
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAAVESTRAAT 49

AMSTERDAM

AFDELING TOEGEPASTE WISKUNDE

TW 96

Algebraic operations in ALGOL 60
(a second order problem)

by

R.P. van de Riet

march 1965

-..Auu·11;:.1;;;, MATHEMA'flSCH
AlVISTEHDAM

Printed at the Mathematical Centre at Amsterdam,49,2nd Boerhaavestraat.
The Netherlands.

The Mathematical Centre, founded the 11th of February 1946, is a non -
profit institution aiming at the promotion of pure mathematics and its
applications, and is sponsored by the Netherlands Government through
the Netherlands Organization for Pure Scientific Research (Z.W.O.) and
the Central National Council for Applied Scientific Research in the Ne­
therlands (T.N.O.), by the Municipality of Amsterdam and by several in­
dustries.

Introduction

Nowadays almost all time-consuming numerical analysis is done by

aid of the fast and accurate computer techniquea

Sometimes howeveri one has to do a considerable amount of work~

with the risk of making errorsi in elementary algebraic operations with

formulae 9 before one can construct an (ALGOL) program to be used for

obtaining numerical resultso

In this report we give an account of the investigations about a

physico-chemical problem, which will be described in section 1a

In turns out that the analysis of the so-called second order effect

results in a fast amount of elementary algebraic operations, which can

be done by the computero The different stages to be followed in the

analysis, will be examined in section 2i which results in a calculation

schemeo

In section 3, the system is givent by which formulae can be stored

within the computero Moreover the way of input of the formulae will be

considered a

The ALGOL procedures based upon the calculation scheme will be

illucidated in section 4 and 5a

The bi!:st dlescription of them are of course given by their definition in

the ALGOL program, called the "Second order program", reproduced in

section 60

The "Second order program" analyses the problem algebraically and

gives output in the form of ALGOL statementsi punched on a tapeo This

tape is clirectly used for the construction of another program, the

"Calculation program" (also reproduced in section 6), which is used to

obtain numerical resultso

Since the variables and constants of the problem are complex

quantities (ioeo not real) 9 the form of the statements in the

"Calculation program"• for calculating these quantities and thus the

form of the desired output of the "Second order program" is not

obvious, a special section (5) is devoted to these questionso

The main object in publishing this report is to give a demonstration

about the way in which a computer can be instructed to do analytical

work, by means of a program written in ALGOL 60 1 a languagea which turned

out to be extremely suited for this purpose, due to the possibility to

construct recursive proceduresa

Since we expect that there exists more problems 9 likely to this

particular physico=chemical problem, for which the same method can be

used 9 we described the problem and both programs in a very detailed

form, although these programs can not be used for any other problemo

We remark that in [D a description is given of a program based on

an entirely different problem 1 namely the derivation of a series

expansion for a solution of a differential equationi but using the same

technique. which is discussed hereo

The two ALGOL programs in this report were run on the Electrologica

X1 computer of the Mathematical Centrea

1e The Second order problem

In the (xiy,z) coordinate system we study the motion of a fluido

We assume that the phenomena to be considered are independent of the z

coordinate a

Let they coordinate a.xis be vertically and the x-coordinate a.xis be

horizontally directedo

Let the surface of the fluid be given by y = t (x) and let the fluid be

infinitely deep a (ioe a y = - m)

The fluid and the surface are set in motion by some harmonically

vibrating (with period ¥') oscillatora

The ripples of the surface are damped in the x direction, primarily by

the presence of surface active material (surfactant), adsorbed at the

surface and dissolved in the bulk fluido

The interaction between the adsorbed and the dissolved surfactant is

due to diffusiono

If we denote the horizontal velocity by u, the vertical velocity

by v, the pressure by p and the concentration of the surfactant in the

bulk fluid by a, then the motion and diffusion(with diffusion coefficient

D) are governed by the following differential equationsg

(1) au au au 1 an 1i
- + U - + V - = = -~· ..,.. + - 6 U at ax ay p ax p

(2)

(3)

and

(4)

The boundary conditions for y = - = are very simpleg u and v must

be zero and c must be equal to the constant c0 o The boundary condition

for the surface y = r; (x,t) are very complicatedo We define

a = a - R T r ln (1 + .S.) and L = (1 + (4--x') 2) i o w m a a

Let the quantities n,p,g, D,r iai a ,R,T and c0 be measurable
m W

constants determining the physico-chemical state, then the boundary

conditions are

(5)

(6)

(7)

{ 8) (ac ac + ac)
a r_ ~t + u - v -

- a ax ay
r = () 1 au a r; (au av:) (a r;) 2 av } = - - c c+a 1- + - - + - + - -
12 ax ax ay ax ax ag

- £ rh - l£. 1i] (c+a) 2
L Lay ax ax

-4-

. For the derivation: of these formulae we refer the reader to [2J o

The solution of this problem is sought for in the form of Fourier series

for the unknown functions UgV 9p,c,r; and cro
00

inwt " c (x~y)e t when the functions n 1
n=O

c (x,y) should be chosen
n I

properlyo

Insertion of these series into the differential equations and the
f inwt boundary conditions and assembling corresponding coefficients o e ®

furnishes a method for obtaining the unknown functions c and the n
corresponding coefficients in the series of vip~c,r; and Oo

u =
0

For n

(9)

(10)

(11)

(12)

(13)

(14)

For n = 0 we get the trivial result t0 = u0 = v0 = Oo

Po= -Pgy, c0 = c0 and cr0 = crwo

= the substitution is relatively simple to do and the result is:

(-ik 1A1
k1y

u, = e

k1y
v, = (-kl1e +

ipw A1e
k1y

P1 = e

m1y
m1B1 e)e

i(wt+k1x)
"t 2 k 2 w1. h m1 = 1

m1y
ik1B1e) e

i(wt+k1x)

with

i(wt +k1x)

2
'1,11

2
= k

1
+~

D

k 1 i(wt+ k 1x)
r; 1 = 7 (iA 1 + B1)

R T r
00

+~
:n

The quantity k1 can be determined by the condition that the

determinant of the three homogeneous equations for A1, B1 and E19

obtained from the equations 6~7 and 8i should vanisho A1i B1 and E1 can

then be expressed in terms ofl" k1a

From the differential equations we get for u = 2 in a not too

complicated way the following results:

-5-

(15)
2k,y m2y (k1+m1)y 2i(wt+k1x)

u2 = (-2ik1A2e -m2B2e =(m1+k1)~ e)e

(16)
2k1y m1y (k1+m1)y 2i(wt+k1x)

v2 = (-2k1A2e +2ik1B2e +2ik1~e) e

(17)

(18)

. * j . w1 th P •~ 1 · 1 and J2 known 2 expressions in A11 B1 and E1 and m2 =

= ·4k12 + 2i~p and µ22 =4k2+lli
1 D

(19)

(20)

R T r
CX)

2i(wt+k1x)
r,;2 = z2 e

From the four boundary conditions 1 the four unknown constants A2 ,

B2 ,E2 and z2 can be determinedo

Obviously this is a painstaking job, even the boundary itself in an un­

known functiono

At this point the fast and accurate computer technique can be introducedo

-6-

2a The Calculation Scheme

Before we describe how the computer technique can be used we want to

analyse the process for solving this problema

This amounts in short tog inserting the formulae (9) to (10) into

the boundary conditions (5) until (B)o

For each boundary condition the coefficients of the several unknown

quantities must be assembled and the resulting linear equations in these

quantities should be formeda

Howeveri it turned out during the execution of some test progra.msi

that this device can not be usedi without sayingo The origin of the

difficulties is the restriction of the memory capacity of the used X1

computer a

We are forced to split up the boundary conditions in several partsi

so that the operations can be done for the different parts seperatelyo

The results obtained :f'ri<!nn these different parts are assembled afterwards

for each boundary conditiono

It is obvious that this splitting up gives extra difficulties for the

administration a

To clear up the situation we will treat in more detail the first and

easiest boundary condition (5)o

Although the splitting up is not neccessary for this boundary condition

it will be done.by way of exampleo

Let us formulate our purposeg

Calculate z2 as a linear combination of A2 and B2o

(Note that E2 does not occur in this boundary

condition)

We examine the following parts of the boundary conditions

B 1 g * , C 1 g -v and D 1 g u *
The "Second order program" which also treats this boundary

condition in this way, gives six intermediate results of the calculation

in an ordinary notationo These results, marked with the symbol comment

are reproduced in the Calculation program after the label

CALCULATION a

The proce:ss which is followed in the "Second order program" is illustrated

by the following Calculation Schemeo (we use a short hand notation: '4"
meaning: :so that we obtain the formula)

1: Insert the formulae 9 to 20 into B1 + B2

2: Remove the brackets in B2 + B3, so that B3 is a sum of terms 9 and each

term i:s a product of known or unknown quantities

3: Collect the terms in B3 which are, apart from a numerical factor, the

same + B4

(Thus k 1w + i wk 1 + A1 = (1+i)k 1w + A1)

i(wt+k 1x)
4: Remove the terms in B4 which contain more than two factors e +B~o

This intermediate result is produced in the first comment part.

5: Insert the boundary y = I'.;(x} in B5 + B6

(Thus
k 2 r.2

1
= 1 + k 1 r. + --2- + o o a

the series should be continued as far as is necessary)

6: Remove the brackets in B6 +B7

7: Collect the terms of B7 which are, apart from a numerical factor, the

same ·+ B8

8: Remove the terms of BB which contain more than two factors i(wt+k,x)+:B9o

'.t'liis intermediat~ result is reproduced in the second comment part

2i(wt+k 1x)
9: Colil.ect the coefficients (if any) of z2 e

~6 II " " II II
A2

2i(wt+k 1x)
e

11 II " " II II
B2

2i(wt+k 1x)
e

12 Collect the remaining second order termso

From the results of 9, 10, 11 and 12 the program defines output in

the form 1Jf ALGOL statements, so that we are actually able to calculate

the coefficients of z2, A2, B.2 and the remaining second order terms.

The :specific form of these statements will be described later on.

The whole scheme is of course repeated for the remaining two parts

of the boundary conditions: C2 and D2o

-8-

We get in the same way two sequences of formulae C1 ,ooo 1 CQ and D1,ooo 5D~
;

The third until the sixth above mentioned comment parts correspond to

the formulae C~• c~, D~ and D~ respectivelyo

Since the process is ~raight forward and very easy to follow for this

simple boundary condition we will not show it in more detail, the reader

can easily check the mentioned results given in the Calculation programo

Now, that the problem is decribed and the calculation scheme is given

we turn over to the ALGOL programo

-9-

30 The Storage and Input of formulae in ALGOL 60

Let us investigate the form of the formulae described above.

These formulae are build up with a set of quantities partly known

(eogo w or k 1) and partly unknown (e•ogo A2) • a set of exponentials

and a set of complex numberso The operations which occur in these

formulae are the sum, the subtraction, the product, the division and the

differentiation with respect to x, y and to

The subtraction of a quantity will be treated as the sum of the product

of this quantity with -1o The division occurs only as the division by

the known real quantities wand a+ c0 , thus if we introduce the quantities

1/w and 1/(a+c0) then the division can be turned over into a producto
· n -312

If the factors L ,1 and L in formulae 6 9 7 and 8 a?te expanded in power

' ' az; h h ' ' . . ' series in ax It en t ese divisions are also eliminatedo

We see therefore that the only essential operations are the sunti1 and the

product 1 assuming that the differentiation is directly carried outo

We can describe this situation by saying that the formulae which occur in

our problem lie in an algebraic ring. This ring is composed of the complex

number field, to which a set of letters (in ALGOL notation identif±ers) is

adjungateda These letters are given in the procedure body of AP of the

"Second order program" as the first actual parameter of the procedure

PONSo There are 44 of them beginning with "zero" and ending with "eiotplkx"o

The physical meaning of these letters can be inspected from the second

actual parameter of PONS~ which is a string, as string quotes the Matha

Centre versions f and} are used.

Thus e.ga the identifier RTGGAPC stands for the physical quantity
/() R • T. r 00 • • • 1 f + 1 m. Y RT* GAMMA a+c0 or + ; the identifier em y stands ore my ore 1 a a c0

We will call henceforth these 44 letters, simple termsa

The representation of a formula in the ring is of course not unique.

The original (physical) formula may be written in any way, in which also

derivatives occura

The set of procedures for storing a formula is constructed in .such a way

that first, the operations product and :,sume are binary operations•

second, the brackets around a sum occurring as a multiplicant in a formula

are removed and third, a possibly occurring derivative is replaced by a

formula equal to this derivative (in other words: the differentiation is

carried out) o

da da Example: suppose - = b+c then the formula ao is stored as dx dx
((ab)+(ac)), we placed the brackets to indicate that the operations are

binaryo

Conclusion: the form of the formulae to be;stored may be quite

general; the differentiation operator may occur in it but the restriction

is that the operations product and sum are used as binary operationso

From the formulae of the before-going sections we see that the

complex numbers occur only in a product with a formula which contains at

least one simple term. We may also say that the formulae which we consider

are elements of the ring but not of the complex number fieldo

According to the above remar.ks, a stored formula is a sum of products of

simple termso

To each such product we may attach a complex number, so that we obtain a

set of formu.lae large enough to include the formulae of sections 1 and 2 o

The formulae of this set have a form which can be defined in the following

way, using Backus notationo

< simple term >:: =<identifier>

< complex number>:: =(<number>+ i <number>)

< simple product: > >:: = (< simple term >*< simple terms> I
(< simple term>*< simple product. >)I

(< simple product>*< simple product)>)

<formula> :: =(~formula>+< formula>)I
< simple terror; >I

< simple product >I

(< complex number>*< simple product'.3 >)

Let us now describe how the storage is actually performedo Assume

that to every formula and to every occurring complex number a non-negative

integer called the index is associatedo

Let us moreciver introduce the two negative integers called PLUS and ST

-11-

(in the "Second order program" respectively equal to -1 and -2)o

We see that each formula can be characterized by three numberso One

number defining the type (sum, product or simple term) and two numbers

defining the two formulae of which the considered formula is built up,

if it is not a simple termo

It is therefore not surprising, that we use for the storage of the

formulae an integer array which has three array elements in each rowo

This array will be called Hand in the program the declaration of His

H@:k last, j:3}, where k last must be chosen large enough (see section 6).
For the, storage of the complex numbe:rswe use the real array HC,

declared by HC[,:kc last, 1:2]; where kc last must also be chosen large

enougho A complex number R+iI, with Rand I real, which has the index n

is stored such that HC [n, 1]=R and HC [n,2]=Io

We shall now show, by means of the following table, how a formula

with index k is stored in the several caseso

Assume the formulae a and b have indexes i and ib and the complex a
number Chas index n (> 1 J

H[k, D H[k,2) H[k,3]

f = a + b i PLUS J.b a
f = a* b i 1 ib } a and b must be simple a products or simple terms f = OM-a*b i n ib HC[n, 1] = R(C), HC[n,2_]= a

= I(C).
f = a undefined ST undefined a must be a simple term

From this table we see that if H[k,2] is positive then the formula

is automatically a simple product to which a complex number with index n

is attached in the case H [k ,2] > 1, but if we define HC [1 • i] = 1 and

HC [i ,:D = 0, then we can say that in the case H~.~ = 1 • the complex

number 1 is attached to the simple producta

A consequence of attaching a complex number to a simple product is that

we can not multiply a complex number with a simple term, say Sc This

difficulty is however easily overcome when we use the simple term "one"

which is introduced especially for this difficulty. 1101ne" is used as a

unit element in the ring, so that we may form the product of s with "one"

-12-

and attach to this product the complex numbero

Some times however, the same procedure is also followed if we want to

multiply a simple product says, with a complex number Ca This is done in

the case thats may not be altered (since it is also used elsewhere in

the program), then a new simple product is formed of sand "one" and to

this simple product a new complex number is attached. This new complex

number is the product of C with the originally to s attached complex numbera

Note, that we adopt the convention that there is only one complex number

attached to a simple producta Thus if we multiply 10(aab) with 20(cod) then

the result is 200((aab)o(c.d)) and not (10(aab))o(20(cad))a It is easily

seen however, that it is not allowed to remove the two numbers 10 and 20

from the system, since this can damage other formulae using the simple

product 10(aob), so that we actually store the ,formula

10 20
+ ,j..

200((aob)o(Cad))

in which the arrows have an obvious meaningg the numbers 10 and 20 remain

in the system but they will not be used in this formulae

The simple term "zero'.": is used within the differentiating procedure,
'

where the derivative of a constant is s·et equal to the simple term "zero" o

For convenience sake the indexes of "zero" and "one" are chosen to be equal

to 0 and 1 respectivelyo

Let us illustrate the description given until so far with an examplea

We want to store the formula f = u 1+2iw, where u 1 is given in (9)» thus

f is equal to

k 1y i(w~+k 1x) m1y i(wt+k 1x)
-ik1A1 e e - m1B1 e e + 2iwa

In the "Second order program" the occurring simple terms have the following

indexes (see the procedure AP)o wg2, k 1g4, m1g5 9 A1g9 9 B1:10, ek1y:37,
m1y i(wt+k1x)., ,.,

e :38; and e :43a

Assume that the complex numbers -i, -1 and 2i have the indexes 2, 3 and 4,
then

-13=

HC [2t 1] = O, HC @t2_] = =1,

HC @, 1] == 1, HC @»2] = 0~

HC I!± 9 1] = 0, HC [} ,2] = .P-c

The formula f may then be stored according to the following tableg

k H ~' 1] :H [k,2] H ~,3]

44 9 1 37 A1e
k.1Y

45 4 2 44 -ik,A 1e
k1y

46 10 38 B1e
m1y

47 5 3 46
m1y

-m1B1e

48 45 2 43
. ' k 1y i(wt+k 1x)

-ik,A1e e

49 47 3 43
k 1y i(li,t+k 1x)

-m1B1e e ·

50 48 PLUS 49 = u1

51 1 4 2 = 2iw

52 50 PLUS 51 = f

and the index off is equal to 520

By aid of this example we can also show the use of the input procedures

P(i,j), S(iij) and PC(ai,a2 &i)o

P and S store the product respectively the sum of two formulae with indexes

J. and j and PC multiplies the complex number with real part a1 and

imaginary part a2 to a formula wit~ index io U1 and fare stored by the

following statements

\11: = P(S(PC(0,-1,i P(k1, P(Ait ek1y))),

PC(-1,0s P(m1, P(B1t em1y)))), eiotplkx);

f: = S(vn, PC(0,2~ OMEGA)),

The correspondence between these statements and the formulae for u 1 and f

is easily seeno

It ii; of great importance that this correspondence is direct, since

the translation of the formula written in ordinary notation into statements

of the above kind, is a source of errorso

We shall now describe in more detail the procedures P;i Sand PCo

-14-

It should be remarked that the non-local integers k and kc are used as

pointers for the arrays Hand HC indicating the next-free places in these

arrayso

The integer procedure P(i,j) stores the product of two formulae with

indexes i and jo The index of the stored result is assigned to P itselfo

Notice that we said: P stores the product of two formulae and not: two -simple productso In storing a formula 9 P removes the brackets around a sum•

occurring as a factoro If i and,jare indexes of simple products then P

attaches the product of the two complex numbers attached to the multi­

plicants1 to the newly formed simple producto However 1 the already

attached complex numbers are not removed since_ as is already mentioned

above, it is possible that one or both simple products are used somewhere

else in the program.

Of course, attaching the product of the two complex numbers to the

product of i and j is not necessary, but our definition of a formula

requires it and it has the advantage that we can directly get the attached

complex number of a simple product.

The integer procedure S(i,j) stores the sum of the formulae with

indexes i and jo The index of the result is assigned to S itselfo

The integer procedure PC(a1, a2 9 i) stores the product of the complex

number, with real part a1 and imaginery part a2, with the formula with

index io The index of the stored formula is assigned to P itselfo If i

corresponds to a sum, then the comple~ number is multiplied with both

summands and the resulting formula is a new sum with an index unequal to io

However, it is possible that the formula with index i occurs only once in

the process, so that we may change it withput disturbing the future

calculation; and this means saving of storage space. We may ask therefore,

when it is not allowed to change a formula and how this can be seen from

the indexo The answer to this question is very easy as we will seeo The

set of formulae which we encounter in our system can be divided in two

setsQ One set consists of the formulae such as u1, u2 , v1, v2 , etcoi which

are used in all the boundary conditions, these formulae will be called basico

It is therefore obvious, that these formulae are stored earlier then the

formulae corresponding to the boundary conditionso The way in:which the

storage c,f the formulae is performed, is such that the index of

consecutively stored formula.et increaseso Thusl) the indexes of the

basic foJ:-mulae are lower than the indexes of the other formulae and

we can indicate a sharp pointi for which the non-local integer K is

used, below which a formula is basic, ioeo if i !, K then the formula

with indE!X i is basic 9 and may not be changed a

PC investigates, by means of this device 11 if a formula is basic

or not, if it is basic a completely new formula is constructed and

if it is not basic the formula is changed itself (ioeo the fonnula

keeps thE! same index ii but the data given in H !} 11 i] 1 H [i 9 ~ and

Hl},il, aJ:-e properly changed)o

Both procedures P and PC use the integer procedure CP(itj)

which calculates the product of two complex numbers with indexes

i and Jo The result is stored in HC, the index of this result is

assigned to CP itselfo

We 1;hall now deal with the representation of the simple terms" o

The indexes of, them are of course a priori arbitraryo But for short­

cutting 1;everal procedures we order the values of the integers ek1y 9

em1y 9 emu1y, ek2yj em2y 9 emu2y and eiotplkx such, that this sequence

is increiising with succeeding integerso The same ·restriction is

posed on the sequence k1, m1, mu1 11 m2 and mu2o Moreover the integer

eiotplkx is the largest of all indexes of simple termso

It is perhaps superfluous to say that the two mentioned sequences

of integc!rs correspond to the indexes of the simple terms
k y i(wt+k x)

e 1 , coo, e 1 and k1, 000 11 1.1 2 0

We have two kinds of simple terms in our systems namely, a simple

term corJ:-esponding to a real quantity (such as OMEGA or w) and a simple

term corJ:"esponding to a complex quantity (such as k 1) o

The information about the two kinds is stored in H[k 11 iJ where k

is the index of the simple term.a When the simple term is real then

H[k 9 U = =2 else Hf}tllf] "'1o

The procedure AP(i) definesi when i < 0 the values of the indexes

of the simple term.so It is easily seen that this is done in correspondence

with the above remarks about the orderingo

When however i ! 0 9then AP defines the output form of the simple term

· ii this output is given between the string quotes in the procedure

PONSo

The MoCo standard procedure PUTEXT1{st) cares for the punching of the

string st in a paper tape.

4o ~~duresfor more detailed investigations

Until so far the description of the system was rather generalo

There are much more problems for which we can use the same procedures

P, 8 9 PC and AP (with other simple terms of course)o

ThE~ representation of a formula in the array H is such, that the

input procedures can be made very simpleo A construction of a

procedure for differentiating a formula can also be easily based upon

this representation, we do this for the procedure DIFF(n,i), but using

also, for shortness sake, the special ordering of the simple terms

as descJ:-ibed beforeo The integer procedure DIFF(n,i) differentiates

a formula with index i with respect to x, y or t dependent on whether

n equalB 1 9 2 or 3 respo The index of the stored formula is assigned

to DIFF itselfo

The representation in the array His very suited for the input

and differentiation procedures, but not for more dEtailed investigations

of a formula, therefore we introduce another representationo

As we have seen, each formula is a sum of, say, 10 simple products.

Let these be ordered from 1 to 10 0 The i-th simple product is a product

of, say 9 1, simple terms, Let the indexes of these simple terms be
i

given by

We can store the numbers 10 , 1 1 ~ oooi 11 in the integer array L[OgNJ
0

(where N has to be chosen large enoughj in our case N = 50 is

sufficient)o We set L[iJ = 1 1, (i = Oii 000 9 10)0 The index a .. can be
i,J

stored in the integer array a, declared by a[1 :L[o] ,O:Ma~ with

Max ~ maximum _L [i] j and ~re set a [i, j] = a. . , for i > 0 o Moreover the
i=1,ooo,L[OJ i,J

index of the complex numberJ attached to the i-th simple product, is

assigned to a[iio]~

The transfer of a formula with index i from the representation

in the array H to the representation in the arrays a and Lis governed

by the procedure BT(ija,L,fi)o

This procedure should be called twice, the first time with the

Boolean fi = false (then the arraybounds of a i.eo the array Lis

calculated) and the second time with fi = true (then the array a is

calculated) o

The redundant factors "one" and terms "zero" are removed by the

procedure BTo It is used within the procedure SUBCALCo

We shall now discuss the other procedures in more or less detailo

4o1o The procedure OUTPUT1(Lia) punches a formula represented in the

arrays a and L9 in the ordinary notation, in the output paper tapeo

4o2o The procedure SUBCALC(i,c) regulates the different stages of the

calculation scheme of' section 2o

The stages 3 1 4, 7 and 8 are carried out by the procedure CAL,

the stage 5 is carried out by the procedure SUBSTITUTE and the

stages 9 to 12 are carried out by the procedure PUNo

4o3o The procedure CAL(a,L) rearranges the array in such a way that

a[i,.D ~ a[j.,j+iJ, for j = 1, o o o • L[i)-1 o

Simple products consisting of the same simple terms, apart from

a numerical factor, are summedo

The array a is rearranged ,.another time, such that simple products

with the attached complex number equal to zero, or containing more
i(wt+k x) than two factors e 1 , are droppedo

4o4o The procedure SUBSTITUTE(fi,a,L) substitutes, when fi = true the

boundary y = t(x) in the formula, represented in the array a and Lo

When fi = false the formula is not changed.

The possibly new formula is stored in the array Hand possibly new

introduced brackets are removedo With fi = false SUBSTITUTE transfers

the formula from the representation in a and L into the representation

in Ho

4o5e The description of the procedures PUN and PROD is given in the course

of the fol1owing section.

-19-

5o Computation with complex numbers

Before we can describe the procedures PUN and PROD, we have to

consider the way in which the output is desiredo

Since we are interested in numerical results, an ALGOL program

(the "Calc.ulation program" reproduced in section 6) • based upon the

formulae derived with the here-described methodi has to be constructedo

These formulae are built up with complex numbers, it is therefore

not obvious how to treat them in ALGOLo Let us, by way of example,
(a + b)c want to calculate x from the formula x = d o

If a, b, c and dare real numbers this calculation is carried out

by the.statement x~ = (a+ b) * c/d, assuming that a, b, c, d and x

are declared real and that a, b, c and d have already got values.

Now however a 9 b 9 c and dare complex numbers.

We constructed the procedures P, Q, S1 T, J, PRC and U to be

able to write down one statement which effectuates the calculation

Of Xo

In this example the statement would be U(x,Q(P(S(T(a),T(b)),T(c)),T(d)))

in which the complex numbers constituting the statement must be stored in

the real arrays x, a, b, c, d [1 i2] o

The real and imaginary parts are stored in the array elements with index 1

and 2 respectivelyo

The analogy with the expression for real numbers becomes apparent,

if we remark that the procedures P, Q and Sare used for the calculation

of a product, a quotient and a sum respectively and the procedure U for

assigning the calculated result toxin this caseo The role of Twill be

described later.,

For the calculation we use the real array H [1 g N, 1 g ~ , where N should

be chosen large enough (it can be seen from the following that N+1 should

be chosen equal to the maximum number of right-handed brackets, placed

one after another in the relevant statements)o

We have chosen the letter H for the array which is perhaps somewhat

confusing• since the same letter is used for the array in which formulae

are storedo It has however the advantage that the correspondence of both

types of operations 0 storage of formulae and computations with complex

numbers, is showed very wello

In the array H the intermediate results of the calculations are

stored and the final results are storedi with the aid of the procedure u,
in the particular arrays representing the several complex numbers (x in

the example above)o This is in contrast to the use of the array H for

representing formulae, where the results themselves are stored in Ho

Before we can calculate with the complex numbers they have to be

brought in the array Ho This is done by the integer procedure T(a)o T

stores the contents of the array a (representing the complex number a,

such that a[1] and a[2] are equal to the real and imaginary part respect­

ively)• into the next free places of the array H, say H[k, '[] and H[k,~,

the integer k is assigned to T itselfo

The mentioned integer k is a non=local integer of the program and indicates

at any time the next free places of Ho At the beginning of the program k

must be set equal to zero. During the execution of a computation, k

augments and diminishes automaticallyt so that at the end of a computation

k becomes equal to zero againo

The definition of the integer procedures P, Q1 St PRC and Jin the

"Calculation program", is such that the index of the place in H, where the

result of the calculation is stored 9 is assigned to the procedure identifiers

themselves.

We remark that the same way is followed for the integer procedures

P1 S1 PC and DIFF of the "second order program"a This is of course a

consequence from the fact that the administrations of the two processes 9

storage of formulae and computation with complex numbers, are identicalo

We shall now give the meaning of the procedures PRC(a,i) and J(a1,a2),

PRC multiplies the complex number• stored in H [i, 1] and H [i ,2] , with the

real number a, J stores the complex number a1 + ia2 in the array H (where

a1 and a2 are real numbers)o

Besides the procedures mentioned we use the procedure FLOPC, defining

the output of a complex numbera

The procedures U1 and Sum are especially made for the connexion with the

"Second order program"a

-21-

Before we can describe these procedures we have to return to the "Second

order program".

In section 2 we discussed the way in which the boundary conditions

are split up. Each part of it gives a formula, via the stages 1 to 8 of

the Calculation scheme, from which the desired output can be obtainedo

Evidently this output (ALGOL statements) is given in the form

discussed aboveo

Let us take a look, for instance, at the coefficient of

e+i(OMEGA t + k1x)eti(OMEGA t + k1x)

in formula B9 (see the second comment part behind the label.

CALCULATION in the "Calculation program") this coefficient is

(0 + 2i)OMEGAo

The numerical value of this coefficient is calculated by the state=

ment

PRC(OMEGA 9 J(0,2))o

(Note that OMEGA is a real number)o

The result of the calculation is stored in the array H, but since His

used for intermediate results only 9 we have to extract this result from

Hand store it somewhere elseo For this purpose we use the array elements

of H with index from 51 to 100 (this is possible since the first 50

places of Hare enough for the calculation)o

Thus the complex number is restored in Hand gets an index between

51 and 1000 Of course this index should be stored itself somewhere, since

we have to remember that the calculated number is a coefficient of z2o

Therefore we introduce the integer arrays

CZ2 9 CE2 [1 : i] , CA2, CB2 [1 : 1U , C2 [1 : 28]

and we store the index of the coefficient of z2 in the array element

CZ2 [JJ o (It is the first coefficient of z2 which we encounter) o

Evidently, indexes of coefficients of E2 , A2 and B2 are stored in the

arrays CE2, CA2 and CB2 respo 9 and the index of a remaining second order

term is stored in C2o

-22-

The transfer of the intermediate result of the calculation (stored

in H with index lower than 51) to the array elements of H with indexes

greater than 50, and the storage of the index into one of the arrays

CZ2 9 CE2 9 CA2, CB2 or C2 is done by the procedure U1 (in the

"Calculation program" of course).

In the example aboveil the procedures PUN and PROD (of the "Second

order program") define the following output

u1(cz2[1J, PRC(OMEGA, J(+O, +.200,0 + 1)));

(in which +.20010 + 1 means simply +2).

For the sake of illustration we give the following tabel, from which

the effect of this statement can be inspected 9 if we assume that

w =OMEGA= 300a

J

PRC

U1

k

1

51

0

0

0

2

600

600 and CZ2 [1] = 51.

When the "Second order program" comes across another coefficient

of Z2 then it should produce output of the form U1 (CZ2 [2], •• o o

Therefore we have to administrate how many times a coefficient of Z2

did occur already in a boundary condition. this is done with the help of

the integer array c occuring as a formal para.meter in the procedures

SUBCALC and PUN; The actual parameter is the integer array cc [1 g a].
From the definition of the procedure PUN it can be seen that

C r,J • GOO II C [8] correspond to the coefficients of A 1. B1 • E1. A2. B2 i

Z2i E2 and the remaining second order terms respectivelyo

(Remarkg The "Second order program" was also used to check the first

order solution, therefore A1, B1 and E1 do also occur here. For shortness

sake, however, we did not reproduce the output of the first order terms

and the reader may thus assume that XEEN(2) ~ 2 (7-th line of the

procedure PUN)) o

The administration is very simple.

First all c [i] are set equal to zero and when the procedure PUN comes

-23=

across a second order termi the corresponding array element of c is

augmented by one 9 in the above case concerning a coefficient of Z2,

c [6] is augmented by oneo

We a.re now able to describe the procedures PUN and PROD of the

"Second order program" more accuratelyo

PUN(c,a,L) investigates a formula represented in the arrays a and L

according to stages 9 to 12 of the Calculation scheme of section 2o

(Of course the letter Z2 can be changed in the letter E2)o

Each row of the array a is examined with respect to the type of ito

The relevant output is given ioeo the "heading" of an ALGOL statement

(in the eLbove example g 1101 (CZ2 [J] 11 ") o

Then the further output is defined by the procedure PROD(i,a,L)o

This procedure gives the output of the i-th row of the array a 9 this

row is already slightly altered by the procedure PUN, which has set

equal to one the array elements, representing simple terms which may

not occur in the output, eag. the simple terms A2 or eiotplkxo

PROD investigates, if the simple term represented by an array element,

is possibly a real quantity 11 then output is given in theform:

"PRC(" followed by the output of this simple term and a commao

When the simple term is a complex quantity then PROD firstly

produces the output 11P(T(" 1 secondly it investigates if·this simple

term does occur more than onceo If this is the case, then the output

of the simple term is followed by a number~ indicating the number of

times this simple term occurso

When the simple term occurs only once, then the output is given of this

simple ti?rm only o

Finally 9 PROD gives the output of the complex number attached to the

simple product and stored in the array elements HC[a[L,O] ii] and

HC[a[i 11 0] ,2] in the form "J(000,000)" 9 where the dots must be replaced

by the r12levant numbers o

Example: let the i=th row of the array a be given by

a[;.,o] = 2 9 a[i ll 1] = 2 (OMEGA), a[it2] = 4(k1), a[i 11 3] = 5 (rn1),

aG,4] = 5 and a[ii5] = 1 with HC[2, 1] = 1 and HC [2 ,2] = o5 (representing

the complex number 1 + 1/2 i), then PROD produces with the aid of the

-24-

procedure AP the following output:

"PRC(OMEGA 1 P(T(k1), P(T(m1 2)a J(+o10010 + 19 +o50010 + O))))"o

When the considered row is eogo a 3rd coefficient of A2 then the

procedure PUN has already given the preceeding output

"U1 (CA2 [3} 9 " and it closes the output with ");" o

A consequence of doing things as described above is that we have

to introduce in the "Calculation program" besides the array m1 also

the array m12 1 m13, k12, k13, k14, etco

These arrays representing integral powers of m1, k1 1 etco should be

calculated beforehand in the "Calculation program"o The advantage is

obviousg the "Calculation program" becomes shorter and less time­

consuming.

We have seen, how the relevant output of a formula is producedo

This formula is a part of the boundary condition.

When the output of all the different parts of the boundary condition

is given, the several results should be assembledQ

Let us see how this is done for the first boundary condition (5),

which is split up in three partso The first part gives rise to one

CZ2 term, the second part to one CA2, one CB2 and five C2 terms and
•

the third part to another four C2 termso

The procedures PUN and PROD produced the output by which the

"Calculation program" can calculate these several termso The results

of these calculations are (indirectly) stored in the arrays CZ2t CA2,

CB2 and C2o These results must be summed, so that we can solve the

equation for Z2o

This equation is

Z2 = CZ2A2 * A2 + CZ2B2 * B2 + COZ2

where the coefficients CZ2A2, CZ2B2 and COZ2 can be calculated from

the already stored resultso

COZ2 is firstly set equal to the sum of the terms belonging to CZ2o

The "Second order program" gives therefore the following outputg

U(COZ2 9 Sum(1 1 CZ2)), in which the, until now, undefined procedure Sum

occurso The meaning of Sum is now evident: Sum calculates the sum of the

-25-

complex numbers whose indexes are stored in CZ2, and via the procedure

U this sum is stored in the array COZ2o

Generally, Sum(i,a) stores into the next free places of the array H,

the sum of the complex numbers with indexes given by a[1] i o o o, a[i] o

The coefficients CZ2A2 9 CZ2B2 and COZ2 are now calculated by the

statements right after the label ASSEMBLAGE in the "Calculation

progra.m"o

These statements are produced by the "Second order program" with the

help of the procedure PUo

One final remark should conclude this sectiono After the investi­

gations of the first boundary condition, output is given in such a

form that the "Calculation program" can calculate the coefficients

CZ2A2 9 CZ2B2 and COZ2. Therefore we can set henceforth Z2 equal to

the formula CZ2A2 * A2 + CZ2B2 * B2 + COZ2 so that in the calculation

of the following boundary conditions Z2 does not occur anymore.

The same procedure is followed for the second boundary condition (6)
from which E2 can be calculated in terms of A2 and B2o

In this way the boundary conditions (7) and (8) constitute two linear

equations in A2 and B2o These equations are solved in the "Calculation

program" after the last comment. The ALGOL statements for solving

these equations are not produced by the "Second order program"o

60 The ALGOL programs

In this section we give the "Second order program" and the

"Calculation program"o

In both programs a set of procedure identifiers is used which are not

declaredo This set belongs to the set of standard functions for the

Mathematical Centre ALGOL systemo

.We shall describe them shortlyo

XEEN(i)

PUTEXT1(string)

PUTEX'1'1~tring)

PU7BIT(i)

PUNLCR

PUSPACE(i)

RUNt>UT

FLOP(i,j 9n)

an integer procedure assigning to its identifier

a number which can be brought into the machine

by the consoleo

a procedure, punching the actual string on the

output paper tapeo

the symbols t and l are the MoCo representations

of string quoteso

is most easily described byg

procedure PUTEXT1(string); string string;

end begin PUTEXT1(f 'l) ; PUTEXT!'(string) ; PUTEJ«'1{ f 'l) -·
a procedure punching the value of i (0 ! i < 127)

as a heptade on the output paper tapeo

a procedure punching a new line carriage return

symbol on the output paper tapeo

a procedure punching n space symbols on the output

paper tapeo

a procedure punching a piece of blank output paper

tapeo

a procedure punching on the output paper tape the

number n in floating point representation; i signi­

ficant decimals behind the comma and j decimals

of the exponential parto

ABSFIXP(i,j.n)

read

a procedure punching on the output paper tape the

absolute value of the number n in fixed point

representation, i decimalS'befb?eand j decimals behind

the commao

a real procedure assigning to its identifier the value

ofanumber punched on the input paper tapeo

Besides these procedures the following symbol is used l. for+ o

Some data are perhaps of interesto

The calculation times for the "Second order programn and the "Calculation

program" were about one hour and 1~ minute respectivelyo Both programs

had to be cut in two partso

For the "Second order program" we chose k last and kc last (the lenghths

of the arrays Hand HC) equal to 352 and 96 respo It turned out that the

first 310 and 60 places of Hand HC were actually neededo

The number of unused X1 storage words was about 300 (ioeo about 3 percent

of the total) e

We may conclude therefore that the memory C2Ji8,city was rather criticalo

-28-

begin £2!!1!!1-~ Second order program;
integer. kclast,klast; kclast:= XEEN(1024X1023)/1024; klast:= XEEN(1023);
begin integer k, kc, K, KC, ul, vl, u2, v2, u~ v. kl, ml, mul, m2, mu:2, ·

CZ2A2, CZ2B2, ekly, emly, emuly, em2y, ek2y, emu2y, eiotplkx, Al, Bl,
El, A2, B2, E2, Z2, Zl, Z, zero, one, ST. PLUS, OMEGA, EGO, PSI,
PST, CSTl, CST2, COZ2, CE2A2, CE2B2, COE2, RHO, RTGGAPC,
EGAPC, ETA, D, g. CNPA, GCCPA, GTCPA, AG, ekm2iok, pl, p2, est,
cl, sigma0, sigmal, sigma2, zl, z2, c2;
array HC[l:kclast,1:2]; inte~er array H[0:klast,1:3];
Srocedure AP (i); value i; mteger 1;

egin ~!!£.!!.. S:= SO, Sl, S2, S3, S4, S5, S6, S7, S8, S9, Sl0, Sll, S12,
Sl3, Sl4, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26,
S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, 840,
S41, 842, S43; procedure PONS (j,st); integer j; string st;
if i < 0 then ·
wg· j:= k:= k + 1; H[k,1]:= 1; H[k,2]:= ST end else
~ PUTEXTl(st); goto END end; - -
if i < 0 then ·
begin[k:=---=I'; kc:= 1; K:= 0; KC:= 1; PLUS:= -1; ST:= -2; HC[l,1]:= 1;

HC 1,2]:= 0.9 ~oto] SO
end else rcoto S i+l ; SO: PONS(zero,{:~)_;
st;'"' PONS one,{1*); S2: PONS(OMEGA,{:OMEG~);
S3: PONS(EGO,{OMEGM,(-1)*); S4: PONS(kl,{kl*);
S5: PONS.(ml,{m~); . . S6: PONS(mulA:mul::I,);
S7: PONS(m2 ,{m2) ; S8: PONS(mu2 ,{m~);
S9: PONS(Al,{Atj, ; S10: PONS(Bl,{B~);.
Sll: PONS(El,!Eti); S12: PONS(A2JA);
S13: PONS(B2, B2J..); S14: PONS(E2,{:E);
S15: PONS(Z2, Z2{); S16: PONS(CZ2A2,{CZ2A2*);
Sl 7: PONS(CZ2B2,{CZ2B2:}); S18: PONS(PSI,{PSt\,);
S19: PONS(PST ,{PS~); . S20: PONS(CSTl,{:CSTl:;j.);
S21: PONS(CST2,{CST2:;j.); S22: PONS(COZ2,{COZ2:});
S23: PONS(CE2A2,{CE2A2*); S24: PONS(CE2B2,{CE2B2*);
S25: PONS(COE2,{COE2*); . S26: PONS(RHO,{RHot,);
S27: PONS(RTGGAPC .{RT><GAMMA/(a+c0>*);
S28: PONS(EGAPC,{1/(a+c0>*); S29: PONS(ETA,{ET~);
S30: PONS(g,{g:l,); . S31: PONS(CNPA,{(a+c0>*);
S32: PONS(GCCPA,{:GAMMAxc0x(a+co»>; · ·
S33: PONS(GTCPA,{GAMMAx(2xc0+a)::I,); S34: PONS(AG,{:GAMMA><ocl,);
S35: PONS(D,{~); S36: PONS(sigma0,{:SIGM~);
S37: PONS(ekly,{e.4-klyt); S38: PONS(emly,{~ly;t);
S39: PONS(emuly .{e,t.mulYi); S40: PONS(ek2y .{aj;k2yt);
S41: PONS(em2y,{e,1.m.2y;t); S42: PONS(emu2y,{e,1'mu2yt);
S43: PONS(eiotplkx,{e.¥(OMEGA t + kl x)*);

END: end;
~rocedure comment;

egin integer i; f2!. b= 122,14,115,14,70,14,84,14,84,14,117 ,14,69,14,35,16
do PU7BIT(i)

enF ·
=' procedure PS; begin PUNLCR; PUSPACE(8) end;

-29-
£2!!1!!1~ Continuation of Second order program;
integer procedure P (i,j); value i,j; integer i,j;
if i = 0 V j =. 0 then P:= O else
fr H[i,2] = PLUS '11i'en. P:= S(mffii,1],j),P(H[i,3M)) else
IT H[j,2] = PLUS fueri P:= S(P(i,H[j,1]),P(i,H[j,3])) eise'
befi)n P:= k:== k +l;H[k,1]:= i; H[k,3]:= j; H[k,2]:;""if'"H[i,2] < 1 then

1 H[j ,2] < 1 then 1 else H[j ,2]) else if H[j ,2] < lthen H[f;2] else
C'P(H[i,2],ll[j 92~ - - -- - - -

end; ·
integer procedure S(i,j); value i,j; integer i,j;
begin S:= k:= k + l; H[k,1]:= i; H[k,2J:= PLUS; H[k,3]:= j end;
integer procedure CP(i,j); ~ i,j; integer i,j;
begin real a; CP:= kc:= kc + 1; a:= HC(i,1] x HC[j,1] - HC[i,2] x HC[j,2];
· · HC[kc,2]:= HC[i,1] x HC[j,2] + HC[i,2] x HC[j,l]; HC[kc,l]:= a

end•
~~er procedure PC (al,a2,i); ~ i; ~al, a2; integer i;
1f H i,2J == PLUS then ·
be~in if i < K then PC:= S(PC(al,a2,H[i,1]),PC(al,a2,H[i,3])) else

egin:-H[I:1]:=7?c(al,a2,H[i,1]); H[i,3]:= PC(al,a2,H[i,3]); PC:= i ~
end else ·
begit if i < K V H[i,2] = ST then i:= P(one,i); ·PC:= i; if i = 0 then

go o""END; kc:= kc + 1; HC~]:= al; HC[kc,2]:= a2;lf H[:i.,2f>l ~
begin kc:= kc - 1; H[i,2]:= CP(kc+l,H[i,2]) ~ ~ H(i,2]:= kc;

END: end;
integerprocedure DIFF (n,i); value n,i; integer n,i;
begin integer h integer array cmrcr :2];

procedure DIFFP{i); ~ i; integer i;
if H[i,2] = ST then
begin !f.. i ~ ekly /\ (n t 2 ::, i = eiotplkx) ~

~e~n j:== j + 1; diff[jk= i end ·
end e se begin DIFFP(H[i,1]); DIFFP(H[i,3]) end;
Irl'I[i,2] = PLUS then DIFF:= S(DIFF(n,H[i,1]),DIFF(n,H[i,3])) else
befitn j:= O; DIFFP(i); DIFF:= P(if j = 0 then O else if n = 2 then

i j = 2 then S(d:i.ff[l] - ekly +"k19 dif~- elrry +Kl) else
irdiff[l] = ek2y then PC(2,0,kl) else diff[l] '- ekly + kl -::-'c1lff[l]:ek2y)
else if n = 1 then (if j = 1 then PC(0,1,kl) else PC(0,2,kl)) -
eise lli j = 1 1iien PC(0,l,OMEGA) else PC(0,2,OMEGA)),0- ·

end end; - - -
proceciure OUTPUTl(L, a); integer arr1jy L, a;
be~in integer i, j; for h= 1 step 1 ~ L[0] 22,
~ PS; g_a[i,O°T> 1 ~

begin PUTEXTl({tj.); FLOP(3,1,HC[a[i,0L1]); PUTEXTl({ + i>q,);
FLOP(3,1,HC[a[:i.,0],2]); PUTEXTl({}i,) .

end; f2!. j:= 1 step 1 ~L[i] ~ ?t~+ AP(a[i,j]J; PUTEXTH{ ~) end;
1 I L[O] then PUTEXTl({+i,) -

ena; !£ L[0] = o'"'Th~ PUTEXTl({(t\,)
end;

comment Continuation of Second order program; Fcedure BT (iga 9L.fi); value i; inteffer i; Boolean fi; integer array a,L;
~ l?ter~r 1, 11; proceciu're BT! {i ; ~ i; integer i;
--rr1I 1,2 · PLUS then

'.§gin b= 1 + 1; lba; OT(i); if 11 > 0 then
~el?itn L[l]:= 11; if fi then a[l:0h= if HtT:2f < 0 then 1 ~ H[i,2] ~
~ ~ !)egin BTITH[i:r.JJT BTl(H[i,3] end; -
procedure OT (i); intefer · i;
be~in pr?[edure OT.l(i ; infger i;

egin, !.a~ H[i,2] = ST A i · one then
begin if i = 0 then g,to END; 11:= 11 + 1; if fi ~hen a[l,11]:= i end
else tf1 +- one then fieginb OTl(H[i,l]); OTlffi[i,3]"'end

end; oiT(i); !£11 ?()~~lb= 1; !£fi ~ a[l,11]:= one end;
goto A; END: 1:= 1 - 1; 11::= 0;

A: end; 1:= 0; BTl(i); L[0]:= 1
end· --?
procedure SUBCALC(i,c), integer i; inte~er array c;
begin integer n,j,il,i2; integer jrray L[:50J; U:= i; i2:= 0;
A: BTCil,H,L, false); n:= if L(0 = 0 ~ 0 else L[l]; f2£_ j:= 2 step 1
~ L[0] ~ begin if n < L[j] then n:= L[j] end;
be~in. integer trrjy"atl:L[0],0:nl; BT(il,a,L,true),

:= K; CAL agL ; !£ i2 = 1 ~ goto B; i2:= 1;
il:= SUBSTITUTE(true,a,L); goto A; B: PUN(c,a,L).;

END: end
end;
~ced_ure CA~ ~a, 1;>; integer arra~~• L;
be~n mtege.E, 1, 11, J; procedure CO ,
~~ inteF,er k; !£ a[j,0] = 0 ~ goto END;
~L[i] 0(L[jJ then go]o END; for k:= 1 dtep 1 until L[i] do

?igin if~ a[i,k]Tatj,k ~ goto END en • tL arr:oT> KC then
1 := alT,0] else il:= kc:== kc + 1,; HC[U,lJ~= HC[a[i,0],1] + HCta[j,OLlh
HC[i.1,2]:= HC[a[i,0],2] + HC[a[j,0L2h a[i,0]:= il; a[j,0]:= 0;
if abs(HC[il,l])+abs(HC[il,2]) < 10 -10 then a[i,0]:= 0;

E~:e~; -
f2.E. i:= 1 ste;e 1 ~ L[0] ~
befin A: for ih= 1 srep 1 until L[i] - l ~
~ if"a:ti ,il] > a i ,il + l] then
~in-j:= a[i,ilh a[i,ilh= a[i~il+ll; a[i,il+l]:= j; ~otf A end

end end; for i:= 1 s\ep 1 ~L[0] - 1 ~ f2E. j:= i+ ~ 1 ~L(0]
~ (;()M; for i:= 1 ~ 1 ~ L[0] do
be.gin if LW > 3 then -

!?~if a[iJ.,[i]:m== eiotplkx then a[i,0]:= 0 end
~=l; for i:= 1 rr.p01 untIT"Lt0] do -
befiln if i1 f i/\ a[i,0 ·. th~ --

~£2!. j:= 0 step 1 untU L[i] ~ a[il,jh== a[i~jh L[ilh,:i L[i];
--rr:;:n + 1
end else if a[i,0] + 0 then il:= i1 + 1

end; L[O]:= TI - 1; il:= kc;j:= 0; for i:= 1 step 1 until L[0] do
betin if a[i,0] > KC then --- -

. eg:iifkc:= kc + 1; '"iic(kc,1]:= HC[a[i,0],1]; HC[kc,2]:= HC[a[i,0],2] ~
end· .-J

-31-

comment Continuation of Second order program;
kc:= KC; for i:= 1 step 1 ~L[0] ~

betin if aU:O J > KC then
~j:= j+l; a[i;0]:~ kc:= kc+l; HC[kc;l]:= HC[il+j,1];

HC1,kc,2]:= HC[11+J,2]
end

end;· if XEEN(1024) = 1024 then
beginRUNOUT; PS; comment; OUTPUTl(L,a); PUTEXTl({;:l,); RUNOUT

end end; · ·
Iiiteger · procedure SUBSTITUTE(fi,a,L); Boolean fi; integer array a, L;
negin integer f 9j; integer procedure prod{d; inie er i;

begin integer j,p 9e,b; p:= one; e:== -1; b:= !f.. a i,L[i]-1] = eiotplkx ~
1 else 0; for j:= 1 step 1 until L[i] do
begm !!_fitlien · - -

begin if a[i,j] > ekly A a[i 9j] ~ emuly /\ b = 0 then
e:= t'ekly - a[i 9j] - kl) x e else if a[i,j] < ekly V a[i,j] > emu2y
then p:= P(p,a[i,j]) - -

endelse p:= P(p,a[i~j])
end; if a[i,0] > 1 then p:= PC(HC[a[i,0],1],HC[a[i,0],2],p);
Ire >0 then p:= P(p,S(one,P(e,zl))); prod:= p

end; if L[0J = 0 ~ beroir SUBSTITUTE:= 0; goto END end; j:= prod(!);
for i:= 2 step 1 until LO do j:= S(j,prod(i)); SUBSTITU~ j;

E::[i:J'!i:" end; - -
15rocedure PUN(c,a,L); integer (ra~ c,a,L;

efiln inte~er i,j; rocedure PU n,st ; integer n; strlrg st;
~ a1,jk= +1; c n := c n] + 1; PS; PUTEXTl s ; ABSFIXP(2,0,c[n]);

PUTEXTl({],i,); PROD(i,a,L); PUTEXTl({);:I,); j:= L[i]
end; for i:= 1 step 1 until L[0] do
begin a[i,L[i]]:= 1; !!_ a[i,L[i]-1] Teiotplkx then

be~in if XEEN(2) = 2 then
ere-for j:= 1 step Tuntil L[i] - 1 do
~ !!_, a[i,j] = Al ~ PU(l,{Ul(a'A.1[*-> ~

if a[i,j] = Bl ~ PU(2,{Ul(CB1f;i,:) else
ti a[i,j] = El then PU(3,{Ul(CE1(i,) -

end end ena else -
be~in a[i 9L[i]-1J:= 1; for j:= 1 l!ro 1 until L[i] - 2 ~

egin if a[i,j] = A2 then PU(, l(Ci\2ID else
1!. a[i,j] = B2 ~ PU(5,}Ul(CB21) else
if a[i,j] = Z2 then PU(6, Ul(CZ2) else
i'f a[i,j] = E2 then PU(7, Ul(CE2) eise

![. j ;=L[i] - 2 then begin j:= j + 1; PU(~l(C2f;t) ~
~~~end; · 
Srocedure PROD(i,a,L); value i; integer i; integer arraD a, L; 
~ integer j 9 r0, rl, p, pO, q; integer array R0 9 Rl 1:L[i]]; 
~= rl:"" p:= p0:= q:= 0; for j:= 1 step 1 until L[i] do 

beren if a[i,j] f 1 then - - -
egin!f_, H[a[i,j],:f1"7' -2 ~ re~n r0:= r0 + 1; R0[r0]:= a[i,j] ~ 
~ begin rl:= rl + 1; Rl rl := a[i,j] ~ 

end end; if r0 > 0 then 
begin PUTEXTl({PRcT%); AP(R0[l]); 



comment Continuat:i.on of Second order program; 
-1orT:::e 2 ~ 1 until r0 do 

·~e~n PUTEXT.l(f.xl'.); APlR0[j]) end; PUTEXTl({,;\,) 
en ; ·or j::= 1 .~::E 1 until rl do · 
be~intiRl[j] ::c p0 theii"p:= p +1 else 
~if p >. 1 thenABSFIXP(l,0,p); !f. j t 1 ~ P. UTEXTl({),i).; 
-pu''f1rXT1({PfTT:f}; AP(Rl[j]); q:= q + 1; p0:= Rl[j]; p:= 1 . 

e!2. end; if p > 1 then ABSFIXP(l,0 9p)j !f.rl > 0 then PUTEXTl({),*); 
PUTEXTlT<fJ(;\,)z !£. a[i,O] = 1 ~ PUTEXT1({1,0*Jeise . 
begi1!, FLOP(3 9l,HC[a[i,0],1]); PUTEXTl({,i); FLOP(3,LHC[a[i,0],2]) ~; 
f2E._ j:= (!,L rO > 0 ~ -1 ~ 0) ste;e 1 ~ q ~ PUTEXTl{<f'.);\,) 

end· · · ,_, 

BEGIN of PROGRAM: RUNOUT; AP(-1); H[OMEGA,l]:= H[EGO,l]:= 
H[RHO,1]:= H[RTGGAPC,lk= H[EGAPC,l]:= H[sigma0,1]:=H[ETA,1]:= 
H[g,1]:= H[CNPA,1]:::a H[GCCPA,1]:= H[GTCPA,1]:= H[D,1]:= Il[AG,1]:= -2; 
ul:= P(S(PC(0 ,-1,P(kl,P(Al ,ekly))} ,PC(-1,0 ,P(nil ,P(Bl ,emly)))) ,eiotplkx); 
vl:= P(S(PC(-1,0 ,P(kl,P(Al ,ekly))) ,PC(0,l ,P(kl ,P(Bl ,emly)))};eiotplkx);. 
ekm2iok:== P(ekly,P(emly,P(eiotplkx.eiotplkx))); 
u2 := S(P(S(PC (0 ,-2 ,P(kl ,P(A2 ,ek2y))) ,PC(-1,0 ,P(m2 ,P(B2 ,em2y)))), 

P(ei.otplkx,eiotplkx)) ,PC(-1,0,P(S(ml,kl) ,P(PSI,ekm2iok)))); 
v2:= S(P(S(PC(-2 ,0 ,P(kl ,P(A2 ,ek2y))) ,PC(0 ,2 ,P(kl ,P(B2 ,er:n2y)))), 

P(eiotplkx,eiotplkx)) ,PC(0,2 ,P(kl,P(PSI,ekm2iok)))); . 
zl := P(PC(0 ,-1,P(EGO,S(PC(-1.0 ,P(kl ,Al)) ,PC(0 91 ,P(kl ,Bl))))) ,eiotplkx); 
pl:= PC(0 91,P(RHO,P(OMEGA,P(Al,P(ekly ,eiotplkx)))))p · · · · 
p2 := S(PC(0 ,2,P(RHO,P(OMEGA,P(A2,P(ek2y ,P(eiotplkx,eiotplkx)))))), 

P{PST,ekm2iok)); v:"" S(vl,v2); u:= S(u1,u2); 
est:= P(S(P(CST1,P(ekly,emuly)),P(CST2,P(emly,emuly))), 

P(eiotplkx,eiotplkx)); cl:::: P( El ,P( emuly ,eiotplkx)); 
sigmal:= PC(-1,0,P(RTGGAPC,cl)); K:= k; KC:= kc,; 
begin intege1: i, Kl, KCl; inte~er array cc[l:8]~ 

procedure SI (i); integer i;egin SUBCALC(i,cc); k:= K; kc:= KC end; 
procedur€~ PU (sti,n,st2,st3); integer n; string st1,st2,st3; 
be~in PS; PUTEXTl(stl),~ if cc[n] = 0 then 
~ PUTEXTl({J(0,0):}}T ~ti( END erufi PUTEXTl({Sum(;\,); 
A!IBFIXP(2,0,cc[n]).; PUTE {j); I5UTEXT1(st2); PUTEXTl({);\,); 
END: PUTEXT1(st3) 

end· ;;:,:,:,:;:,,; 
for i:= 1,2,3,4,5,6,7 ,8 do cc[i]:= 0; 

BCl: SI(DIFF(3 ,S(zl ,P( Z2 ,P(eiotplkx,eiotplkx)) ))) ; SI(PC(-1,0, v)); 
SI(P(ul ,DIFF(l ,zl))); PU({U(COZ2 i,,'1,,6 ,{c z~.{) ~); 

ASSEMBLAGE: . . . · 
PU(1U(CZ2A2,Q(PRC(-1.i,A,{CA2~,<t), T(COZ2))) ,:t); · 
PU( U(CZ2B2,Q(PRC(-~r'h5t{CB2 J),T{COZ2)))_q,); 
PU( U(COZ2,Q(PRC(-l;.-7'o8,<f.C~,{ ,T(COZ2)));:}); 
z2 := P(S(P(C Z2A2 ,A2) ,S(P(C Z2B2 ,B2) ,COZ2)) ,P(eiotplkx,eiotplkx)); 
Kl:= k,; KCl:= kc; f2!. i:"' 1,2.3,4,5,6,7 ,8 do cc[i]:= O; b= 1; · · 

AA: c2 := S(P(E2 ,P(emu2y ,P(eiotplkx,eiotplkxm ,est); 
sigma2:=:i PC(-1,0,P(RTGGAPC ,S(c2,PC(-. 5,0,P(EGAPC,P(cl,cl)))))); 



-33-

comment Continuation of Second order program; 
K;;; K;KC := kc; 
BC2: 

SI(P(ETA,PC(2 ,0 ,P(DIFF(l,zl) ,S(DIFF(2, vl) ,PC(-1,0,DIFF(l ,ul))))))); 
SI(P(ET A,S(DIFF(2,u) ,DIFF(l, v)))); SI(PC(-1,0 ,DIFF(l ,S(sigma1 ~slgma2)))); 
SI(PC(-1,0,P(DIFF(l;zlLDIFF(2~sigmal)))); --. 
PU(t(COE2~,7,{CE~~{)~); . -- --
PU( U(CE2A2,Q(PRC(-1~. -,4~{CA·2l,{),T(COE2)));:l,); 
PU( (CE2B2,Q(PRC(-1.J,5,{CB2 ,{),T(COE2)));:l,); 
PU( U(COE2;Q(PRC(-1~,8,{C2*,{ ,T(COE2)))tj.); - · 
for i:= 1,2,3,4,5,6,7 ,8 do cc[i]:= 0; k:= Kl;' kc:= KCl; i:= E2; 
E2:= s(P(CE2A2 9A2),s(NcE2B2,B2),coE2)); fl,fo AA; E2:= i; 

BC3: SI(S(P(RHO,P(g,S(zl,z2))),PC(-l,0,S(pl~p2 ; 
SI(PC(2 ,0 ,P(ETA,DIFF(2, v)))); 
SI(PC(-2 ,0 ,P(ET A,P(DIFF(l~zl) ,S(DIFF(2 ,ul) ,DIFF(l ,vl)))))); 
Sl(PC(-1,0,P(sigmal ,DIFF(l ,DIFF(l,zl))))); 
Sl(PC(-1,0 ,P(sigma0 ,DIFF(l ,DIFF(l,S(zl;z2)))))); 
PU(tU(coeffll;j,,4,{CA2i,{)_;::I,.); -... --
PU( U(coeff12;\,,5,{CB~,{)t\,); 
PU( U(coeff13 ,PRC(-l;;t,8,{C2::\,,{)) ti,); 
for i:= 1,2,3,4,5,6,7 ,8 do cc[i]:= O; 

BC4: -
SI(P(D,P(CNPA,P(CNPA;S(DIFF(2,S(cl,c2)).,PC(-1,0,P(DIFF(l,zl), 
DIFF(l,cl)))))))); SI(P(D,PC(2,0,P(CNPA,P(cl,DIFF(2,cl)))))); -
SI(P(GCCPA,S(DIFF(l ,u) ,P(DIFF(l ,zl) ,S(DIFF(2 ,ul) ,DIFF(l; vl)))))); 
SI(P(GTCPA,P(cl,DIFF(l,ul)))); - -
SI(P(AG,S(DIFF(3,S(cl,c2)),S(P(ul,DIFF(l,cl)),P(vl,DIFF(2,cl)))))); 
PU(lU(coeff21~,4,{CA~,{);:\,); · · · 
PU( U(coeff22;;\,,5,{CB~,{)_;:l.); 
PU( U(coeff23,PRC(-1,i,,8,{C~,{));:i,); RUNOUT 

end end end · ----



begin ££!!1!!),~t_ Calculation program; 
real NU, c0, a, D, GAMMA, SIGMA, SIGMAO, RT, ETA, RHO, g, OMEGA; 
Integer k, ka;_ array kl, k12, kl3, k14, ml, m12, m13, mul, mu12, mul3, 
m2, m22, mu2, mu22, Al, A12, Bl, B12, El, E12, A2, B2, CZ2A2, 
CZ2B2, COZ2, CE2A2, CE2B2, COE2, PSI, PST, CSTl, CST2, coeffll, 
coeff12, coe:ff13, coeff21, coeff22, coeff23[1:2], H[l:100,1:2]; 
integer arr ax., C Z2 ,CE2 [1 :1 ],CA2 ,CB2 [1 :4],C2 [1:2 8]; 
inieger proc:edure T(a); ar]ay a; · 
begin T:= K:= k + 1; H[k,1 := a[l]; H[k,2]:= a[2] end; 
integer proc:edure P(i,j}; value i,j; integer i,jz 
bee;!ffi real a; P:"" k:= k -"Tfa:= Hli,1] x H[j,l] - H[i,2] x H[j,2]; 

H ,21:= H[i,1] x H[j,2] + H[i,2] x H[j,1]; H[k,1]:= a 
end· _, 
integer :e:oc:edure Q(i,j); ~ i,j; 10eg}4.2 i,j; 
begi[ real a,b; Q:= k:= k - 1; b:= H O ,1 + H[j,2}42; a:= (H[i,1] x H[j,1] + 
· H i,2Jx'H[j,2])/b; H[k,2h= (H[i,2] x H[j,1] - H[i,1] x H[j,2])/b; H[k,l]:= a 
end; 
integer procedure S(i,j); value i,j; integer i,j; 
begin S:= k:= k - 1; H[k,lJ:= H[i,1] + HQ,1]; H[k,2]:= H[i,2] + H[j,2] end; 
procedure U(R, i); value i.; inteyer i; array R; 
betgin Rll]:= H[i,1]; R[2J:= H[i,2 ; k:= k - 1 end; 
in eger Pf ocedure PRC(a,i); value a,i; real a; intefler i; 
oegin PR := k; Htk,1]:= a x H[iJ]; H[k,2]:= a x H 1,2] end; 
integer procedure J(al,a2); real al, a2; 
oegin J·:= k:= k + 1; H[k,1]:= al; H[k,2]:= a2 end; 
procedure FLOPC (STRING, a); sying STRING;array a; 
begin ka:= 50; PUNLCR; PUTEXT STRING); PUTEXTl({ i,); 

FLOP(l0,3,a[l]); PUTEXT({+ i.(i,); FLOP(l0 93,a[2]); PUTEXT({)i,) 
end; 
Srocedure Ul (i,j); value j; integer i,j; 
~ b= ka.::c: ka + 1; Hlka,1]:= Hlj,l]; H[ka,2]:= H[j,2]; k:== k - 1 end; 
integer procedure Sum(i,a); ~ i; integer i; integer array a; 
'6egi.n integer j; Sum:= k:= k + 1; H[k,1]:= H[k,2]:= 0; for j:= 1 steffi 1 

until i do begin H(k,l ]:= H[k,1] + H[a[j ],1 l; H[k,2 ]:= iil'.k,2] + H a j ,2] end 
encfr"'""'" _, --
~ 
procedure RE(a); array a; begin a[l]:= read; a[2]:= read ~ 

BEGIN of CALCULATION: 
RUNOUT; PUNLCR; SIGMAO:::c, read; RT:= read; ETA:= read; RHO:= read; 
g:= read; NU:= read; D:= read; GAMMA:= read; c0:= read; a:= read; 
OMEGA:= NU x 6. 2831853071794,; SIGMA:= SIGMAO - RT x GAMMA x 
ln (1 + c0/a); k:= 0; ka:= 50; RE(kl); U(k12,P(T(kl),T(kl))); 
U(k13,P(T(kl),T(k12))); U(k14,P(T(kl),T(k13))); RE(mul); RE(ml); RE(mu2); 
RE(m2); U(m12,P(T(ml),T(ml))); U(:rn.13,P(T(ml),T(m12))); U(mu12, 
P(T(mul),T(mul))); U(niu13,P{T(mul),T(mu12)))_;· U(m22,P(T(m2),T(m2))); 
U(mu22,P(T(mu2),T(mu2)}); RE(Al); U(A12,P(T(Al),T(Al))); RE(Bl), 
U(B12 ,P(T(Bl), T(Bl))); RE(El); U(E12 ,P(T(El), T(El))); RE(PSI); RE(PST); 
RE(CSTl); RE(CST2); 



-35-

comment Continuation of Calculation program; 
CALCULATION: k:= k; 

comment 
. (-.10010 +1 + ix+ 0 )OMEGA OMEGA,4.(-1) kl Al e.1J(OMEGA t + kl x) + 
(+ 0 + ix+.10010 +1 )OMEGA OMEG.A,+.(-1) kl Bl eitJ.(OMEGA t + kl x) + 
(+ 0 + ix+. 20010+1 )OMEGA Z2 e.4J(OMEGA t + kl x) 

e1J_(OMEGA t + kl x) ; . 
comment , 
(-. ll>'o10 +1 + ix+ 0 )OMEGA OMEGAt}.(-1) kl Al e.,fd(OMEGA t + kl x) + 
(+ 0 + ix+.10010 +1 )OMEGA OMEG.A,+.(-1) kl Bl ettJ_(OMEGA t + kl x) + 
( + 0 + ix+. 20010 + 1 )OMEGA Z2 e-1J.(OMEGA t + kl x) . 

e;µ(OMEGA t + kl x) ; . . 
Ul(CZ2[ 1 ],PRC(OMEGA,J(+ 0 ,+.20010+1 ))); 
comment 
(+.10010 +1 + ix- 0 )kl Al iy e,,N.(OMEGA t + kl x) + 
(- 0 + ix-.10010+1 )kl Bl ly *(OMEGA t + kl x) + 
(+.20010+1 + ix- 0 )kl A2 2y e.4J(OMEGA t + kl x)' 

etJ(OMEGA t + kl x) + . 
(- 0 + ix-.20010 +1 )kl B2 ~2y e-1J.(OMEGA t + kl x) 

e.4,i(OMEGA t + kl x) + . 
(- 0 + ix-.20010 +1 )kl PSI e,.fucly ~mly e.4J(OMEGA t + kl x) 

e;µ(OMEGA t + kl x) ; . 
comment 
(+.10010 +1 + ix- 0 )kl Al aj.i(OMEGA t + kl.x) + 
(+ 0 + ix+.10010 +1 )OMEG~(-1) kl kl kl Al Al 

ett,J.(OMEGA t + kl x) efd(OMEGA t + kl x) + 
(+.10010 +1 + ix- 0 . )OMEGA.1'(-1) kl kl kl Al Bl 

e+,i(OMEGA t + kl x) etJ.(OMEGA t + kl x) + 
(- 0 + ix-.10010 +1 )kl Bl ajd(OMEGA t + kl x) + 
(+.10010 +1 + ix- O · )OMEGAIM-1) kl kl ml Al Bl 

e.4,i.(OMEGA t + kl x) e.4i(OMEGA t + kl x) + 
(- 0 + ix-.10010+1 )OMEGM(-1) kl kl ml Bl Bl 

ett,.i(OMEGA t + kl x) 61d(OMEGA t + kl x) + 
(+. 20010 +1 + ix- 0 )kl A2 e.1J.(OMEGA t + kl x) 

e+,i(OMEGA t + kl x) + . 
(- 0 + ix-. 20010+1 )kl B2 e1J.(OMEGA t + kl x) 

e.4,i.(OMEGA t + kl x) + .· · 
(- 0 + ix-.20010·+1 )kl PSI e.4J_(OMEGA t + kl x) 

e;µ(OMEGA t + kl x) ; . . 
Ul(C2[ 1 ],PRC(OMEG.A,+.(-1),P(T(kl 3 ),P(T(Al 2 ), 

J(+ 0 ,+.10010+1 ))))); . . . 
Ul(C2[ 2 ],PRC(OMEGM(-1),P(T(kl 3 ),P(T(Al),P(T(Bl), 

J(+.10010+1 ,- 0 )))))); . 
Ul(C2[ 3 ],PRC(OMEG:~(.:..1),P(T(kl 2 ),P(T(ml),P(T(Al),P(T(Bl), 

J(+.10010+1 · ,- 0 )))))))f . . . . 
Ul(C2[ 4 ],PRC(OMEGM(.:..1),P(T(kl 2 ),P(T(ml),P(T(Bl 2 ), 
J(- 0 ,-.10010+1 )))))); . 

Ul(CA2[ 1 ],P(T(kl),J(+:·20010 +1 ,- 0 ))); 
Ul(CB2[ 1 ],P(T(kl),J(- 0 ,-. 20010 +1 ))); 
Ul(C2[ 5 ],P(T(kl),P(T(PSI),J(- 0 ,-. 2-0010 +1 )))); 



comment Continuation of Calculation program · 
r➔:--o- + ix+.10010+1 )OMEG~(-1) kl kl kl Al Al ~ly 

e.1J,(OMEGA t + kl x) e.fJ(OMEGA t + kl x) + 
(+.10010 +1 + ix+ O )OMEGM(-1) kl kl kl Al Bl e.4Jc1y 

e4.i(OMEGA t + kl x) &tJ,(OMEGA t + kl x) + 
(+.10010 +1 + ix- 0 )OMEGM(-1) kl kl ml Al Bl ~ly 
etJ(OMEGA t + kl x) e¥(OMEGA t +· kl x) + · 
(- O + ix-.100!0+1 )OMEGM(-1) kl kl ml Bl Bl ~ly 

e1J,(OMEGA t + kl x) e,,fd(OMEGA t + kl x) ; 
comment 
r➔:--o- + ix+.10010 +1 )OMEGM(-1) kl kl kl Al Al 

~(OMEGA t + kl x) eitJ(OMEGA t + kl x) + 
(+.10010 +1 + ix+ 0 · )OMEGM(-1) kl kl kl Al Bl 

ettJ.(OMEGA t + kl x) e,,fd(OMEGA t + kl x) + 
(+.10010 +1 + ix- 0 )OMEGM(-1) kl kl ml Al Bl 
e.+,i(OMEGA t + kl x) etJ(OMEGA t + kl x) + 

(- O + ix-.10010+1 )OMEGM(-1) kl kl ml Bl Bl 
e.{u(OMEGA t + kl x) ~(OMEGA t + kl x) ; 

Ul(C2[ 6 ]9PRC(OMEGM-(-1)9P(T(kl 3 ),P(T(Al 2 ), 
J(+ 0 . ,+.10010+1 ))))); . 

Ul(C2[ 7 ],PRC(OMEGM(-1),P(T(kl 3 ),P(T(Al),P(T(Bl), 
J(+.10010+1·,+ 0 ')))))); . 

Ul(C2[ 8 ],PRC(OMEGM(.:..1),P(T(kl 2 ),P(T(ml),P(T(Al),P(T(Bl), 
J(+.10010+1 · ,- 0 ))))))); . . . 

Ul(C2[ 9 ],PRC(OMEGM(.:..1),P(T(kl 2 ),P(T(ml),P(T(Bl 2 ), 
J(- 0 ,-.10010+1 )))))); 

ASSEMBLAGE: 
U(COZ2,Sum( 1 ,CZ2)); 
U(CZ2A2,Q(PRC(-1,Sum( 1 ,CA2)),T(COZ2))); 
U(CZ2B2,Q(PRC(-1,Sum( 1 ,CB2)),T(COZ2))); 
U(COZ2,Q(PRC(-l,Sum( 9 ,C2)),T{COZ2))h·FLOPC({CZ2A2 ==:l,,CZ2A2); 
FLOPC({CZ2B2 =i,CZ2B2); FLOPC({COZ2 =i,COZ2); . 
comment We removed frotn the following the comment parts; urran ],PRC(OMEGM(-1) x ETA,P(T(kl 4 ),P(T(Al 2 ), 

J(+. 40010+1. ,- 0 )))))_; . ' 
Ul(C2[ 2 ],PRC(OMEGM(-1) x ETA,P(T(kl 3 ),P(T(ml),P(T(Al),P(T(Bl), 
J(- 0 ,-.40010+1 )))}))); . . . 

Ul(C2[ 3 LPRC(OMEGM(-1) x ETA,P(T(kl 4 ),P(T(Al),P(T(Bl), 
J(- 0 '.-.40010+1 )))))); . . 

Ul(C2[ 4 ],PRC(OMEGM(.:..1) x ETA,P(T(kl 3 ),P(T(ml),P(T(Bl 2 ), 
J(-.40010+1 · ,+ 0 )))))); . . . 

Ul(C2[ 5 LPRC(OMEGM(.:..1) x ETA,P(T(kl 4 ),P(T(Al 2 ), 
J(+. 20010+1 ,- 0 ))))); 

Ul(C2[ 6 ],PRC(OMEGM(-1) x ETA,P(T(kl 4 ),P(T(Al),P(T(Bl), 
J(+ 0 ,-. 20010+1 )))))); . . 

Ul(C2[ 7 ],PRC(OMEGM(-1) x ETA,P(T(kl),P(T(ml 3 ),P(T(Al),P(T(Bl), 
J(- 0 ,-.10010+1 ))))))); . . 

Ul(C2[ 8 ],PRC(OMEGM(.;.1) x ETA,P(T(kl),P(T(ml 3 ),P(T(Bl 2 ), 
J(-.10010+1 ,+ 0 )))))); . 



-37-

comment Continuation of Calculation program; 
Ul<C-A°2r 1 ],PRC(ETA,P(T(kl 2 ),J(+ 0 ,-. 80010 +1 )))); 
Ul(CB2[ 1 ].PRC(ETAPP(T(m2 2 ),J(-.1OO10+1 ,+ 0 )))); 
Ul(C2[ 9 ],PRC(ETA,P(T(kl),P(TC-ml),P(T(PSI),J(-.2OO10 +1 -,+ 0 )))))); 
Ul(C2[ 10 ]9PRC(ETA,P(T(ml 2 ),P(T-CPSI),J(-.1OO10 +1 ,+ 0 ))))); 
Ul(C2[ 11 ],PRC(ETA,P(T(kl 2 )~P(T(PSI),J(-.5OO10+1 ,+ 0 ))))); 
Ul(C2[ 12 ],PRC(OMEGM(-1) x ETA,P(T(kl 3 ),P(T(ml),P(T(Al)~- --

P(T(Bl),J(- 0 ,-.10010+1 ))))))); -
Ul(C2[ 13 ],PRC(OMEGM(-1) x ETA,P(T(kl 3 ),P(T(ml),P(T(Bl 2 )p 

J(-.1OO10+1 ;+ 0 )))))); -
Ul(CB2[ 2 ],PRC(ETA~P(T(kl 2 ),J(-.4OO10+1 ,+ 0 )))); 
Ul(C2[ 14 ],PRC(OMEGM(-1) x RTxGAMMA/(a+cO),P(T(kl ·2 ),P(T(mul), 

P(T(Al),P(T(El),J(-.1OO1 +1 ,+ 0 ))))))); - - - -
Ul(C2[ 15 ],PRG(OMEGA1(-l) x RTxGAMMA/(a+cO),P(T(kl 2 ),P(T(mul), 

P(T(Bl),P(T(El),J(+ 0 ,+.10010 +i ))))))); - -
Ul(CE2[ 1 ],PRC(RTxGAMMA/(a+cO),P(T(kl),J(+ 0 ,+.20010 +1 )))); 
Ul(C2[ 16 ],PRC(RTxGAMMA/(a+cO),P(T(kl),P(T(CSTl), 
J( 0 - ,+. 20010+1 ))))); 

Ul(C2[ 17 ],PRC(RTxGAMMA/(a+cO),P(T(kl),P(T(CST2), 
J(+ 0 ,+.20010+1 ))))); 

Ul(C2[ 18 ],PRC(RTxGAMMA/(a+cO) x 1/(a+cO),P(T(kl),P(T(El 2 ), 
J(- 0 - .-.10010+1 ))))); - - - -

Ul(C2[ 19 ],PRC(OMEGM(-1) x RTxGAMMA/(a+cO),P(T(kl 2 ),P(T(mul), 
P(T(Al),P(T(El),J(-.1OO +1 ,+ 0 ))))))); -- - -

Ul(C2[ 20 ],PRC(OMEGM(-1) x RTxGAMMA/(a+cO),P(T(kl 2 ),P(T(mul), 
P(T(Bl),P(T(El),J(+ 0 ·,+.10010 +1 ))))))); - -

U(COE2,Sum( 1 ,CE2)); 
U(CE2A2,Q(PRC(-l,Sum( 1 ,CA2)),T(COE2))); 
U(CE2B2,Q(PRC(-1,Sum( 2 ,CB2)),T(COE2))); 
U(COE2,Q(PRC(-l 9Sum( 20 ,C2)),T(COE2))); -
FLOPC({CE2A2 =:t,CE2A2); FLOPC({CE2B2 =::j.,CE2B2); 
FLOPC({COE2 =i,,COE2); -
Ul(CA2[ 1 ],PRC(RHO X g,P(T(CZ2A2),J(l,O)))); 
Ul(CB2[ 1 ],PRC(RHO x g,P(T(CZ2B2),J(l,O)))); 
Ul(C2[ 1 ],PRC(RHO X g,P(T(COZ2),J(l,O)))); · -
Ul(C2[ 2 ],PRC(OMEGA x OMEGM(-1) x RHO,P(T(kl 2 ), 

P(T(Al 2 ),J(+.1OO10 +1 ,- 0 ))))); -
Ul(C2[ 3 ],PRC(OMEGA x OMEG4(~1) x RHO,P(T(kl 2 ), 

P(T(Al),P(T(Bl),J(- 0 ,-.10010 +1 )))))); 
Ul(CA2[ 2 ],PRC(OMEGA x RHO,J(- 0 ,-.20010 +1 ))); 
Ul(C2[ 4 ],P(T(PST),J(-.1OO10 +1 ,+ 0 ))); ---
Ul(C2[ 5 ],PRC(OMEGM(-1) x ETA,P(T(kl 4 ),P(T(Al 2 ), 
J(- 0 ,-.20010+1 ))))); -

Ul(C2[ 6 ],PRC(OMEG:~(-1) x ETA,P(T(kl 4 ),P(T(Al), 
P(T(Bl),J(-. 20010 +1 ,- 0 )))))); -

Ul(C2[ 7 ],PRC(OMEGM(-1) x ETA,P(T(kl 2 ),P(T(ml 2 ), 
P(T(Al),P(T(Bl),J(-.2OO1 +l ,+ 0 ))))))); -

Ul(C2[ 8 ],PRC(OMEGM(-1) x ETA,P(T(kl 2 ),P(T(ml 2 ), 
P(T(Bl 2 ),J(- 0 ,+.20010 +1 )))))); -

Ul(CA2[ 3 ],PRC(ETA,P(T(kl 2 ),J(--. 80010+1 ,- 0 )))); 
Ul(CB2[ 2 ],PRC(ETA,P(T(kl),P(T(m2),J(+ 0 ,+.40010 +1 ))))); 



comment Continuation of Calculation program; 
Ul(C2n ],PRC(ETA9P(T(k1 2 ),P(T(PSl),J(+ 0 ,+.40010 +1 ))))); 
Ul(C2[ 10 ]0PRC(ETA,P(T(kl),P(T(ml),P(T(PSI),J(+ 0 ,+.40010 +1 )))))); 
Ul(C2[ 11 ],PRC(OMEGM(-1) x ETA,P(T(kl 4 ),P(T(Al 2 ), 

J(- 0 ,-.40010+1 ))))); 
Ul(C2[ 12 ],PRC(OMEGM(-1) x ETA,P(T(kl 2 ),P(T(ml 2 ),P(T(Al), 

P(T(Bl),J(-. 20010 +1 ,+ 0 ))))))); . . 
Ul(C2[ 13 ],PRC(OMEGA,1'{-1) x ETA~P(T(kl 4 ),P(T(Al),P(T(Bl), 
J(-. 60010+1 ,+ 0 )))))); . . . . 

Ul(C2[ 14 ],PRC(OMEGM-(.:...1) >< ETA,P(T(kl 2 ),P(T(ml 2 ),P(T(Bl 2 ), 
J(+ 0 . ,+. 20010+1 )))))); . . . 

Ul(C2[ 15 ],PRC(OMEG~(.:..1) >< ETA,P(T(kl 4 ),P(T(Bl 2 ), 
J(+ 0 ,+.20010+1 ))))); . . . 

Ul(C2[ 16 ],PRC(OMEGM(-1) >< RTxGAMMA/(a+c0),P(T(kl 3 ),P(T(Al), 
P(T(El),J(- 0 ,-.10010 +1 )))))); . . . 

Ul(C2[ 17 ],PRC(OMEGM,(-1) >< RTxGAMMA/(a+c0),P(T(kl 3 ),P(T(Bl), 
P(T(El),J(-.10010 +1 ,+ 0 )))))); -

Ul(CA2[ 4 ],PRC(SIGMA,P(T(kl 2 ),P(T(CZ2A2),J(+.40010 +1 ,- 0 
Ul(CB2[ 3 ],PRC(SIGMA,P(T(kl 2 ),P(T(CZ2B2),J(+.40010 +1 ,- 0 
Ul(C2[ 18 ],PRC(SIGMA,P(T(kl 2 ),P(T(COZ2),J(+.40010+1 ,- 0 
U(coeffll,Sum( 4 ,CA2)); 
U(coeff12,Sum( 3 ,CB2)); 
U(coeff13,PRC(-1,Sum( 18 ,C2))); 
FLOPC({coeffll =i,,coeffll); FLOPC{{coeff12 =i,,coeff12); 

))))) ; 
))))) ; 

nm;·· 

FLOPC{{coeff13 =*,coeff13); · 
Ul(C2[ 1 ],PRC(OMEGM(.:..1) >< (a+c0) >< (a+c0) >< D,P(T(kl),P(T(mul 2 ), 

P(T(Al),P(T(El),J(+ 0 ·,+.10010 +1 ))))))); . . 
Ul(C2[ 2 ],PRC(OMEGM(-1) x (a+c0) ><' ·(a+cO) >< D,P(T(kl),P(T(mul 2 ), 

P(T(Bl),P(T(El),J(+.10010 +1 ·,+ 0 ))))))); 
Ul(CA2[' 1 ],PRC((a+c0) >< (a+c0) >< D,P(T(mu2),P(T(CE2A2),J(l,0))))); 
Ul(CB2[ 1 ],PRC((a+c0) >< (a+c0) >< D,P(T(mu2),P(T(CE2B2),J(l,0))))); 
Ul(C2[ 3 ],PRC((a+c0) x (a+c0) ·x D,P(T(mu2),P(T(COE2),J(l,0))))l; .. 
Ul(C2[ 4 ],PRC((a+c0) >< (a+c0) x D,P(T(kl),P(T(CSTl),J(l,0)))))f. 
Ul(C2[ 5 ],PRC((a+c0) >< (a+c0) >< D,P(T(mul),P(T(CSTl),J(l~0)l))); 
Ul(c2[ 6 ],PRC((a+c0) >< (a+c0) >< D,P(T(ml),P(T(CST2),J(l,0»-)l); 
Ul(C2[ 7 ],PRC((a+c0) >< (a+c0) >< D,P(T(mul),P(T(CST2),J(l,O)l)")); 
Ul(C2[ 8 ],PRC(OMEGM(-1) >< (a+c0) >< (a+c0) x D,P(T(kl 3 )~P(T(Al), 

P(T(El),J(+ 0 ,+.10010 +1 )))))); . . 
Ul(C2[ 9 ],PRC(OMEGM(-1) >< (a+c0) >< (a+c0) x D,P(T(kl 3 ),P(T(Bl), 
P(T(El),J(+.10010+1 ,- 0 . )))))); . . . . 

Ul(C2[ 10 ],PRC((a+c0) >< D,P(T(mul),P(T(El 2 ),J(+.20010+1 ,+ 0 ))))); 
Ul(C2[ 11 ],PRC(OMEGM(-1) >< GAMMA><c0x(a+c0),P(T(kl 4 ),P(T(Al 2·J;· 

J(+ 0 ,+. 30010+1 ))))); . . . 
Ul(C2[ 12 ],PRC(OMEG4(-1) >< GAMMAxc0x(a+c0),P(T(kl 4 ),P(T(Al), 

P(T(Bl),J(+.40010 +1 ,- 0 . )))))); . . 
Ul(C2[ 13 ],PRC(OMEGM,(-1) >< .GAMMAxc0x(a+c0),P(T(kl 2 ),P(T(ml 2 ), 

P(T(Al),P(T(Bl),J(+.2001 +1 ·,- 0 ))))))); . . . 
Ul(C2[ 14 ],PRC(OMEGM(-1) >< GAMMA><c0x(a+c0),P(T(kl 2 ),P(T(ml 2 ), 
P(T(Bl 2 ),J(- 0 ,-.20·010+1 )))))); . . 

Ul(CA2[ 2. ],PRC(GAMMAxc0x(a+cO)~P(T(kl 2 ),J(+.40010 +1 ,+ 0 )))); 



comment Continuation of Calculation program; 
Ul(CB2'r 2 ],PRC(GAMMAxc0x(a+c0),P(T(kl) 9P(T(m2), 
J(- 0 9-• 20010+1 ))))),; 

Ul( C2 [ 15 ],PRC(GAMMAxc0x(a+c0) ,P(T(kl) ,P(T(ml),P(T(PSI), 
J(- 0 ,-. 20010+1 )))))); 

Ul(C2[ 16 ]9PRC(GAMMAxc0x(a+c0),P(T(kl 2 ),P(T(PSI), 
J(- 0 ,-.20010+1 ))))); 

Ul(C2[ 17 ],PRC(OMEGA.tf\(-1) x GAMMAxc0x(a+c0),P(T(kl 4 ), 
P(T(Bl 2 ),J{- 0 ,-.10010 +1 ))))); . 

Ul(C2[ 18 ],PRC(GAMMAx{2Xc0+a),P(T(kl 2 ),P(T(Al),P(T(El), 
J{+.10010+1 · ,+ 0 )))))); 

Ul( C2 [ 19 ],PRC{GAMMAx(2xc0+a) ,P{T(kl) ,P{T(ml) ,P(T(Bl) ,P(T(El), 
J(- 0 ,-.10010+1 ))))))); . 

Ul{C2[ 20 ],PRC(OMEGA X ·oMEGA.tf\(-1) x GAMMAxa,P(T(kl),P(T(mul), 
P(T(Al),P(T(El),J(-.10010 +1 ,+ 0 ))))))); . . 

Ul(C2[ 21 ],PRC(OMEGA x OMEGM(-1) x· GAMMAxa,P(T(kl),P(T(mul), 
P(T(Bl),P(T(El),J(+ 0 ,+.10010 +1 ))))))); 

Ul(CA2[ 3 ],PRC(OMEGA x GAMMAxa,P(T(CE2A2), 
J(+ 0 ,+.20010+1 )))); 

Ul(CB2[ 3 ],PRC(OMEGA x GAMMAxa,P(T(CE2B2), 
J(+ 0 ,+.20010+1 )))); 

Ul(C2[ 22 ],PRC(OMEGA x GAMMAxa,P(T(COE2),J(+ 0 
Ul(C2[ 23 ],PRC(OMEGA x GAMMAXa~P(T(CSTl),J(+ 0 
Ul(C2[ 24 ],PRC(OMEGA x GAMMAxa,P(T(CST2),J(+ 0 
Ul(C2[ 25 ],PRC(GAMMAxa,P(T(kl 2 ),P(T(Al),P(T(El), 

J(+.10010+1 ,+ 0 )))))); 
Ul (C2 [ 26 ],PRC(GAMMAxa,P(T(kl) ,P(T(ml) ,P(T(Bl) ,P(T(El), 
J(- 0 ,-.10010+1 ))))))); 

,+. 20010+1 )))); 
,+.20010+1 )l)l; 
,+.20010+1 )))); 

Ul(C2[ 27 ],PRC(GAMMAXa~P(T(kl),P(T(mul),P(T(Al),P(T(El), 
J(-.10010+1 ,+ 0 ))))))); 

Ul(C2 [ 28 ],PRC(G AMMAxa,P(T(kl) ,P(T(mul) ,P(T{Bl) ,P(T(El), 
J(+ 0 ,+.10010+1 ))))))); . 

U(coeff21,Sum( 3 ,CA2)); 
U(coeff22,Sum( 3 ,CB2)); 
U(coeff23,PRC{-1,Sum{ 28 ,C2))); 
FLOPC{{coeff21 =::\,,coeff21); FLOPC({coeff22 =::\,,coeff22); 
FLOPC{{coeff23 =::\,,coeff23); · 
comment From the label CALCULATION until so far this program 
rs:-oesides slight differences concerning the lay-out, constructed 
by the Second order program. Finally A2 and B2 are calculated; 
U(PSI,S(P{T(coeffll), T{coeff22)) ,PRC(-1,P(T(coeff12), T(coeff21))))); -
U(A2,Q(S(P(T{coeffl3) ,T(coeff22)) ,PRC(-1,P(T(coeff12), T(coeff23)))), 

T(PSI))); FLOPC({A2 =::\,,A2); 
U{B2,Q.{S(P(T{coeffll), T(coeff23)) ,PRC(-1,P(T(coeff13), T(coeff21)))), 

T(PSI))); FLOPC({B2 =::\,,B2); RUNOUT -
end 



References 

1 RoP• van de Riet 

-40-

Algebraic operations in ALGOL 60 (series 

expansions) 

Report ToWo 97, Mathematical Centre, Amsterda.mo 

2 Mo van d◄~n Tempeli RoPo van de Rietg Damping of waves by surface­

active materials 

Journal of Chemical Physicsj april 19650 


