn ,m 

These coefficients are independeni: of the \l of 
kinvm+1 

course~ we 

can therefore calculate immediately the 1.\. . ,. from 
•• 8n~m+1 

and we do not have to manipulate algebraic with unknown quantities 

~, This s the pro1:,ram considerably~ it is not even necessary 

to use the rirocedures for differentiat:ing and evaluating a formula in 

the computers 

A peculiar fact 

above form 

that the genere.1 funn " 1 ) can be brought into the 
\ 
J ,. 

Introduce namely ~,r new func: ions ,; 
k 

respect to y 1 obtaining 

,· i' k 
aF, 

.L 

differen 

~ + === "' 
2U ay 

Let the inverted r::at.dx cf be 

.r: 

t !· 17 en ~,·:-:..: 
~J" 

ate (1,1) with 

the s~tster.1 



(3,3} 

which is of the desired formo 

Thus we could have based ourselves upon the form (3o1)o 

There are however® three disadvantages connected with the translation 

of the equations (1o1) into (303)0 

so One has to do the differentiating and inversion (of a matrix of 

functions) oneself® with the risk of making errorso 

2o The formulae at the right-hand side of {3o3) will in general be far 

more lengthy than the original formulae F1 in (1o1) 

3o The initial conditions for the functions Vk should be calculated 

beforehand~ which is in general not easyo 

These three disadvantages show clearly why we chose in favour of the 

more general form (1o1) 8 though the program becomes more complicatedo 

The difficult calculations however, are completely overtaken by the 

programo 

As for the more complicated form of the program, we remark that the 

procedures for doing algebra within the computer, enable us to 

construct still a rather lucid programo 

In the articles of Richtmyer and Moore 0 the attention is drawn to an 

important featurei namely that the calculated Taylor coefficients of 

hi~her order© may become inaccurate 0 due to cancellation of significant 

digits in additioning and subtractingo 

They recommend a method of calculation, in which the accuracy is also 

calculated o 

In this report we do not enter upon this question 8 since we are 

mainly concerned with the general method of calculating implicitly 

defined Taylor coefficientso 
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We remark however, that it is possible to construct a program (see the 

end of section 1) which generates a machine code program in which this 

method of calculation is built ino 

We close this section by remarking that the conditions 1 and 2 of the 

introduction are sufficient for convergence of the Taylor series for 

Uk in a nabourhood of the point x=0 9 y=Oo 

This follows at once from the Cauchy-Kowalewski theorem (~ee Courant 

Hilbert ref [2] Po 39) o 
We can in fact apply this theorem for the Cauchy problem (3o3)® which® 

as was shown, is equivalent to the Cauchy problem (1o1)o 

We do not enter upon questions of rate of convergence or region of 

convergence a 

11., Doing algebra with the computer 

We define a formula by means of Backus notation (see the ALGOL 60 

report ref [4]), 
0 0 1 ) <p> ,~~ <unsigned integer> 

<simple term> g g= u[<p>J I dUd.x(<p>] I dUdy[<p>] I xttr{<p>J I yttp[<p>J 

<function identifier> g g= sin I cos I ex;p I 1n I sqrt I arctan 

<function> gg= <function identifier> (<formula>) 

<operator> ~g= + I - I* I / 
<compound formula> gg=(<formul.a><operator><formula~ 

<formula> gg= <simple term>l<number>j<function>l<compound formula> 

For the definition of number and unsigned integer see the ALGOL 60 reporto 

Each formula is represented within the computer by a non-negative number, 

which we will call the index of the formulae 

The representation is such that different formulae have different indexes 8 

we may therefore identify the formula with its indexo 

1) We assume that pis unequal to zeroo 



20 

4o1 Storing a formul~ 

The set of procedures for storing a formula consists of the intege1: 

procedures Se D0 P~ Q~ SIN 0 COS 0 EXP© LN 9 SQ,RT@ ARCTAN and NUMBER'. 

The ALGOL 60 definition fa gi7en fo section 60 

The first four procedures stcr~ o. ~o.mpound formula" the next six 

procedures store a function and the procedure NUl,IBER stores a numbero 

The word 11 store·o, must be understood as to mean assigning to each 

formula an index a.nd storing relevant information in the arrays 

integer array H [o g kmax 8 i g 3] 
and the ~ array HC (o g kcmax] o 

The integers kmax and kcmax should be chosen large enougho 

As pointers for the arrays H and HC& the non=local integers k and kc 

are usedo 

Let the index of the stored formula be f I the indexes of the formulae 

a and b in the table below be a and b and c a real number!> then we 

see from this table the ALGOL statement to be used and the information 

stored in the arrays Hand HCe 

f = ALGOL statement H[fe i]= H[f 02J= H[ft3]= HC[kcJ= 

a+ b f o-o- S(a~b) a 1 b 

a= b f o-o- D(a. 0b) a=b is converted by D into a+(-1 ). b 

a*b f o-o- P(a~b) a 2 b 

a/b f 0 -o- Q(a®b) a 3 b 

sin(a) f a-
o- SIN(a) , 0 a 

cos{a) f a-o- COS{a) 2 0 a 

exp(a) f o-o- EXP(a) 3 0 a 

ln(a) f g= LN(a) 4 0 a 

sq:rt(a) f o-o- SQRT(a) 5 0 a 

arctan{ a) f ~= ARCTAN(a) 6 0 a 

C f g= Nill-IBER(c) -1 0 kc C 



E.xample_l,o The formula f "'' arr.:ctan 

means of the statement 

·, = Jo s stored by 

f ;~ D(ARC'TAN{Q(SIN(NUMBER(3o 4)) ~COS(NUMBER(3o !4)))) tNUMBER(3c, 14)) 

The effect of this statement can be seen from the following table 

for H and HC 

k HD<~ 1] r .... 
H,=kt2J Hik ·fl ·• 6-~.).,, kn H·~ rr- ,1====--=, ,,,,,. l ... ~ I ! 

- = 

NUMBER 2 = 0 2 r, 3o i4 C: 

SIN :, i 0 2 ,.,/ 

NUMBER 4 ~ = [: 0 3 3 3014 

cos 5 2 0 4 

Q ;6 3 3 5 

ARCTAN 7 6 0 6 

,..NUMBER 8 =1 0 4 4 =1 

NUMBER 9 =1 0 5 5 3o 14 
D ◄ p 0 8 2 9 

s 7 ' 10 I 

"' 

table 8 

The ultimate effect is that f gets the value 1 o 

We use in tbe program two formulae with fixed indexes O and 

These formu1ae correspond to the numbers O and respectivelyo 

They may be considered as the zero and the unit element in the set 

of formulaeo 

The _pr·ocedures S and P are constructed such ·chat tbe formulae 

0 + a.~ a + 0~ # a.~ a q , ~ 0 .,., a, a ""' 0 are replaced by 

a a a 0 0 

Use of this zero and uni.t element :i.s made wit.bin the procedure 

DIFF' { for DIF'Ferentiating) c 
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Concerning the simple terms we remark that within the program we 

declare 

integer array U~ dUdx~ dUdy(1gl-tl 0 xttp® yttp[1gPOWER] 11 

in which Mand POWER are integers~ 1 (see equation (1oi))o 

Before the differential equations are stored within the computer, 

these array elements get the values of the indexes corresponding 

to the simple termso 

The representation in the array Hand the ordinary meaning of these 

simple terms follow from the table below~ in which pis some positive 

integero 

ordinary k H(k 0 1] H[k 11 2) H [ki3] 
notation 

u u(p] =10 0 p p 

au 
~ dUdx(;p] =10 =1 p clx: 

au 
~ 
cly dUdy[p] =10 =2 p 

xp xttp[pJ -2 0 p 

yP yttp[p] =3 0 p 

Example 1 

table 2 

au1 
(continued)o F1 = u1 ay +xis stored by the statement 

F[U g= S(P(u[1] e dUdy[l]) I) xttp[1]) 

Ex.ample 2 (ccntinued)o F1 = ln(u1) + y is stored by the statement 

F[U g= S(LN(U[1]) 0 yttp(1]) o 
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In this section we describe procedures for the following operations 

1J o Evaluatii~ a formula i (which ca.wi only be done if the formula has 

a numerical value 0 such as formula f in example 3 po 2 ) o 

This operation is carried out by the ~ ~~~ VALUE( i) o 

The calculated value is assigned to the procedure identifier 

2o Differengating a formula is with respect to some other formula n0 

This is done by the inte5€;.!:, nrocedure DIFF( i ®n) o 

The index: of the stored derivative is assigned to the procedure 

identifier itself. 

3o Definitii:2n of the output form of a formula i on output paper tape o 

This is the task of the procedure OUTPUT{i)o 

OUTPUT is used here only for checking if the stored formula is 

correctly storeda 

It will howeveri be used in a next paper for generating an ALGOL 60 

programc 

All these procedures use the ~ ,E!Ocedu;:e VADIPUCOMP FORM~ VADIPU 

FUNC and VADIPUST a 

The procedure VADIPUCOMP FORM determines for a compound formula the 

value \ the derivative and the output a 

The procedure VADIPU FUNC determines for a function only the output 

{use is made of the procedure INFORM FUNC)c 

The procedure VADIPUST determines only the output for a simple termo 

One may regard the procedures VAllJEt DIFF 8 OUTPUT and VADICOMP FORM 

as to be rather basic~ they may be used for other problemso 

The procedures VADIPU FUNC and VADIPUST~ however~ are special 

purpose procedures~ their definition depends strongly on the 

particular problem under considerationc 

4o3 The procedure INFORM FUNC 

Within the ,~ procedure INFORM FUNC( a~i$j) 1s defined all necessary 

information for the functions used in this :r-eportc 
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1o If i > 0 then the value ~(a) is assigned to the procedure identifiero 

2a If i < 0 then relevant output is punched on the output paper tapeo 

3o If i = 0 then the functions ~kin table 3 are stored in the computer~ 

therefore a call INFORM FUNC (Ot0 00) should precede the actual 

computation a 

It should be remarked that the functions fk do not have the form of a 

formula as defined in section 4o 

We define therefore a Esi formula by means of 

<p> ;~= <unsigned integer> 

<psi simple term>!&"" PHI[<p>J I Xf 

<psi formula>~:= <psi simple term>l<number>I 

(<psi formula> <operator><psi formula>) 

and require that ~k has the form of a psi formulae 

In the same way as in section 4o1 we can store a psi formula and assign 

an index to iti by means of the procedures Si D, P, Q, and NUMBERc 

'l'he internal, representation of the psi simple terms is listed below, 

use is made of the non=local integer Xf and the non~local integer arral 

PHI[1 g 2] 

ordinary notation k H[k, 1] H[k 11 2] H[k 1 3] 

~ PHI[p] -4 0 p 
X Xf =4 0 

table 10 

We remark that the array elements H[k~3J get values later oni in 

TAYLORa 

The indexes of the psi formulae are stored in the non=local integer 

array PSI [i g 6 ~ 0 ~ ~ a 



25 

In this report we use six different functions• the number v for each 

function symbol is stored in PSI Ll ,o] 0 

the indexes are stored in PSI Ll 9 1] and in PSI (:j 82] 

( tl,e PSI l) ,2J is only used for a sine or a cosine fu11ction 9 see table 3) ~ 

5 o -~e procedure 'f_AYLOR 

The heading ct '11AYLOR reads~ _p_rocedu:re TAYLOR ( dimension ,if•,1,F ~N eXO i:r0 11 u) o 

The differential equations ( 1 o 1) can be stored in the computer by means 

of the procedures of section 4.1. 

There are M differential equations• the indexes of the left-hand sides 

of these differential equations are stored in the integer array Fo 

Although we treated in sections i .2 and 3 the case that the :point X'!:.0 ~ 

y::.:0 is the point, in which the Ta:ylor series are expanded, we shall 

assuzne here that the point where the Taylor series will be expanded 

is :x=:xO I y;.yQ c 

In p:r.incip1e we want to calculate an infinite number of Taylor coeffi::ients ~ 

in practice we can o".'lly calculate a finite nur:i.ber of them. namely e ,g0 

those ui, fur which n+m < N 11 :for a certain positive integer N, 
~inim -

The pa:r-arneters Mil Fe n t xO and yO are now introdu1:;edil the parameter 

dimension equals 1 for one=dimens ional problems and 2 for 2---dirnem, i :ma l 

probJ ems. The paramet.e r u is a real array~ the array elements ,..; [l1; ,,n iI~ 

should become equal to the u. (equ.(1~3)), moreover the initia.1 
K 1nem 

,;~nditions ar·e storE:d in Uo 

Ea.ch differential equation is built up by means of' several formulueo 

For ea.ch of these formulae the Taylor coefficients will be calcu1atedo 

We have to know therefore the number AB of these formulaeo 

It is necessary to know the type of the Cauchy problem with respect 

to a certain u:n.knmm function Uk ( see sectic,n n C We lbr~r-ef'c,re lrlt r:xi,>::~ 

the intei"!o:.:r arr av ty "t,e [1 ~ r'.Il ~ 
~~. -
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It is the task. cf the procedur7 INITIALIZE(i) to calculate 

11 o the nu_mber of formulae with which i is built up 

2 o to define the array elements type [k] according to the following 

table 

au au 
k k 

Uk ax ay 

= ~c + 

+ = ? 

"l + ? 

table 11 

After the statement 

type 

0 

1 

2 

[k] 

.. 

The symbols + t ? and = mean; 

+ the quantity occurs in i 

? the quantity may occur in i 

= the quantity does not occur in io 

for 1 ~"" 1 ste.;g 'l until M .22, INITIALIZE(F[l]) 

the number AB and the array elements are knowna 

Moreover~ the number of function symbols 1n the differential equations 

and the maximum of the v" s of these function symbols ( see table 3) are 

calculated and are assigned to the integers kpsi and nu respo ) 

Since we are interested in the u. for which n+:t:1 ~ N~ it follows 
.K 0n im 

that the Taylor coefficients f of the formulae which build up the 
n im 

differential equations are needed for n+m ~ N= o 

There are AB formulae we could therefore store the Taylor coefficients 

u1 the array a ~ AB~ 0 ~ N=~ ~ 0 g N=U ~ however~ about half the nrunber 

of array elements would then be unusedo 

Therefore we s'tore these Taylor coefficients in the two=dimensional 

array a , AB~ 0 ; if dimension= 2 ~ ((N=1) ~ (N+2)),,; 2 ~ N=J ,) 

in which t.he number 1 + ( (N=1) ~ (N+2)) ,,; 2 is just the sum of all 

Taylor coefficients f with n+m ~ N=1 o n,m 
The administration in the array a is governed by the integer ~ 

c[o ; N= $ 0 1 N=1]. whose values are equal to 

c[l~j] = (j # (2 # N+ =j)) + 2 + lo 

.l Note that TAYLOR is independent of the special choice of the functions o 
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In this way the array element a[}_~ctl~jJ}, represents the Taylor 

coefficient with indexes l and j ~ of a certain formulai we call k 

the T'a_ylor ~ of this formulae 

We note that this is the only time that we think in terms of e ency(; 

The fact that we use for a number~ or a simple term corr-esponding to the 

variable xp~ eogo~ a full array~ almost completely filled with zerosi 

is very inefficient but this will be of nc.. interest, in this 

It 1s the purpose of a next report to take away these inefficienciesc 

As is already said the initial conditions should be stored in the 

array u~ corresponding of course to the type of the Cauchy pr-oblemo 

We remark that instead of equations ( lo2) we require that-the •rayl or 

coefficients uk ,, 0 should be given r, for j =- 0 ~ , o o ~ No 
.J fil 

One has to calculate ther-Gfo:r:'e the Taylor coefficients of Gk(x) ~ 

beforehand~ possibly by means of the procedure TAYLORo 

It is furth1er required that u. 0 1 is given i which follows from the 
II:$ t' 

sol vability condition ( o 5) o 

It docs not need saying; that the above remarks concern the case that 

type = 2~ in the other cases we need similar :r-eq_u:irements for the 

°k"n.m 0 

Tt should b1;; remarked that the integer array elements n [1J and n 

serve as the current indexes n and m respectively, 

The piece of the procedure body of TAYLOR from the procedure 

dec1arations until the label AA is now describedo 

We shall briefly repeat the calculation process just as it is defined 

in section :2 o 

1 o All zero•=th order Taylor coefficients for n Lr'l] = 0 B n [21 = 0 ,J 
are calculatedo 

This is :[)ossible ~ due to the initial conditions o 

lt is done after a call for the :procedure CALC ARRAY 0 
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2o For a certain n[1J and n[2]. the calculation of the Taylor 

coefficients a[}.,c [n [1] 9 n [2]]], should be performedo 

The unknown quantities (n[2]+1 )u[k 9n[1] 11n [2]+-1] are beforehand 

replaced by the formulae with indexes unknown [k] • for 

k = 1 8 o o o il Mo ( The unknown [kJ plays the role of the ~ 1.n 

section 2o2o5)o 

Some coefficients can then actually be calculated by means of 

the remarks in section 2 (eogo, the coefficient corresponding 

to a number or a power of x)o 

Other coefficients may not be calculatable, in the place of them 

however® formulae in the unknown°s are stored in the integer 

array f[1 ~ AB] o 

This is done again by the procedure CALC ARRAYa 

3o Let the indexes of the formulae in the unknown's for the Taylor 

coefficients of the differential equations themselves• be stored 

in the array elements formula [1] for 1 = 1 t o o o ® Mo 

These formulae are linear in the quantities unknown [k] with 

k = 1 ® o o oz Mo 

We may therefore calculate the unknown qua.ntitieso 

This is done after a call for the procedure CALCULATEo 

4o The unknown quantities being known 9 we can calculate firstly the 

u [kiln [1] 9 n [2] + 1] and secondly the until yet uncalculated 

coefficients a[l,c [n[1] 9 n [2]1} • for which in f[l] a formula 

was storedo 

5o The eventually used Taylor coefficients for the functions~ in 

section 2o2o4 can be calculated® again by means of CALC ARRAYo 

6 o The n [1] and n [2] are changed such that S (n [ 1J 5 n [2] ) in equ 0 ( 2 o 5) 

is augmented by one® a.nd the process is repeated until n[1] 

becomes No 
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5o'2 The procedure CALC ARRAY 

Th.e integer nrocedure CALC ARRAY ( i) performs the following operations 

~ o By means of the non=local integer ka (non=local with re/!lpect to 

C.ALC ARPJ\Y) $ CALC ARRAY determines the 'Taylor index ka of the 

formala i o The number ka is assigned to the procedure identifier 

itselfo 

2o "/ If i is a nuwbe:r- or a simple term of the form xP or yP them 

a [}s. ~.:.~ Ll• 1[1J $ u [F.dJ] is calculated according to ta.ble 5 c 

au au 
- ' - -P -b f' U k k " 2,2 . . Lt' i. 1.s a ;,;,imple term o .. t.. e .. om ks ~ or '7"= then it r.::ay be 

' ax o,r 
t.bat, a[ka,e:[n[1] i n[2J]J cr.rn be calculated by aid of' the array 

elements u[kil~jJ, 

If hwwever. the correspondinr; u[k iil ~jJ is nc,t lmown i then the Etrray 

element r[ka] is set equal to the index unknown [yJ of the fornmla 

corresponding to the~ in section 2o2c5o 

Note that all r(j] are set beforehand equal to = 1 in TAYLORc 

Therefore if f rq > 0 it is necessarily ec1ua1 tG the :index of ,i W~ = ® 

fo:nnu.lao 

2c3 If i is a compound formula say A* B8 then CALC ARRAY determines 

firsUy the Taylor indexes ml and m2 of A and B respo 

?b3o l We first treat the case that both f[m1] and r[m~ are negative~ 

then a[~·1.c[n[1] ® n[2]]] and a[m2 1 c[n[1]t n[2]]] are already 

e:aJ.culated and a[kallc[n[,J, n[2J]J can be calculated by the statement 

a!)a;,c[n[1] 9 n[2JJJ ""a'i + b # a[m1,c[n[1] • n[2JJJ + 

c1 # a[m2ic[n[1] ~ n[2JJJ 

in which 

-"' IP(rn1 • m2, 0) (see section (5.4)). 

('I'he symbol n v is defined in table 6) o 
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and 

c: = a[m'l ~o] = a[m1! ~c [o ~oJJ 

2a3o2 Secondly we treat the case that one or both f[m1] and r[m2] 
are non°=negative. eogo r[mD ! 0 and r)}n;iJ < Oo 

Then a [m1 ~c Qi [i] ~ n [2JJ] is not yet calculated~ instead of 

a formula is stored with index f[mn] o 

In this case a[ka©c [n [11] ~ n [2]] can nei tber be calculated and 

we have to store a formula which has in ordinary notation the 

form { 5" 1 o 

The following statement stores this formula 

fL1rnJ = S{NUMBER(a! + c1 ¢ a[m2®c[n[D~ n[2JJJ.l~ 

P(NUMBER(b) ~ r[m1])) 

Note that the actual parameters of NUMBER are ordinary real numbers c 

The other cases for which rrm2l > 0 are treated similarlyo - ... 
If i is of the form A+B or A/B then we proceed in the same way as 

for A""' Bo 

2o4 Lset i "be a function~ say i(A) o 

The Taylor index m1 of A is calculated~ the integer kpsi is 

augmented by one ( in TAYLOR~ kpsi gets beforehand the valu.e zero) c 

The index i and the Taylor index m"/ are stored in the non=loe:al 

array elements psi(kpsi@ =i:J and psi[kpsi~ respo 

The 'I'aylor indexes of the functions i 1 see equation (2c6 

determined and stored in the non=local array elements 

phi !1psi ® j] o 

• n [2]]] is already calculated 

are 

If r[m1] < 0 ~ then a Im~] ~c [n 

and the a[i:,hi[kpsitj] ~ c[.n 

formula 2 o 9 or ( 2 o 10) a 

~ n[2JJ] can be calculated by the 

If r[m'J ;: 0 t the Taylor coefficients for the functions 4>1 can not 

be calculated and formulae will be stored instead of theme 

For another time use is made of the real procedure IPo 
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2 o 5 The case that i is a psi simple term ( H [i • 1] = -4) will be treated 

in section 5080 

5o3 The procedure IP 

The ~ procedure IP(lp, rp 9 diff) becomes equal to 

if diff = 0 then 

i=O j=O 

if diff = 1 then 

i=1 j=O 

if diff = 2 then 

nf1] nf~J 
i=O j=1 

5o4 The procedure CHANGE 

a(lp,c [n [1]-i 9n [2]-j]J O j 0 a[rp 1 c [i ,jJJ 

The procedure CHANGE(i 9 j) 8 changes the formula i into Jo 

5o5 The procedure FAC 

The~ procedure FAC(n) becomes equal to n~o 

Use is made of the non-local inte5er kf and the non-local array 

fac [o 20] o kf and fac[oJ get the values O and 1 beforehando 

506 The procedure CALCULATE 

The procedure CALCULATE(n 9 i 9 unknown) calculates in a recUJ'sive way 

then unknown quantities Xk 9 whose indexes are stored in the integer 

array unknown& from then linear equations symbolically written as 

"iu]" = 0 j = 1. ooot n (5o2) 
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in whfoh the i (j] are the indexes of the formulae in Xk o 

The indexes unknown [j] are actually the indexes of numbers zero 

(not the eero element O)o 

By means of the statement 

~ j ~ = ~ step ~ until n ,S2, 

c[j] g= VALUE(DIFF(i[n]i unknown[j])) 

The real array elements c[j} get the values of the coefficients of 

then unknown quantities ~o 

In the following statement use is made·of the fact that the integers 

unknown rjJ are indexes of numbers zero o 

c[o] ~= =VALUE(i[zu) 

The equation (5o2) with index n can now be written as 

n 
I 

j=1 
a[j]x. = c(o] o 

J 

If c[n] #: 0 then this equation may be solved for X 8 and we have 
n 

n=1 
X = ~ {c[o] = l c(j]x.} 

n c~ . j=, J 

The array element unknown [n] 8 is now set equal to the index of a 
stored formula corresponding to the right-hand side of (5o4) 9 and the 

number of equations and unknown~ s is reduced by 1 o 

By the procedure call (in the case n > 1) 

CALCULATE(n=1 i i 8 unknown) 

the unknown [j] become indexes which correspond to numbers whose 

values are precisely the values of the solution vector X. 
J 

(j = 1& 0008 n-1)o 

By means of the statement 

CHANGE(unknown[n] ® NUMBER(VALUE(unknown[nJ))) it 

the unknown [n] becomes equal to the index of the number whose value 

is the value of X o 
n 



33 

If n = 1® the right-hand side of (5o4) was already a number, and 

the unknown C1J was already set equal to the index of the number 

whose value is X1o 

If c GiJ = 0 then the formula with index i fu=1] is interchanged 

with the formula with index i [n] o And the process is repeated, 

if again c (pJ turns out to be zero then i [p-2] is interchanged 

with i [n] 8 etc o ® until a formula is found :for which c [n] # 0 or 

until the set of formulae is exhaustedo 

In the latter case then equations (5o2) are singularo 

The following sentence is then punched on the output paper tapei 
11system is insolvable 11 0 

We remark that a direct matrix inversion method would certainly 

lead to a faster calculation process of the unknown X.o 
J 

The compact and charming procedure which results from using the 

procedures for doing algebra in the computer 9 urged us to publish 

it in this report and to use it in the program of section 6 which 

after all 0 we do not recommend for general useo 

5o7 Filling up the open places 

We now come to stage 4 of the calculation process of section 5o1o 

By means of CALC ARRAY some Taylor coefficients a[j 11 c[n[1] 0 n[2]]] 

are calculated® and some are not o 

For the last ones, a formula is stored with index f[j] o 

The formulae with indexes unknown [k] a (k = 1 • o o o, M) 8 correspond 

now to the known numbers~ of section (2o2o5)o 

We may therefore write down the statement 

and the uncalculated Taylor coefficient gets its valueo 

In the same way we can calculate the unknown Taylor coefficients 

u[l ,i ij] o This is done with the auxiliary integer array elements 

tp[1 8 j) having the values 
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type D..l tp [1.9 1] tp[1;2J 

0 0 0 

1 0 

2 0 1 

table 12 

We write 

u[len[l] + tp[li1]i n[~ + tp[~2JJ := 

VALUE(unkn.own[l])/(1 + (l! type(i}=o ~ 0 else n[type[1]J)) 

508 Calculating the Taylor coefficients of 1J' 

Recalling section 4o3 and section 5o2 point 2o4~ we know that in all 

the differential equations ( o ) the number of times a function symbol 

occurs is kpsio 

'Let us describe the calculatio~ of the 1/Jk~n[i] 80 [ 2] for the function 

i = <P(A) which occurred the j,l,., timeo 

In CALC ARRAY the index i of <P(A) and the Taylor index m1 of A are 

stored in psi(ji=1] and psi[j©OJ; moreover in phiQ~pJ, with 

p = ~ o a o © v © the Taylor indexes of the functions <l> (A) are stored a 
p 

(Note that \I= PSI[1©0] and l"" H[i 0 •l])c We now define the H[}:r.3] and 

n:!}'HI[j,]i 3] as to be equal to m1 and phiQ~pJ respectivelyo 

Looking now at the last lins of CALC ARRAY which reads 

if H[i~ ~ ~4 then CALC ARRAY = H[iiil 
becomes obvious that CALC ARRAY interprets the psi simple term 

Xf as the formula A with Taylor index m'1 and the psi simple terms 

PHI [p] a.s formulae with Taylor indexes phi [j ~p} o 

Finally the Taylor indexes psi Q ~P] and the Taylor coefficients 

a(ysi[L:r:i]. c[n % n[2]]J of the formulae wp(A. <Pi ooo• <P) are 

determined by the statement 

!£! p ; "" ste;e until PSI[}. ~oJ ££ psi [J ,P] ~ = 

CALC ARRAY( PSI (}.ip)) 
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60 The ALGOL 60 program 

The test cases worked out by the program are chosen rather arbitrarilyo 

The results are reproduced after the programo 

The following problems were calculatedg 

au1 
1o U1 ay'" + X = 0 

with initial 9onditions u1(x.o) = 1 + x .. 

The solution of this problem is obviously 

2o ln u 1 + y = 0 

from which we have 

, 2 1 3 1 4 
u 1 = exp(-y) = 1 - y + ~y - 6 y + 24 y - ooo 

sin u1 2 
3o arctan (cos u, ) - exp(x) = 0 

thus 

2 2 , 4 
u1 = exp(x) = 1 + X + ::ix + o o o 

4o 
au1 

u2 0 --- = ax 

with initial conditions u, (0) = 0 and u2(o) = 1 

it is easily seen that 

u, "() 13 1 5 + 000 = sin x = x - bx + - x 120 

and 

1 2 1 4 u2 = cos(x) = 1 - 2 x + 24 x - 000 



5o U ln xy) ""'0 

Expansion in the point x=1 and r1 gives 

U ,, = ln ( + ( X= i) ) 0 ( 7i + ( y= ) ) = 
I 

"1( .,-12.._1!( ')3 - = X= I! !/ ,. ~ ., X= 1: 
~ 2 3 = 000 + 

. 2 1 3 
(y=) = 2 y=1) + 1 (y-1) - ooc 

~L,.,,1y= n 3 + 0 0 0 !_'. = H:i' . J 

'\If ') 1, , l(- "')2 , ')f ') 1( ')2 +. -, X= 1i + =,2 \ y= 1 ) = 'R" 'X= Ii + ~ X= ,,Y= = "Ff Y= '\: . . 4 2,,·, 'iJ O 4 0 

6 + COS X _ Q 
0 u i'.ir+T~ -

1 .• 

xy + + U2 COS X = 0 

fr-om which follows that U,1 and u2 are equalc 

u. = u0 = = xy + 1 = _, 
<- COS X 

1 2 5 4 1 3 
=,_x =XY=""""""X ==xy+ 

2 24 2 

= ln xy + = 0 

au au::, 
(~=~+ ·ax ay 

with ini dal conditions 

U {o .,, y 
~1 , ~yJ = e· and 

X = e 

3 + 0 0 0 

O o C 
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au1 1 2 y 
Evidently ax"= xy thus u1 = 2 x y + e 

au2 x 
and - = 0 thus U = e o ay 2 

601 Description of standard p~ocedures 

As input procedure we use the integer procedure XEEN(n)o 

XEEN can be given an integer value by means of the consoleo 

The procedure stop~ stops the calculation of the machineo 

As output procedures we use the procedures: 

PUTEXT1(st) ® punching the string st on the output paper tapeo 

(Note that as string quotes the symbols f and } are used) o 

PUNLCRi punching a iYnew line carriage return" symbolo 

PUSPACE(n)~ punching n space symbolso 

FLOP(i~j 0a) 9 punching the real number a in floating point notationi 

i decimals of the mantissa and j decimals of the exponento 

ABSFIXP(i~j~a)s punching the absolute value of the real number a 

in fixed point notation~ i decimals before and j decimals behind the 

decimal point o 

The~ procedure SUM(i~n~m~ei) becomes equal to 

m 
l ei if m ~ n® if m < n then it becomes equal to zeroo 

i=n 
0 

For the integer division symbol "8" z the symbol~ is usedo 

Running the program on the Electrologica X1 computer of the Mathematical 

Centre lasted about half an houro 

The integers kmax and kcmax got the values 320 and 64 respo with the 

aid of XEENo 

Note that the pages of the program are ordered in such a way that one 

can see every two consecutive pages in one view (except pages 6 and 7)o 
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