STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

AFDELING TOEGEPASTE WISKUNDE

W 96

Algebraic operations in ALGOL 60
(a second order problem)

by
R.P. van de Riet

j@@

march 1965

BUBLIOTHEEK MATHEMATISCH CENTRUM
_ AMBSTERDAM

Printed at the Mathematical Centre at Amsterdam,49,2nd Boerhaavestraat.
The Netherlands.)

The Mathematical Centre, founded the 11th of February 1946, is a non -
profit institution aiming at the promotion of pure mathematics and its
applications, and is sponsored by the Netherlands Government through
the Netherlands Organization for Pure Scientific Research (Z.W.0.) and
the Central National Council for Applied Scientific Research in the Ne-
therlands (T.N.O.), by the Municipality of Amsterdam and by several in-
dustries.

Introduction

Nowadays almost all time-consuming numerical analysis is done by
aid of the fast and accurate computer technique,

Sometimes however, one has to do a considerable amount of work,
with the risk of making errors, in elementary algebraic operations with
formulae, before one can construct an (ALGOL) program to be used for
obtaining numerical results.

In this report we give an account of the investigations about a
physico=chemical problem, which will be described in section 1,

In turns out that the analysis of the so=-called second order effect
results in a fast amount of elementary algebraic operations, which can
be done by the computer. The different stages to be followed in the
analysis, will be examined in section 2, which results in a calculation
scheme,

In section 3, the system is given, by which formulae can be stored
within the computer, Moreover the way of input of the formulae will be
considered,

The ALGOL procedures based upon the calculation scheme will be
illucidated in section L4 and 5.

The bestdescription of them are of course given by their definition in
the ALGOL program, called the "Second order program'", reproduced in
section 6,

The "Second order program" analyses the problem algebraically and
gives output in the form of ALGOL statements, punched on a tape., This
tape is directly used for the construction of another program, the
"Calculation program" (also reproduced in section 6), which is used to
obtain numerical results,

Since the variables and constants of the problem are complex
quantities (i.e. not real), the form of the statements in the
"Calculation program", for calculating these quantities and thus the
form of the desired output of the "Second order program" is not

obvious, a special section (5) is devoted to these questionms.

The main object in publishing this report is to give a demonstration
about the way in which a computer can be instructed to do analytiéal
work, by means of a program written in ALGOL 60s a language, which turned
out to be extremely suited for this purpose, due to the possibility to
construct recursive procedures,

Since we expect that there exists more problems, likely to this
particular physico=chemical problem, for which the same method can be
used, we described the problem and both programs in a very detailed
form, although these programs can noct be used for any other problem,

We remark that in [ﬂ] a description is given of a program based on
an entirely different problem, namely the derivation of a series
expansion for & solution of a differential equation, but using the same
technique, which is discussed here,

The two ALGOL programs in this report were run on the Electrologica

X1 computer of the Mathematical Centre.

1. The Second order problem

In the (x,y,z) coordinate system we study the motion of a fluid.
We assume that the phenomena to be considered are independent of the 2z
coordinate,
Let the y coordinate axis be vertically and the x=coordinate axis be
horizontally directed,
Let the surface of the fluid be given by y = r (x) and let the fluid be
infinitely deep. (i.e. y = ==)
The fluid and the surface are set in motion by some harmonically
vibrating (with period %§3> oscillator,
The ripples of the surface are damped in the x direction, primarily by
the presence of surface active material (surfactant), adsorbed at the
surface and dissolved in the bulk fluid,
The interaction between the adsorbed and the dissolved surfactant 1is

due to diffusion,

=3=

If we denote the horizontal velocity by u, the vertical velocity
by v, the pressure by p and the concentration of the surfactant in the
bulk fluid by e, then the motion and diffusion(with diffusion coefficient

D) are governed by the following differential equations:

(3) %§-+ 3% =0
and
(L) %%'= DAc=u %% -V %% o

The boundary conditions for y = = @ are Very simple: u and v must

be zero and ¢ must be equal to the constant c.. The boundary condition

OD
for the surface y = ¢ (x,t) are very complicated. We define

_ LS - 321243
o = o =RTT, in(1 + a) and L = (1 + (ax))2

Let the guantities n,p,g, D,T_,a, ow,RQT and c, be measurable

constants determining the physico=chemical state, then the boundary

conditions are

14 o _
(5) T * u ==V
(6) p+ 2L _28 2w, 2y, n2duy g 2 ,-3/2
P75 %y < %k ‘3x | ox ox. 93 x 2
L 9x
9% , 0V ou 9L\ 2, ,0u AV _ 90 90 9L
(7) 2 x oy ax) + n(qﬂ(ax))(ay + ax)- L(Bx + dy ax)
r
oc oc 9cy _ o du . 9r,du , AV, 05,20V
(8) el lgprugt vy 7 - 2 cleva)lgg + 5y + 50 5 |

wlion

For the derivation: of these formulae we refer the reader to ﬁﬂo
The solution of this problem is sought for in the form of Fourier series

for the unknown functions u,v,p,c,% and o,
-]

o 1nwt

eogo U= c (x,y)e e

n=0
properly.

, when the functions cn(xgy) should be chosen

!

Insertion of these series into the differential equations and the
boundary conditions and assembling corresponding coefficients of elnwt9
furnishes a method for obtaining the unknown functions c, and the

corresponding coefficients in the series of v,p,c,z and o,

For n = 0 we get the trivial result CO = UO = V0 = 0,
Uy = 1) Py = =Py, ¢y = Sg and 00 = °w°
For n = 1 the substitution is relatively simple to do and the result is:
k.y my i(wbt+k, x) .
(= 1 1 1 . 2_ 1uwp
(9) u, = (mlk,ﬂA.a e =-mnpBe e with m, =k "+ =
k,y m,y i(wt'+k1x)
(10) v, = (-kTAje + ik Be) e
k¥ i(w%+k1x)
(11) P, = ipw Ae e
My i(ut +k v) .
- 1 1 . 2 _ .2 1w
(12) c, =E, e e with u.” =k~ + =
k, i(w~t+k1x)
(13) g, = == (1A + B_@)
RTT,
(W) oy ===y

The quantity k1 can be determined by the condition that the
B.3 and E19

19 B1 and E1 can

determinant of the three homogeneous equations for A19
obtained from the equations 6,7 and 8, should vanish. A
then be expressed in terms ofr k1o

From the differential equations we get for u = 2 in a not too

complicated way the following results:

=5=

2k,y m.y (k1+m1)y 2i(wt+k1x)
(15) u, = (=2ik,Aje -mBye ° =(m +k)V e)e
2k1y m.y (k1+m1)y) 2i(wt+k1x)
(16) v, = (=2k1A2e +2ik, B,e *21k1We e
2k ¥, (ktm)y 2i(wt+k x)
(17) p, = (2iuwph, e +P e e
Y (k.+ u,)y (m,+ u,)y 2i(wt+k, x)
(18) e, = (E, e 2 . j. e ! YU e ! ! Je !
2 2 1 P
withP‘;,j,' and 52 known expressions in A,y B, and E, and m22 =
_ o 2 4 2iwp 2 _ 2 | 2iw
= hk1 + == and u," = Ek1 + 5=
RT Tw , 5
(19) 9 = = atc (02 - 2Za+c05 €4)
2i(wt+k1x)
(20) g, = Z2 e

From the four boundary conditions, the four unknown constants A2,
B,,E, and Z, can be determined.,
Obviously this is a painstaking job; even the boundary itself in an un=
known function, '

At this point the fast and accurate computer technique can be introduced.

b=

2, The Calculation Scheme

Before we describe how the computer technique can be usesd we want to
analyse the process for solving this problem,

This amounts in short to: inserting the formulae (9) to (10) into
the boundary conditions (5) until (8),

For each boundary condition the coefficients of the several unknown
quantities must be assembled and the resulting linear equations in these
quantities should be formed,

However, it turned out during the execution of some test programs,
that this device can not be used, without saying. The origin of the
difficulties is the restriction of the memory capacity of the used X!
computer,

We are forced to split up the boundary conditions in several parts,
so that the operations can be done for the different parts seperately.
The results obtained from these different parts are assembled afterwards
for each boundary condition,

It is obvious that this splitting up gives extra difficulties for the
administration. _

To clear up the situation we will treat in more detail the first and
easiest boundary condition (5).

Although the splitting up is not neccessary for this boundary condition
it will be done by way of example.

Let us formulate our purpose:

Calculate 22 as & linear combination of A2 and BQ“
(Note that E, does not occur in this boundary

condition)
We examine the following parts of the boundary conditions

. 3L . o1 14
Bi ¢ =% Cis =v and D1 ¢ u P

The "Second order program" which also treats this boundary
condition 1in this way, gives six intermediate results of the calculation
in an ordinary notation., These results, marked with the symbol comment
are reproduced in the Calculation program after the label
CALCULATION o

=T

The process which is followed in the "Second order program” is illustrated
by the following Calculation Scheme. (we use a short hand notation: 's"

meaning: so that we obtain the formuls)

1: Insert the formulae 9 to 20 into B1 -+ B2
2: Remove the brackets in B2 » B3, so that B3 is a sum of terms, and each
term is a product of known or unknown quantities

3¢ Collect the terms in B3 which are, apart from a numerical factor, the

same -+ Bl
(Thus k e+ 1wk, + A = (1+i)k.w + A,)
i(wt+k1x) R
L: Remove the terms in B4 which contain more than two factors e *B3,

This intermediate result is produced in the first comment part.
Insert the boundary y = z(x) in BS +B6
ky kg k12 a
(Thus e = e =1+k g+
i : ‘ 2
the series should be continued as far as is necessary)

Remove the brackets in B6 =+ BT

U
oo

+ o000

oo

Collect the terms of BT which are, apart from a numerical factor, the

co

same - B8

. . i +
8: Remove the terms of B8 which contaln more than two f‘ac‘corse:"(wt k1x)+39°

THis intermediate result is reproduced in the second comment part

. 2i(wt+k 1x)
9: Collect the coefficients (if any) of Z, e
n Ei(wt+k1x)
‘10 " 1" 1" 1" " A2 e
2i(wt+k1x)
1 1 1" 1" 1" 1" n B2 e

12 Collect the remaining second order terms.

From the results of 9, 10, 11 and 12 the program defines output in
the form of ALGOL statements, so that we are actually able to calculate
the coefficients of Zos Bpy B, and the remaining second order terms.

The specific form of these statements will be described later on.

The whole scheme is of course repeated for the remaining two parts

of the boundary conditions: C2 and D2,

«8=

We get in the same way two sequences of formulae C7,0.,,C9 and Di1,.00,D9
The third until the sixth above mentioned comment parts cbrrespond to M
the formulae C2, CQ, D5 and D9 respectively.

Since thejpro;ess/is sragght forward and very easy to follow for this
simple boundary condition we will not show it in more detail; the reader
can easily check the mentioned results given in the Calculation program.

Now, that the problem is decribed and the calculation scheme is given

we turn over to the ALGOL program.

==

3. The Storage and Input of formulae in ALGOL 60

Let us investigate the form of the formulae described above.
These formulae are build up with a set of quantities partly known
(ecgo w or kj) and partly unknown (evg. A2) s a set of exponentials
and a set of complex numbers, The operations which occur in these
formulae are the sum, the subtraction, the product, the division and the
differentiation with respect to x, y and t.
The subtraction of a quantity will be treated as the sum of the product
of this quantity with =1. The division occurs only as the division by

the known real quantities w and a + c., thus if we introduce the quantities

0
1/w and 1/(a+co) then the division can be turned over into a product.

) : ey
If the factors L i-and L '2 in formulae 6, 7 and 8 ane expanded in power

’L
series in %% , then these divisions are also eliminated.
We see therefore that the only essential operations are the sum and the
product, assuming that the differentiation is directly carried out.
We can describe this situation by saying that the formulae which occur in
our problem lie in an algebraic ring. This ring is composed of the complex
number field, to which a set of letters (in ALGOL notation identifiers) is
adjungated, These letters are given in the procedure bedy of AP of the
"Second order program' as the first actual parameter of the procedure
PONS. There are L4 of them beginning with "zero" and ending with "eiotplkx".
The physical meaning of these léetters can be inspected from the second
actual parameter of PCNS, which is a string; as string quotes the Math,
Centre versions { and } are used.
Thus e.g. the identifier RTGGAPC stands for the physical quantity

R, T, I'*® . o po m1y
RT = GAMMA/(a+cO) or —==== ; the identifier em!y stands for etmly or e 17,
0 .

We will call henceforth these L4 letters, simple terms.
The representation of a formula in the ring is of course not unique.
The original (physical) formula may be written in any way, in which also
derivatives occur.
The set of procedures for storing a formula is constructed in such a way

that first, the operations product and :sum= are binary operations,

=910=

second, the brackets around a sum occurring as a multiplicant in a formula
are removed and third, a possibly occurring derivative is replaced by a
formula equal to this derivative (in other words: the differentiation is

carried out).

Example: suppose %% = b+c then the formula a. %% is stored as

((ab)+(ac)), we placed the brackets to indicate that the operations are
binary. ’

Conclusion: the form of the formulae to be stored may be quite
general; the differentiation operator may occur in it but the restriction
is that the operations product and sum are used as binafy operations,

From the formulae of the before=going sections we see that the
complex numbers occur only in a product with a formula which contains at
least one simple term. We may also say that the formulae which we consider
are elements of the ring but not of the complex humber field.

According to the above remarks, a stored formula is a sum of products of
simple terms. A

To each such product we may attach a complex number, so that we obtain a
set of formulae large enough to include the formulae of sections 1 and 2.
The formulae of this set have a form which can be defined in the following

way, using Backus notation.

< simple term >3¢ = < identifier >
< complex number >:: = (< number > + 1 < number >)\
< simple product: > >:: = (< simple term >%< simple terms>) |
(< simple term >»< simple product: >)]
(< simple product >*< simple product)>)
< formula > :: = (x formula > + < formula>)|

< simple terms >|
< simple product >|

(< complex number >*< simple products >)

Let us now describe how the storage is actually performed., Assume
that to every formula and to every occurring complex number a non=negative
integer called the index is associated.

Let us moreover introduce the two negative integers called PLUS and ST

=] f=

(in the "Second order program" respectively equal to -1 and =2).
We see that each formula can be characterized by three numbers. One
number defining the type (sum, product or simple term) and two numbers
defining the two formulae of which the considered formula is built up,
if it is not a simple term.
It is therefore not surprising, that we use for the storage of the
formulae an integer array which has three array elements in each row.
This array will be called H and in the program the declaration of H is
H]@:k last, jS3J, where k last must be chosen large enough (see section 6).

For the storage of the complex numbers we use the real array HC,
declared by HC[ﬁskc last, lzé]; where kc last must also be chosen large
enough. A complex number R+iI, with R and I real, which has the index n
is stored such that HC [n,1]=R and HC En,2:l=I0

We shall now show, by means of the following table, how a formula
with index k is stored in the several cases.

Assume the formulae a and b have indexes ia and ib and the complex

number C has index n (>1)

[k, 1] k.2l H[k,3

a+b 1 PLUS i

a b
= a3 b i 1 i a and b must be simple
a b .
= Cwaxb i n i products or simple terms
a b Hc[n,7] = R(C), HC[n,3]=
= I(C).
f= a undefined ST undefined a must be a simple term

From this table we see that if H[k,2] is positive then the formula
is automatically a simple product to which a complex number with index n
is attached in the case H[k,2] > 1, but if we define HC[1,1] = 1 and
HC[1,2] = 0, then we can say that in the case H[k,2] = 1, the complex
number 1 is attached to the simple product.
A consequence of attaching a complex number to a simple product is that
we can not multiply a complex number with a simple term, say s. This
difficulty is however easily overcome when we use the simple term "one"
which is introduced especially for this difficulty. ''one'" is used as a

unit element in the ring, so that we may form the product of s with "one"

=12=

and attach to this product the complex number.
Some times however, the same procedure is also followed if we want to
multiply a simple product say s, with a complex number C. This is done in
the case that s may not be altered (since it is also used elsewhere in
the program), then a new simple product is formed of s and "one" and to
this simple product a new complex number is attached. This new complex
number is the product of C with the originally to s attached complex number.
Note, that we adopt the convention that there is only one complex number
attached to a simple product. Thus if we multiply 10(a.b) with 20(c.d) then
the result is 200((a.b).(c.d)) and not (10(a.b)).(20(c.d)). It is easily
seen however, that it is not allowed to remove the two numbers 10 and 20
from the system, since this can damage other formulae using the simple
product 10(a.b), so that we actually store the formula
10 20
200((a"b). (cta))

in which the arrows have an obvious meaning: the numbers 10 and 20 remain
in the system but they will not be used in this formula.

The simple term "zero" is used within the differentiating procedure,
where the derivative of a éonstant is set equal to the simple term "zero".

"

For convenience sake the indexes of "zero" and "one'" are chosen tc be equal

to 0 and 1 respectively.

Let us illustrate the description given until so far with an example.
We want to store the formula f = u1+2iw, where u, is given in (9), thus
f is equal to

k.y i(wt+k3x) m.y i(wt+k?x)

-1k1A1 e e - m1B1 e e + 21w,

In the "Second order program" the occurring simple terms have the following

k
indexes (see the procedure AP). w:2, k1zh, mis5, A,:9, B,:10, e W3t
m,y i(wt+k,x) ‘
e :38 and e 143,

Assumé that the complex numbers =i, =1 and 2i have the indexes 2, 3 and 4,

then

~13=

Hc[2,7] =0, HC[,2] = -1,
HC B,1] ==1, HC[3,2]= o,
i Bb,1]=0, mHCc[L,2]= 2

The formulas f may then be stored according to the following table:

k H[E,T] Hk,2] H[E,3]

k?y
LY 9 1 37 Ae
k1y
L5 L 2 Lh -ik A e
ﬂjy
L6 10 1 38 Bje
m1y
L7 5 3 L6 -m,B.e
' kjy i(wt+k?x)
48 L5 2 43 nik1A1e e
k1y i(wt+k1x)
L9 L7 3 43 -m,B.e e
50 48 PLUS L9 = u,
51 1 L 2 = 2iw
52 50 PLUS 51 =7

and the index of f is equal to 52,
By aid of this example we can also show the use of the input procedures
P(i,J), S(i,J) and PC(a1,a24).
P and S store the product respectively the sum of two formulae with indexes
i and j and PC multiplies the complex number with real part al and
imaginary part a2 to a formula with index i. Ul and f are stored by the
following statements
wl: = P(S(PC(0,-1, P(k1, P(AT, ekiy))),

PC(=1,0, P(mi, P(B1, emly)))), eiotplkx);
fs = sS(@1, Pc(0,2, OMEGA));

3

The correspondence between these statements and the formulae for u, and f
is easily seen.

It is of great importance that this correspondence is direct, since
the translation of the formula written in ordinary notation into statements
of the above kind, is a source of errors.

We shall now describe in more detail the procedures P, S and PC,

~1ha

It should be remarked that the non=local integers k and kc are used as
pointers for the arrays H and HC indicating the next free places in these
arrays.

The integer procedure P(i,j) stores the product of two formulae with
indexes 1 and j. The index of the stored result is assigned to P ifselfo
Notice that we said: P stores the product of two formulae and not: two
simple products. In storing a formula,P removes the brackets around a sum,
occurring as a factor. If i and jare indexes of simple products then P
attaches the product of the two complex numbers attached to the multi=
plicants, to the newly formed simple product. However, the already
attached complex numbers sre not removed since as is already mentioned
above, it is possible that one or both simple products are used somewhere
else in the program,

Of course, attaching the product of the two complex numbers to the
product of i and j is not necessary, but our definition of a formula
requires it and it has the advantage that we can directly get the attached
complex number of a simple product.

The integer procedure S(i,j) stores the sum of the formulae with
indexes © and j. The index of the result is assigned to S itself,

The integer procedure PC(al, a2, i) stores the product of the complex
number, with real part al and imaginery part a2, with the formula with
index i, The index of the stored formula is assigned to P itself, If i
corresponds to a sum, then the complex number is multiplied with both
summands and the resulting formula is a new sum with an index unequal to i,
However, it is possible that the formula with index i occurs only once in
the process, so that we may change it without disturbing the future
calculation; and this means saving of storage space. We may ask therefore,
when it is not allowed to change a formula and how this can be seen from
the index, The answer to this question is very easy as we will see., The
set of formulae which we encounter in our system can be divided in two
sets, One set consists of the formulae such as Uys Uys Viy Vo €8Co, which

are used in all the boundary conditions, these formulae will be called basic,

It is therefore obvious, that these formulae are stored earlier then the

formulae corresponding to the boundary conditions. The way in: which the

=15

storage of the formulae is performed, is such that the index of
consecutively stored formulae, increases, Thus, the indexes of the
basic formulae are lower than the indexes of the other formulae and
we can indicate a sharp point, for which the non-local integer K is
used, below which a formula is basicj i.e, if i < K then the formula
with index i is basic, and may not be changed.

PC investigates, by means of this device, if a formula is basic
or not, if it is basic a completely new formula is constructed and
if it is not basic the formula is changed itself (i.e, the formula
keeps the same index i, but the data given in H[i,fl, H i,é] and
H[i,él are properly changed),

Both procedures P and PC use the integer procedure CP(i,j)
which calculates the product of two complex numbers with indexes
i and j. The result is stored in HC, the index of this result is
assigned to CP itself,

We shall now deal with the representation of the simple terms .
The indexes of them are of course a priori arbitrary. But for short=
cutting several procedures we order the values of the integers ekly,
emly, emuly, ek2y, em2y, emuly and eiotplkx such, that this sequence
is increasing with succeeding integers. The same restriction is
posed on the sequence ki1, mi, mul, m2 and mu2, Moreover the integer
eiotplkx is the largest of all indexes of simple terms,

It is perhaps superfluous to say that the two mentioned sequences
of integers correspond to the indexes of the simple terms

k ei(wt-i-kix)

e 1y, coog and k_lg coog H

We have two kinds of simple terﬁs in our systems namely, a simple
term corresponding to a real quantity (such as OMEGA or w) and a simple
term corresponding to a complex quantity (such as k1),

The information about the two kinds is stored in H[k,@] where k
is the index of the simple term, When the simple term is real then
H[k,1] = -2 else H[k,T] = 1.

The procedure AP(i) defines, when i < O the values of the indexes
of the simple terms., It is easily seen that this is done in correspondence

with the above remarks about the ordering.

=16=

When however i > O ,then AP defines the output form of the simple term
"1, this output is given between the string quotes in the procedure
PONS,

The M.C, standard procedure PUTEXT1(st) cares for the punching of the

string st in a paper tape.

=17=

4, Proceduresfor more detailed investigations

Until so far the description of the system was rather general.
There are much more problems for which we can use the same procedures
P, S, PC and AP (with other simple terms of course).

The representation of a formula in the array H is such, that the
input procedures can be made very simple. A construction of a
procedure for differentiating a formula can also be easily based upon
this representation; we do this for the procedure DIFF(n,i), but using
also, for shortness sake, the special ordering of the simple terms
as described before, The integer procedure DIFF(n,i) differentiates
a formula with index i with respect to x, y or t dependent on whether
n equals 1, 2 or 3 resp. The index of the stored formula is assigned
to DIFF itself,

The representation in the array H is very suited for the input
and differentiation procedures, but not for more deailed investigations
of a formula, therefore we introduce another representation.

As we have seen, each formula is a sum of, say, 1. simple products.

0

Let these be ordered from 1 to loc The i1=th simple product is a product

of, say, 1. simple terms, Let the indexes of these simple terms be

given by

- aisp coog aigli with 1 = 19 coo g loo

We can store the numbers 1 l19 coog 1, 1n the integer array L[bs@]

0°® lo
(where N has to be chosen large enough, in our case N = 50 is
sufficient). We set L[i] =1, (1 =0, o000y 10)0 The index 8;,; cen be
stored in the integer array a, declared by a{ﬁsl{b],O:Ma%] with

Max = maximum L i]g and ve set a[i,i] =a; 3 for i > 0, Moreover the
i=1,000,L[0 s
index of the complex number, attached to the i=th simple product, is

assigned to a[ﬁgQ]$
The transfer of a formula with index i from the representation
in the array H to the representation in the arraysa and L is governed

by the procedure BT(i,a,L,fi).

=18=

This procedure should be called twice, the first time with the

Boolean fi = false (then the arraybounds of a i.e, the array L is

calculated) and the second time with fi = true (then the array a is
calculated),

The redundant factors "one" and terms "zero" are removed by the

procedure BT, It is used within the procedure SUBCALC,

b1,

h020

bo3,

Lok,

k.5,

We shall now discuss the other procedures in more or less detail,
The procedure OUTPUT1(L,a) punches a formula represented in the
arrays a and L, in the ordinary notation, in the output paper tape.
The procedure SUBCALC(i,c) regulates the different stages of the
calculation scheme of section 2,

The stages 3, 4, 7 and 8 are carried out by the procedure CAL,

the stage 5 is carried out by the procedure SUBSTITUTE and the
stages 9 to 12 are carried out by the procedure PUN,

The procedure CAL(a,L) rearranges the array in such a way that
a[i,i] < a[},j+i], for j = 1, oo0, L[i]=1,

Simple products consisting of the same simple terms, apart from

a numerical factor, are summed,

The array a is rearranged ..another time, such that simpie products
with the attached complex number equal to zero, or containing more
than two factors ei(wt+k1x)
The procedure SUBSTITUTE(fi,a,L) substitutes, when fi = true the

boundary y = z(x) in the formula, represented in the array a and L.

, are dropped.

When fi = false the formula is not changed.

The possibly new formula is stored in the array H and possibly new
introduced brackets are removed. With fi = false SUBSTITUTE transfers
the formula from the representation in a and L into the representation
in He

The description of the procedures PUN and PROD is given in the course

of the following section.

=19

5., Computation with complex numbers

Before we can describe the procedures PUN and PROD, we have to
consider the way in which the output is desired.

Since we are interested in numerical results, an ALGOL program
(the "Calculation program" reproduced in section 6), based upon the
formulae derived with the here-described method, has to be constructed,

These formulae are built up with complex numbers, it is therefore

not obvious how to treat them in ALGOL. Let us, by way of example,
(a + b)c

d °
If a, b, ¢ and d are real numbers this calculation is carried out

want to calculate x from the formula x =

by the statement x: = (a + b) * c/d, assuming that a, b, c, d and x
are declared real and that a, b, ¢ and d have already got values.
Now however a, b, ¢ and d are complex numbers.

We constructed the procedures P, Q, S, T, J, PRC and U to be
able to write down one statement which effectuates the calculation
of X,

In this example the statement would be U(x,Q(P(S(T(a),T(b)),T(c)),T(d)))
in which the complex numbers constituting the statement must be stored in
the real arrays x, a, b, ¢, d [;1gé]o
The real and imaginary parts are stored in the array elements with index 1
and 2 respectively,

The analogy with the expression for real numbers becomes apparent,
if we remark that the procedures P, Q and S are used for the calculation
of a product, a quotient and a sum respectively and the procedure U for
assigning the calculated result to x in this case. The role of T will be
described later,

For the calculation we use the real array H[}:N,lsé], where N should
be chosen large enough (it can be seen from the following that N+1 should
be chosen equal to the maximum number of right=handed brackets, placed
one after another in the relevant statements).

We have chosen the letter H for the array which is perhaps somewhat
confusing, since the same letter is used for the array in which formulae

are stored, It has however the advantage that the correspondence of both

=20=

types of operations, storage of formulae and computations with complex
numbers, is showed very well,

In the array H the intermediate results of the calculations are
stored and the final results are stored, with the aid of the procedure U,
in the particular arrays representing the several complex numbers (x in
the example above), This is in contrast to the use of the array H for
representing formulae; where the results themselves are stored in H,

Before we can calculate with the complex numbers they have to be
brought in the array H., This is done by the integer procedure T(a), T
stores the contents of the array a (representing the complex number a,
such that a[f] and a[é] are equal to the real and imaginary part respect-
ively), into the next free places of the array H, say H[k,1| and H[kséj;
the integer k is assigned to T itself,

The mentioned integer k is a non=local integer of the program and indicates
at any time the next free places of H. At the beginning of the program k
must be set equal to zero., During the execution of a computation, k
augments and diminishes automatically, so that at the end of a computation
k becomes equal to zero again.

The definition of the integer procedures P, Q, S, PRC and J in the
"Calculation program", is such that the index of the place in H, where the
result of the calculation is stored, is assigned to the procedure identifiers
themselves,

We remark that the same way is followed for the integer procedures
P, S, PC and DIFF of the "second order program", This is of course a
consequence from the fact that the administrations of the two processes,
storage of formulae and computation with complex numbers, are identical,

We shall now give the meaning of the procedures PRC(a,;i) and J(al,a2);
PRC multiplies the complex number, stored in H[igi} and H[ﬁ,éj, with the
real number a3 J stores the complex number al + ia2 in the array H (where
a1l and a2 are real numbers),

Besides the procedures mentioned we use the procedure FLOPC, defining
the output of a complex number,

The procedures Ul and Sum are especially made for the connexion with the

"Second order program",

=27 =

Before we can describe these procedures we have to return to the "Second
order program',

In section 2 we discussed the way in which the boundary conditions
are split up. Each part of it gives a formula, via the stages 1 to 8 of
the Calculation scheme, from which the desired output can be obtained.

Evidently this output (ALGOL statements) is given in the form
discussed above,

Let us take a look, for instance, at the coefficient of

WEHKX) _ o ohi(OMEGA t + kix)eti(OMEGA t + kix)

Z2e(
in formula B9 (see the second comment part behind the label
CALCULATION in the "Calculation program") this coefficient is
(0 + 21)OMEGA.
The numerical value of this coefficient is calculated by the state=
ment
PRC(OMEGA, J(0,2)).

(Note that OMEGA is a real number).
The result of the calculation is stored in the array H, but since H is
used for intermediate results only, we have to extract this result from
H and store it somewhere else. For this purpose we use the array elements
of H with index from 51 to 100 (this is possible since the first 50
places of H are enough for the calculation).

Thus the complex number is restored in H and gets an index between
51 and 100, Of course this index should be stored itself somewhere, since
we have to remember that the calculated number is a coefficient of Z_.

2
Therefore we introduce the integer arrays

cz2, cE2[1:1], ca2, cB2[1:4], c2[1:28]

and we store the index of the coefficient of 22 in the array element
cz2[1]. (It is the first coefficient of Z

o Which we encounter),
Evidently, indexes of coefficients of E , A, and B, are stored in the

2% "2 2
arrays CE2, CA2 and CB2 resp., and the index of a remaining second order

term is stored in C2.

=22

The transfer of the intermediate result of the calculation (stored
in H with index lower than 51) to the array elements of H with indexes
greater than 50, and the storage of the index into one of the arrays
CZ2, CE2, CA2, CB2 or C2 is done by the procedure Ul (in the
"Calculation program” of course),

In the example above, the procedures PUN and PROD (of the "Second

order program") define the following output
ut(cz2[1], PRC(OMEGA, J(+0, +,200, 0+ 1)))3

(in which +:200,, + 1 means simply +2),
For the sake of illustration we give the following tabel, from which
the effect of this statement can be inspected, if we assume that

w = OMEGA = 300,

k H[ksi] H[ksé]

J 1 0 2
PRC 1 0 600
U1 51 0 600 and cz2[1] = 51,

When the "Second order program" comes across another coefficient
of Z2 then it should produce output of the form U1(CZZ[2J, soo o
Therefore we have to administrate how many times a coefficient of Z2
did occur already in a boundary condition. this is done with the help of
the integer array ¢ occuring as a formal parameter in the procedures
SUBCALC and PUN, The actual parameter is the integer array cc[}géjo
From the definition of the procedure PUN it can be seen that
e[1], <o, c[8] correspond to the coefficients of A1, B1, E1, A2, B2,
Z2, E2 and the remaining second order terms respectively.
(Remark: The "Second order program" was also used to check the first
order solution, therefore A1, B1 and E1 do also occur here., For shortness
sake, however, we did not reproduce the output of the first order terms
and the reader may thus assume that XEEN(2) # 2 (7-=th line of the
procedure PUN)).

The administration is very simple.

First all c[i} are set equal to zero and when the procedure PUN comes

=23=

across a second order term, the corresponding array element of ¢ is
augmented by one; in the above case concerning a coefficient of Z2,
c[6] is augmented by one.

We are now able to describe the procedures PUN and PROD of the
"Second order program'" more accurately.
PUN(c,a,L) investigates a formula represented in the arrays a and L
according to stages 9 to 12 of the Calculation scheme of section 2,
(Of course the letter Z2 can be changed in the letter E2),
Each row of the array a is examined with respect to the type of it,
The relevant output is given i.e. the "heading" of an ALGOL statement
(in the above example:"u1(cz2[1],™.

Then the further output is defined by the procedure PROD(i,a,L).
This procedure gives the output of the i=th row of the array a, this
row is already slightly altered by the procedure PUN, which has set
equal to one the array elements, representing simple terms which may
not occur in the output, e.g. the simple terms A2 or eiotplkx.
PROD investigates, if the simple term represented by an array element,
is possibly a real quantity, then output is given in theform:
"PRC(" followed by the output of this simple term and a comma.
When the simple term is a complex quantity then PROD firstly
produces the output "P(T(", secondly it investigates if* this simple
term does occur more than once, If this is the case, then the output
of the simple term is followed by a number, indicating the number of
times this simple term occurs.
When the simple term occurs only once, then the output is given of this
simple term only.
Finally, PROD gives the output of the complex number attached to the
simple product and stored in the array elements HC[é[iQQ],{] and
HCE&[i,Q],é] in the form "J(coo4000)", where the dots must be replaced
by the relevant numbers,

Example: let the i=th row of the array a be given by
a[3,0] b(k1), a[i,3]
ali,l] 1 and HC[2,2]

the complex number 1 + 1/2 i), then PROD produces with the aid of the

2, a[i,T] = 2 (OMEGA), a[i,2] 5 (m1),

-5 (representing

]
1]
]

5 and a[i,S] = 1 with HCEE,‘%]

=2l

procedure AP the following output:
"PRC(OMEGA, P(T(k1), P(T(m1 2), J(+.100,, + 1, +,500,, + 0))))":

When the considered row is e.g. & 3rd coefficient of A2 then the
procedure PUN has already given the preceeding output
"U1(ca2[3]," and it closes the output with ");",

A consequence of doing things as described above is that we have
to introduce in the "Calculation program" besides the array mi1 also
the array m12, mi3, k12, k13, k1k, etc,

These arrays representing integral powers of mi, k1, etc, should be
calculated beforehand in the "Calculation program'. The advantage is
obvious: the "Calculation program'" becomes shorter and less time=

consuming,

We have seen, how the relevant output of a formula is produced,
This formula is a part of the boundary condition.
When the output of all the different parts of the boundary condition
is given, the several results should be assembled,
Let us see how this is done for the first boundary condition (5),
which is split up in three parts. The first part gives rise to one
CZ2 term, the second part to one CA2, one CB2 and five C2 terms and
the third part to another four C2 terms.
The procedures PUN and PROD produced the output by which the
"Calculation program" can calculate these several terms. The results
of these calculations are (indirectly) stored in the arrays CZ2, CA2,
CB2 and C2, These results must be summed, so that we can solve the
equation for Z2,
This equation is

72 = CZ2A2 s A2 + CZ2B2 3 B2 + CO0Z2

where the coefficients CZ2A2, CZ2B2 and COZ2 can be calculated from
the already stored results,
C0Z2 is firstly set equal to the sum of the terms belonging to CZ2,
The "Second order program'" gives therefore the following output:
u(coz2, sum(1, CZ2)); in which the, until now, undefined procedure Sum

occurs. The meaning of Sum is now evident: Sum calculates the sum of the

=25

complex numbers whose indexes are stored in CZ2, and via the procedure
U this sum is stored in the array CO0Z2,

Cenerally, Sum(i,a) stores into the next free places of the array H,
the sum of the complex numbers with indexes given by a[ﬂ@ 000y aEﬂo
The coefficients CZ2A2, CZ2B2 and COZ2 are now calculated by the
statements right after the label ASSEMBLAGE in the "Calculation
progranm' .

These statements are produced by the "Second order program" with the

help of the procedure PU,

One firal remark should conclude this section., After the investi=
gations of the first boundary condition, output is given in such a
form that the "Calculation program” can calculate the coefficients
CZ2A2, CZ2B2 and COZ2. Therefore we can set henceforth Z2 equal to
the formula CZ2A2 = A2 + CZ2B2 s B2 + C0Z2 so that in the calculation
of the following boundary conditions Z2 does not occur anymore.

The same procedure is followed for the second boundary condition (6)
from which E2 can be calculated in terms of A2 and B2,

In this way the boundary conditions (7) and (8) constitute two linear
equations in A2 and B2, These equations are solved in the "Calculation
program” after the last comment. The ALGOL statements for solving

these equations are not produced by the "Second order program'.

=26

6. The ALGOL programs

In this section we give the "Second order program" and the
"Calculation program',
In both programs a set of procedure identifiers is used which are not
declared, This set belongs to the set of standard functions for the
Mathematical Centre ALGOL system.
.We shall describe them shortly.

XEEN(i) ¢ an integer procedure assigning to its identifier
a number which can be brought into the machine

by the console,

PUTEXT1i(string) : a procedure, punching the actual string on the
output paper tape,
the symbols * and % are the M.C, representations

of string quotes,

PUTEXT 16tring) : is most easily described by:
procedure PUTEXTi(string); string string;
begin PUTEXTI('}); PUTEXT!(string); PUTEXM(f'%) end

PUTBIT(1i) ¢ a procedure punching the value of i (0 < i < 127)
as a heptade on the output paper tape,

PUNLCR ¢ a procedure punching a new line carriage return
symbol on the output paper tape.
PUSPACE(1) ; a procedure punching n space symbols on the output

&

paper tapes

RUNOUT 3 a procedure punching a piece of blank output paper
tape,
FLOP(i,j,n) : a procedure punching on the output paper tape the

number n in floating point representation; i signi=
ficant decimals behind the comma and j decimals

of the exponential part.

=2T=

ABSFIXP(i,j,n) : a procedure punching on the output paper tape the
absolute value of the number n in fixed point
representation; i decimals beforeand j decimals behind

the comma,

read s a real procedure assigning to its identifier the value

ofanumber punched on the input paper tape.

Besides these procedures the following symbol'is used : for =

Some data are perhaps of interest.

The calculation times for the "Second order program” and the "Calculation
program" were about one hour and 13 minute respectively. Both programs
had to be cut in two parts.

For the "Second order program” we chose k last and kc last (the lenghths
of the arrays H and HC) equal to 352 and 96 resp, It turned out that the
first 310 and 60 places of H and HC were actually needed.

The number of unused X1 storage words was about 300 (i.e. about 3 percent
of the total).

We may conclude therefore that the memory cgacity was rather critical.

=28=

begin comment Second order program;

integer kclast klast; kclast:= XEEN(1024x1023)/1024; klast:= XEEN(1023);

begin integer k, ke, K, KC, ul, vi, u2, v2, u, v, k1, ml, mul, m2, mu2,
CZ2A2, CZ2B2, ekly, emly, emuly, em2y, ek2y, emu2y, eiotplkx, Al, B1,
El, A2, B2, E2, Z2, Z1, Z, zero, one, ST, PLUS, OMEGA, EGO, PsSI,
PST, CST1, CST2, COZ2, CE2A2, CE2B2, COE2, RHO, RTGGAPC,
EGAPC, ETA, D, g, CNPA, GCCPA, GTCPA, AG, ekm2iok, pl, p2, cst,
cl, sigma0, sigmal, sigma2, z1, z2, c2;
array HC[l:kclast,1:2]; integer array H[0:klast,1:3]3

rocedure AP (i); value i; infeger i3
Eegin switch S:= S0, S1, S2, S3, S4, S5, S6, S7, S8, 89, Si0, Sii, S12,

S13, Si4, S15, Si6, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26,
S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, S40,
S41, S42, S43; procedure PONS (j,st); integer j; string st;

g_i < 0 then ’

begin j:= ki:= k + 1; Hlk,1}:= 13 H[k,2]:= ST end else

begin PUTEXT1(st); goto END end;

if 1 < 0 then "

Pegin ko= —1; ke:= 13 Ks= 03 KCs= 13 PLUS:= -13 ST:= -2: HC[1,1]:= 1;

HC[1,2]:= 0g goto SO
end else goto Sii+1 | S0: PONS(zero,40+);

ST: PONS(one,¢1}); S2: PONS(OMEGA ,{OMEGA});
S3: PONS(EGO,4OMEGAA(-1)}); S4: PONS(k1 <4k14);

S5: PONS(m14m1}); " S6: PONS(mul,&mul})s

S7: PONS(m2,<m23}); S8: PONS(mu2,{mu2¥);

S9: PONS(ALAL}); S10; PONS(B1,4BL});

S11: PONS(E1,4E1}); S12: PONS(A2,4A2});

S13: PONS(B2,4B23}); S14: PONS(E2.{E2%);

S15: PONS(Z2,.4Z2}); S16: PONS(CZ2A2,4CZ2A2});
S17: PONS(CZ2B24CZ2B2}); S18: PONS(PSI,4PSH);

S19: PONS(PST {PST}); S20: PONS(CST1,£CST1#);
S21: PONS(CST2,4CST2}); S22: PONS(COZ24C0Z2});
S23: PONS(CE2A2,4CE2A2}); S24: PONS(CE2B2,4CE2B2});
S25: PONS(COE2,4COE2})s S26: PONS(RHO4RHO});

S27: PONS(RTGGAPC 4RTXGAMMA /(a+c0)});

S28: PONS(EGAPC,41/(a+c0)}); S29: PONS(ETALETAY);

S30: PONS(g4gh); ~ S31: PONS(CNPA 4(a+c0)});

S32: PONs(GccPA,iGAMMAxcox(amO)}); o

$33: PONS(GTCPA.{GAMMAX(2xc0+2a)})s S34: PONS(AG,4GAMMAXa})s

S35: PONS(D,4D#); S36: PONS(sigma04SIGMA});
S37: PONS(ekly dedklyt); S38: PONS(emly deAmlyt)s
S39: PONS(emulyfeAmuly})s S40: PONS(ek2yehk2yt)s
S41: PONS(em2y,deAm2y); S42: PONS(emu2y,feAmu2y)s
$43: PONS(eiotplkx,deAl(OMEGA t + k1 x)});

END: end;

rocedure comment;

Ee&n 1nfeger° is ggz: f= 122,14,115,14,70,14,84,14,84,14,117,14,69,14,35,16
do PUTBIT(i)

end; |

procedure PS; begin PUNLCR; PUSPACE(8) end;

=29=
comment Continuation of Second order programj;

infeger procedure P (i,j); value i,j; integer i,is

ifi=0V]=0 then P:= 0 else ‘

il H[i,2] = PLUS then P:= S(P(HIi,11,j).P(H[i,31.j)) else

T H[j,2] = PLUS then P:= S(P(i,H[j,1]).P(,H[,3]) else

begin P:= k:= k + 13 Hlk,1]:= i; H[k,3]:= j; H[k,2]:= if H[i,2] < 1 then

_-%T-l H[j,2] < 1 then 1 else H[i,2]) else if H[j,2] < 1 then HI[{,2] élse
CP(H[2LAG.2T - T - -

integer procedure S(i,j); value i,j; integer i,j:

begin S:= k:= k + 13 H[k,I[:= i3 HIk,2 l:= PLUS; H[k,3]:= j end;

integer procedure CP(i,j); value i,j; integer 1i,j3

begin real a; CP:= kc:= ke + 13 a:= HC[i,1] x HC[j,1] - HC[i,2] x HCI[j,2];
HC[kc,2]:= HCI[i,1] x HC[j,2] + HC[i,2] x HC[j,1]; HC[kc,1]:= a

end;

Infeger procedure PC (al,a2,i); value i3 real al, a2; integer is

I HI[1,3] = PLUS then -

Pegin if i < K then PC:= S(PC(al,a2,Hli,1)),PC(al,22,Hl1,3]) else
begin H[i,1]l:= PC(al,a2,H[i,1]); H[i,3]:= PC(al,a2,H[i,3]); PC:= i end

end else '

begin if i < K V H[i,2] = ST then i:= P(one,i); PC:= i3 if i = 0 then
ofo ENDj ke:= ke + 13 HCIKC,1k= al; HC[ke,2]:= a2; 1f H[1,2]> 1 then
begin kc:= ke - 13 Hli,2]:= CP(kc+1,H[i,2]) end else H[I;2]:= kc;

integer procedure DIFF (n,i); value n,is integer n,i;
begin Integer j; integer array GiiilL:2];

rocedure DIFFD(i) s value i; integer is

if H[,2] = ST then

begin if i > ekly A (n 4 2 = 1 = eiotplkx) then
begin j:= j + 13 diff(jl:= i end ‘
end else begin DIFFP(H[i,1]); DIFFP(H[i,3]) end;
I H[{,2T = PLUS then DIFF:= S(DIFF(n,H[i,1]],DIFF(n,H[i,3]) else
begin j:= 03 DIFFP({); DIFF:= P(if j = 0 then 0 else if n = 2 then
if j = 2 then S(diff[1] - ekly + ki1, difff2] - ekly + k1) els€
il diff[1] = ek2y then PC(2,0,k1) else diff[1] - ekly + k1 — 31"ff[1]i§k2y)
else if n = 1 then (if j = 1 then PC(0,1,k1) else PC(0,2.k1))
else (if j = 1 fhen DC(0,1,0MEGA) else PC(3.3,0MEGA)),i)
end ndy — |
procedure OUTPUTI(L, a); integer array L, aj
begin integer i, j; for i:= 1 step 1 until L[0] do
begin PS; if ali,0] > 1 then -
begin PUTEXT1({(}); FLOP(3,1,HC[a[i,01,1]); PUTEXT1 + ix});
FLOP(3,1,HC[ali,0],2]); PUTEXT1({)}) ‘
end: for j:= 1 step 1 until L[i] do
begin AP(ali,jll; PUTEXTL(*$) end;
71+ L[0] then PUTEXT1({+) —
end; if L{0] =70 then PUTEXTL({0%})
end;

comment Continuation of Second order programj;
procedure BT (i,a,L.fi); value i; integer i; Boolean fi; integer array a,L;
begin integer 1, 11; Ert)ceaure BTI1 hj; value 13 integer 1;
}L% Hliﬁi %7 PLUS g_lgg)
begin 1:= 1 + 13 11:= 03 OT(i); if 11 > 0 then
begin L[1]:= 113 if fi then a[l,0]:= if H[T,2T < 0 then 1 else H[i,2] end
end elSe begin BTI(H[, T BT1(H[i,3]) end;

procedure OT (i); integer is
begin procedure ‘OTliiE; integer i3
egin }_ﬁ_}'f I"iligzi = ST A1 5 one then
begin if i = 0 then goto ENDj Ii:= 11 + 1; if fi then a[l,l1]:= i end
else if 1 + one then begin OT1(H[i,1]); OT1{H[,3T end -
end; OTI(i); if 11 =0 fhen begin 11:= 13 if fi then a[l,11):= one end;
goto As END: Lle=1 - 13 11:= 0
A: end; 1:= 03 BT1(i); L[0]:= 1
end; |
procedure SUBCALC(i,c); integer i; integer array c;
begin integer n,j,il,i2; integer array Llézgﬁ]g' il:= i3 i2:= 0;
A: BT(1.H,L,, false); n:= if LI0] = 0 then 0 else L[1]; for j:= 2 step 1
until L[0] do begin if n'< L[j] then n:= L[§T end; -
begin integer array all:L[01,0:n]; BT(il,a,L.tTUe);
k= K3 CAL(a,L); if i2 = 1 then goto B; i2:= 13
il:= SUBSTITUTE(true,a,L); goto A; B: PUN(c,a,L);
END: end
__"‘I‘?d’ ()
rocedure CAL (a, L); integer array a, L:
begin integer i, il, i; procerﬁuré_CU%/I;
begin integer k; ‘£a|jgol = 0 then goto END;
if L[] % L[j] then goto END; for k:= 1 step 1 until L[i] do
begin if ali,k]F al j%?]“t_gsa golo END en'a':%i a(f,07> KC Then
T:= a[f,0] else il:= ke:= ke + 13 HC[I,1]:= HC[ali,0],1] + HClalj,0},1]:
HC[i1,2]:= AClali,0],2] + HC[a[j,01,2]5 ali,0]:= il; a[j,01:= 03
if abs(HC[il,1])+abs(HC[i1,2]) < ,~10 then ali,0]:= 0
END: end; -
for i:=1 step 1 until L[0] do
begin A: for il:= 1 step 1 until L[i] - 1 do
egin g?[i,il[] >]a 1,51+1]] then s o :
egin je= ali,il]; ali,ille= ali,il+1l; ali,il+1]:= j; goto A end
end ends for i:= 1 step 1 until L[0] - 1 do for j:=]i+%“"_§jﬁg T until L[0]
do COM; Tor i:= 1 ﬁ 1unfil nlo] do ~
begin if LT > 3 then -
egin if a[i;L{i]F2T = eiotplkx then a[i,0]:= 0 end
ends il:= 1; for i:= 1 step 1 until 1.[0] do

begin if il 4+ 1 A ali,0 then , o _
egin for j:= 0 step 1 until 1.i) do afil,j]e= ali,jly L[1l)= 1,01
1E%z= il + 1

end else if a[i,0] 4 0 then il:= il + 1
end; L[0J:= T1 - 1; il:= kcj j:= 03 for i:= 1 step 1 until L[0] do
begin if a[i,0] > KC then
%egn ke:= ke + 13 HClke,1]:= HC[ali,0],1]; HC[ke,2]:= HClali,0],2] end

end;

comment Continuation of Second order programj
~ke:= KC3 for i:= 1 step 1 until L[0] do
begin if alf;0] > KC then _
"“‘%‘“‘e in je= j+13 ali,0= kes= ke+l; HClke,1l:= HC[il+j,1];
HClke,2]:= HC[i1+j,2]
end
end; if XEEN(1024) = 1024 then

begin RUNOUT; PS; comment; OUTPUT1(L,a); PUTEXT1({s}); RUNOUT
end end; - -

Integer procedure SUBSTITUTE(fi,a,L); Boolean fi; integer array a, L
begin integer i,]; integer procedure prod(i); integer i3
begin integer j,p.e,bs p:= one; e:= -13 b= if ali,L[i]-1] = eiotplkx then

1 else 0; for j:= 1 step 1 until L[i] do
begin if fi then
begin if ali,j] > ekly A a[i,j] < emuly A b = 0 then
e:= (ekly - ali,j] - k1) x e else if a[i,j] < eKly V ali,j] > emu2y
then p:= P(p,ali,jl) ‘ -
end else p:= P(p.ali.j])
end; if ali,0] > 1 then p:= PC(HC[a[i,0],1],HC[ali,0],21,p);
if € =70 then p:= P(p,S(one,P(e,z1))); prod:= p
e__ni? if LioT=0 then begin SUBSTITUTE:= 03 goto END end; j:= prod(1);
for i:= 2 siep 1 until TI0] do j:= S(j,prod(i)); SUBSTITUTE:= j; ‘
END: end; I -

procedure PUN(c,a,L); integer array c,a,L;

begin integer i,j; procedure PU(n,st); integer n; string st;
begin ali,jl:= +13 clnl:= cln] + 13 PS; PUTEXTI(st); ABSFIXP(2,0,c[n));
PUTEXT1({].$)s PROD(i,a,L); PUTEXT1({))5 j:= Li]
end; for i:= 1 step 1 until L[0] do
begin ali,L[i]l:= 1; if ali,Lli]-1] F eiotplkx then
begin if XEEN(2) = 2 then
Eesin for j:= 1 stepT until L[i] - 1 do
"%“e@:n it afi,jl= A1 then PU(1,4U1(CA1[}) else
if_ali,j] = B1 then PU(ZgiUl(CBl) else
it ali,jl = E1 Then PUBUL(CEL[) —
end end end else -
begin ali,Lli]-1]:= 13 for j:= 1 step 1 until L[i] - 2 do
"‘%““ egin if ali,j] = A2 Then PU4ZUL(CAZT}) else
if ali,j] = B2 Then PU(5§U1(0132) else

i ali,j] = z2 then PU(6,5UL(CZ2[}) else
if ali,j] = E2 then PU(74UL(CE2[}) else

if § = L[i] - 2 then Pbegin j:= j + 13 PU(SIU1(C2[}) end

end end end end; - '

rocedure PROD(i,a,L); value i3 integer i; integer array a, L;
Eegin integer j, r0, rl, p, p0, q; integer array RO, Ril1:L[i]l;
r0:="11:= p:= p0:= oz= 03 for j:= 1 step T until L[i] do
begin if ali,j] 4 1 then -

Eegin if H[a[i,jl,IT = -2 then begin r0:= r0 + 13 RO[r0]:= ali,j] end
else begin rl:= rl + 13 R1l[rl]:= ali,j] end
end end; if r0 > 0 then
begin PUTEXT1(PRCTH; AP(RO[1));

comment Continuation of Second order programj;
" Tor 3:= 2 step 1 until r0 do
Begin PUTEXT1({ X)3 AP(RO[j]) end; PUTEXT1({3})
ends for je= 1 step 1 until r1 do -
egin if R1[j] = p0 then p:= p + 1 else
“‘%‘1"@ in if p > 1 then ABSFIXP(1,0,p); if j + 1 then PUTEXT1({).});
TEXT1EPITTH: AP(R1[§]): q:= q + 13 p0:= Ri[jl; p:= 1 *
end ends if p > 1 then ABSFIXP(1,0,p); if r1 > 0 then PUTEXT1({)});
PUTEXTIJIW); if ali,0] = 1 then PUTEXT1({1,04) else "
begin FLOP(3,1,HC[ali,0],1]); PUTEXT1({,}); FLOP(3,1,HC[a[i,0],2]) end;
for J:= (i r0 > 0 then -1 else 0) step 1 until q do PUTEXT1(}})
end; ‘ o

BEGIN of PROGRAM: RUNOUT;: AP(-1); HLOMEGA,1]:= H[EGO,1]:=
H[RHO.1l:= H[RTGGAPC,1]:= H[EGAPC,1]:= H[sigma0,1]:=H[ETA,1]:=
H[g,1]:= H[CNPA,1]:= H[GCCPA,1]:= H[GTCPA,1]:= H[D,1]:= H[AG,1]:= -2
ul:= P(S(PC(0,-1,P(k1,P(Al,ekly))),PC(-1,0,P(ml,P(B1,emly)))),eiotplkx);
vl:= P(S(PC(-1,0,P(k1,P(Al,ekly))),PC(0,1,P(kl,P(B1,emly)))),ceiotplkx)s
ekm?2iok:= P(ekly,P(emly,P(eiotplkx,eiotplkx)))s N "
u2:= S(P(S(PC(0,-2,P(k1,P(A2,ek2y))),PC(~1,0,P(m2,P(B2,em2y)))),

P(eiotplkx,eiotplkx)),PC(-1,0,P(S(ml,k1),P(PSI,ekm2iok))));
v2:= S(P(S(PC(-2,0,P(k1,P(A2,ek2y))),PC(0,2,P(kl,P(B2,em2y)))),
P(eiotplkx,eiotplkx)),PC(0,2,P(kl,P(PSI,ekm?2iok)))); ‘
z1:= P(PC(0,~1,P(EGO,S(PC(-1,0,P(k1,A1)),PC(0,1,P(k1,B1))))),eiotplkx);
pl:= PC(0,1,P(RHO,P(OMEGA,P(Al,P(ekly,eiotplkx))))); ‘
p2:= S(PC(0,2,P(RHO,P(OMEGA,P(A2,P(ek2y,P(eiotplkx,eiotplkx)))))),
P(PST.ekm2iok)); v:= S(vi,v2): us= S(ul,u2); B
cst:= P(S(P(CST1,P(ekly,emuly)),P(CST2,P(emly,emuly))),
P(eiotplkx,eiotplkx)); cl:= P(E1l,P(emuly,eiotplkx));
sigmal:= PC(-1,0,P(RTGGAPC,cl)); K:= k3 KC:= kc;
begin integer i, K1, KC1; integer array cc[1:8];
procedure SI (i); integer i3 Eegin SUBCALC(i,cc); k:= K3 ke:= KC ends
rocedure PU (stl,n,st2,st3); integer n; string stl,st2,st3;
begin PS; PUTEXT1(stl)s if cc[n] = 0 m
‘“‘%“"e in PUTEXT1(4J(0,0)4); goto END end; PUTEXT1({Sum(});
Kﬁ?mp(zgogcc[n}); PUTE%TT(*;.L); PUTEXT1(st2); PUTEXT1({)3);
END: PUTEXT1(st3) ‘
end;
for i:= 1,2,3,4,5,6,7,8 do cclil:= 0;
BCI: SI(DIFF(3,S(z1,P(ZZ,P(eiotplkx,eiotplkx))))); SI(PC(-1,0,v));
SI(P(ul,DIFF(1,21))); PUH:U(COZ&;F,&ECZQ:{»Q{);{»); B
ASSEMBLAGE: o

PUEU(CZ2A‘29Q(PRC(—§D49 CAz%,i)QT(COZQ)))igs ‘

PUU(CZ2B2,Q(PRC(-1:$,5,4CB2%,<),T(C0OZ2)))

PURU(COZ2,Q(PRC(-1,1,84C24,4).T(COZ2)))3

z2:= P(S(P(CZ2A2,A2),S(P(CZ2B2,B2),C0OZ2)),P(eiotplkx,eiotplkx))s

Kl:= k; KCl:= kes for i= 1,2,3,4,5,6,7,8 do cclil:= 05 i:= 13
AA;° c2:= S(P(E2,P(emu2y,P(eiotplkx,eiotplkx))),cst);

sigma2:= PC(-1 ,,O,P(RTGGAPC,S(CLPC(—.5,0,P(EGAPC,P(01,Cl))))))s

«33=

comment Continuation of Second order program;

“K:="k; KC:= kec;

BC2:
SI(P(ETA,PC(2,0,P(DIFF(1,2z1),S(DIFF(2,v1),PC(-1,0,DIFF(1,ul)))))));
SI(P(ETA,S(DIFF(;‘Z,u) DIFF(1,v)))); SI(PC(-1,0,DIFF(1,S(sigmal,sigma2))));
SI(PC(-1,0,P(DIFF(1,21), DIFF(2,5igma1))));

PU(U(COEZ,:{> 7 <}:CE2:’(>,J;) Hs
PU(CU(CE2A2,Q(PRC(-1%,4,4CA2},4),T(COE2)))
PU(KU(CE2B2,Q(PRC(-1,5,4CB2},4), T(COE2)))
PU({U(COE2,Q(PRC(-1 4,8, 4C2$.& T(COEz)));H,

for i:= 1,2,3,4,5,6,7,8 do cclil:= 03 k:= K13 kc:= KC1; i:= E2;
E2:= S(P(CE2A2 Az)gs("('CEsz B2),COE2)); oto AA; E2:= i3

BC3: SI(S(P(RHO,P(g,S(z1,22))),PC(-1,0,S(p1,p2)
SI(PC(2,0,P(ETA,DIFF(2,v))));
SI(PC(-2,0,P(ETA,P(DIFF(1,z1),S(DIFF(2,ul), DIFF(l,vl)))))),
SI(PC(-1,0 P(s1gma1 DIFF(1,DIFF(1,21)))));
SI(PC(-1,0,P(sigma0,DIFF(1,DIFF(1,5(21,22))));

PU(U(coeffll 4 CA2} 1) sH)3

PU(<U(coeff12 CB2},9)3) s

PUU(coeff13 PRC(14,8 402}) sh)s
for i:= 1,2,3,4,5,6,7,8 do cclil:= 03

BCET
SI(P(D,P(CNPA,P(CNPA,S(DIFF(2,5(c1,c2)),PC(-1,0, P(DIFF(1,z1),
DIFF(1,c1))))));: SI(P(D,PC(2,0,P(CNPA,P(c1,DIFF(2,c1)))));
SI(P(GCCPA,S(DIFF(1,u), P(DIFF(l z1) S(DIFF(2,u1) DIFF(1,v1)))))3
SI(P(GTCPA,P(c1,DIFF(1,ul)))); T
SI(P(AG,S(DIFF(3,S(c1,c2)),S(P(ul,DIFF(1,c1)),P(v1,DIFF(2,c1)))));
PUU(coeff21 3,4 4CA2},))

PU(U(coeff22 ,5,4CB

PU(U(coeff23, PRC(-1 4,8 <tczj> 4)s})s RUNOUT

end end end

=3k

begin comment Calculation program;
real NU, c0, a, D, GAMMA, SIGMA, SIGMAO, RT, ETA, RHO, g, OMEGA;
Infeger k, k,ag array ki, k12, k13, k14, ml, ml2, ml3, mul mul2, mul3,
m2, m22, mu?, mu22, Al A12 B;1 Bl12, E1, E12 A2, B2, CZ2A2
CZZBZ C0z2, CE2A2 CE2B2, COE2, PSI PST, CSTl‘, CSTZ, coeffll,
coefflz coeff13, coeff2l, coeff22, coeff23[1 2], H[1:100,1: 2],
integer array CZ2 CE2[1 1]1,CA2 CB2[1 4],C2[1: 28]3
integer procedure T(a); array a3
begin T:= k:= k + 1; H[k,1]:= a[1]; H[k,2]:= a[2] end,
1nteger procedure P(lg;q), value 1i,j; integer i,j; ’
be n real as P:= ke= k — 13 as= H[I,1] X H[j,1] - H[i,2] x H[j,2]s
21:= H[1,1] x H[j,2] + H[i,2] x H[j,1]; H[k,1]:= a
end°
1nteger procedure Q(i,j); value i,j; integer i,j;
begin real a,b; Q:= k:= k — 1; b:= HU, LA + H[j,2W2; a:= (H[i,1] x H[j,1] +
_ETH 1,27 x H[§,2]) /03 Hlk,2]:= (H[1 2] x H[j,1] - H[i,1] x H[j,2])/b; Hk1)= a
end;
integer procedure S(i,j); value i,j; integer i,j;
begin S:= k:= k - 13 H[k,1]:= H[i,1] + H[j,1]; Hk,2]:= H[i,2] + H[j, 2] end;

rocedure U(R, i): value i; integer i array Rj
begin RI1:= H[i,1]; R2 L= Hi,2); ke= k = 1 end;

integer rocedure PRC(a,i); value a,i3 real a3 integer i3

Ee in PRC:= k3 HKk,11:= a x A, HK,2[:= a X HI1;'9§I end;

1nteger procedure J(al,a2); real al, a2;

begin J:= k:= k + 13 Hk,1]:= al; H[k2]~ a2 end: "

procedure FLOPC (STRING, a); string STRING; array as

begin ka:= 503 PUNLCR; PUTEXT(STRING); PUTEXTi(3);
FT.0P(10,3,2(1])3 PUTEXT({+ i.(}); FLOP(10,3,a[2]); PUTEXT({)})

end;

rocedure Ul (i,j); value j; integer i,j;
Ee in 1:= ka:= ka + 1; Hlka,l[:= Hlj 1]; Hlka,2]:= H[j,2]3 k:= k - 1 end;
’c’eg‘er procedure Sum(1 a) s value i3 integer i3 integer array aj
begm integer j; Sum:= k:= k + 13 H[k,1[:= H[k,2]:= 03 for j:= 1 s 1
until 1 do begin Hlk,1l:= Hlk,1] + Hla[j],1]; Hlk,2]:= Hk,2] + H] :2] end
end;™"
procedure RE(a); array as begin a[ll:= read; a[2]:= read ends

BEGIN of CALCULATION:
RUNOUT; PUNLCR; SIGMAO:= read; RT:= read; ETA:= read; RHO:= read;
g:= read; NU:= read; D:= read; GAMMA:= read; c0:= read; a:= read;
OMEGA:= NU x 6,2831853071794; SIGMA:= SIGMAO - RT x GAMMA x
In (1 + c0/2); k:= 03 kas= 503 RE(k1l): Uk12,P(T(k1),T(k1)));
U(k13,P(T(k1),T(k12))); Uk14,P(T(k1),T(k13))); RE(mul); RE(m1); RE(mu2);
RE(m2); U(mi2,P(T(ml1),T(m1))); Ulml3,P(T(m1),T(m12))); U(mui2,
P(T(mul),T(mul))); Ulmul3,P(T(mul),T(mul2))); U(m22,P(T(m2),T(m2)));
U(mu22,P(T(mu2),T(mu2))); RE(A1); U(A12,P(T(A1),T(Al1))); RE(B1);
U(B12 P(T(]Bl) ,T(B1))); RE(El), U(E12, P(T(El) T(El))), RE(PSI); RE(PST),
RE(CST1); RE(CST2);

=35=

comment Continuation of Calculation programj
CALCULATION: k:= k3

comment
(100,71 + ix+ O JOMEGA OMEGAA(-1) k1 Al epAi(OMEGA t + k1 x) +
+ 0 + iX+,100,+1 JOMEGA OMEGAAM(-1) k1 Bl epAi(OMEGA t + k1 x) +

(+ 0 + ix+,200,+1 JOMEGA Z2 eAi(OMEGA t + k1 x)

eM(OMEGA t + k1 x) ; "

comment .

100,71 + ix+ 0 JOMEGA OMEGAA(-1) k1 Al eAi(OMEGA t + k1 x) +
(+ 0 + ix+,100,+1 JOMEGA OMEGAA(-1) k1 Bl eAi(OMEGA t + k1 x) +
(+ o0 + ix+.200,+1 JOMEGA Z2 eMi(OMEGA t + k1 x) '
eM(OMEGA t + k1 x) ; ‘

U1(Ccz2[1 J,PRC(OMEGA,J(+ 0 ,+.200,+1)));

comment

(#.100,+1 + ix- 0)kl Al efpkly eM(OMEGA t + k1 x) +
(- o0 + ix-,100,+1)k1 Bl eAmly eAi(OMEGA t + k1 x) +
(+.2005+1 + ix- 0)k1 A2 2y eM(OMEGA t + k1 x)’

eM(OMEGA t + k1 x) +
(- o0 + ix-,200,+1)kl B2 eAm2y eAi(OMEGA t + k1 x)
eM(OMEGA t + k1 x) + -

(- 0 + ix-.200,+1)kl PSI eAkly eAmly eM(OMEGA t + k1 x)
eM(OMEGA t + k1 x) ; ’
comment, |
(+.100,+1 + ix- 0)kl Al ehi(OMEGA t + k1 x) +

(+ 0 + ix+,100,+1 JOMEGAA(-1) k1 k1 k1 Al Al
eM(OMEGA t + k1 x) eAi(OMEGA t + k1 x) +

(+.100,+1 + ix- 0)OMEGAA-1) k1 k1 k1 Al Bl
eM(OMEGA t + k1 x) eM(OMEGA t + k1 x) +

(- 0 + ix-.100,+1)k1 Bl eM(OMEGA t + k1 x) +

(+.100,+1 + ix- 0)OMEGAA(-1) k1 k1 ml Al Bl
eM(OMEGA t + k1 x) eAi(OMEGA t + k1 x) +

(- 0 + ix-,100,+1 JOMEGAA(-1) k1 k1 ml Bl Bl
eM(OMEGA t + k1 x) eNl(OMEGA t + k1 x) +

(+.200,+1 + ix-= 0)k1 A2 eM(OMEGA t + k1l x)

eM(OMEGA t + k1 x) + '

(- 0 + ixX-,200,+1)kl B2 eM(OMEGA t + k1 x)

eM(OMEGA t + k1 x) + \

(- 0 + ix-,200,+1)k1 PSI eAi(OMEGA t + k1 x)
eM(OMEGA t + k1 x) ;3 ‘

U1(c2[1],PRC(OMEGAM-1),P(T(k1 3),P(T(Al 2),

J+ 0 ,+.1005+1)))))s ‘ '

U1(c2[2],PRC(OMEGAAM-1),P(T(k1 3),P(T(A1),P(T(B1),
J(+,100,+1 ,— O IMNE '

U1(c2[3 1,PRC(OMEGAA-1),P(T(k1 2),P(T(ml1),P(T(A1),P(T(B1),
J(+,1000+1 .~ 0 N3 ‘ ‘ ‘ ‘
U1(C2[4],PRC(OMEGAA(-1),P(T(k1 2),P(T(m1),P(T(B1 2),

J(_ 0 9 @ 10010+1)))))); . ‘ ‘)
UL(CA2[1 L P(T(k1),J(+.2004,+1 .-~ 0)));

Ul(CcB2[1 L,P(T(k1),J(- 0 ,—e200,+1)));

vi(c2[5 ILP(T(k1),P(T(PSD,J(- 0 ,-.200,+1))));

«36=

comment Continuation of Calculation program '

[+ ix+,1005+1 JOMEGAA-1) k1 ki k1 A1 Al efkly

eM(OMEGA t + k1 x) epi(OMEGA t + k1 x) +

(+.1005+1 + ix+ 0)OMEGAA(-1) k1 k1 k1 Al Bl eAkly

eM(OMEGA t + kI x) eMi(OMEGA t + k1 x) +

(+,1005+1 + ix- 0 JOMEGAA(-1) k1 k1 ml Al Bl efAmly

eM(OMEGA t + k1 x) eAi(OMEGA t + k1 x) + :

(- 0 + ix-.100,+1 JOMEGAA(-1) k1 k1 ml Bl Bl ejmly

eM(OMEGA t + k1 x) eM(OMEGA t + k1 x) ;

comment

G 7o + ix+.100,+1 JOMEGAA(-1) k1 k1 k1 Al Al

eAi(OMEGA t + k1 x) eM(OMEGA t + k1 x) +

(+.100,+1 + ix+ 0)OMEGAA-1) k1 k1 k1 Al Bl

eM(OMEGA t + k1 x) eAi(OMEGA t + k1 x) +

(+.1004+1 + ix- 0)OMEGAA(-1) k1 kI ml Al Bl

eM(OMEGA t + k1 x) eM(OMEGA t + k1 x) +

(- 0 + ix-.100,+1 JOMEGAA(-1) k1 k1 ml Bl Bl

eM(OMEGA t + k1 x) eAi(OMEGA t + k1 x) ;

Ui(c2[6],PRC(OMEGAA(-1),P(T(k1 3),P(T(Al 2),

J+ 0 +.100,+1)5 ‘

ul(c2[7 1,PRC(OMEGAAM-1),P(T(k1 3),P(T(A1),P(T(B1),

J(+.100,+1 ,+ 0 N3 ‘ '

U1(c2[8 1,PRC(OMEGAA(-1),P(T(k1 2),P(T(m1),P(T(A1),P(T(B1),

J(+o 10010+1 A 9 0))))))); . . .

Ul(c2[9 1,PRC(OMEGAA-1),P(T(k1 2),P(T(ml),P(T(B1 2),

J- 0 ,—o100,+1 N3 ' '
ASSEMBLAGE: o

U(Ccoz2,sum(1 ,CZ2));

U(CZ2A2,Q(PRC(-1,Sum(1 ,CA2)),T(COZ2)));

U(CZ2B2,Q(PRC(-1,Sum(1 ,CB2)),T(COZ2)));

U(C0Z2,Q(PRC(-1,Sum(9 ,C2)),T(COZ2))); FLOPC({CZ2A2 =},CZ2A2);

FLOPC({CZ2B2 =%,CZ2B2); FLOPC(COZ2 =},C0Z2); ‘

comment We removed from the following the comment parts;

UI(C2T 1 L,PRC(OMEGAA(-1) x ETA,P(T(kl1 4),P(T(A1l 2),

J(+,4004+1 - 0))s ' ‘ '

Uui(c2[2 1,PRC(OMEGAA(-1) x ETA,P(T(k1 3),P(T(m1),P(T(A1),P(T(B1),

J- 0 —o400,+1 N)))s ‘ ‘ '

Ul(C2[3],PRC(OMEGAA(-1) x ETA,P(T(kl 4),P(T(A1),P(T(B1),

J- 0 ,-.400,+1)N)); ‘ ‘

U1(Cc2[4 1,PRC(OMEGAAM(-1) x ETA,P(T(k1 3),P(T(m1),P(T(B1 2),

J(-.400,+1 ,+ O N ' ‘

ULl(C2[5],PRC(OMEGAA(-1) x ETA,P(T(k1 4),P(T(Al 2),

J(+.200,+1 - O M ‘ "

UL(C2[6],PRC(OMEGAA(-1) x ETA,P(T(k1 4),P(T(A1),P(T(B1),

J+ 0 ;=.200,+1)3 ‘ ‘

UL(c2[7 1,PRC(OMEGAA-1) x ETA,P(T(k1),P(T(ml 3),P(T(A1),P(T(B1),

J- 0 o= 100,+1)3 ' ‘ ‘ ‘

ui(c2[8 1,PRC(OMEGAA(-1) x ETA,P(T(k1),P(T(m1 3),P(T(B1 2),

J(=.100,+1 .+ 0)3 ' '

=37=

comment Continuation of Calculation program;

UI(CAZ] 1],PRC(ETA,P(T(kl1 2),J(+ 0 4=+ 800,+1))));3

U1(CB2[1 L,PRC(ETA,P(T(m2 2),J(-.100,+1 ,+ O N

U1(C2[9],PRC(ETA,P(T(k1),P(T(ml) P(T(PSI) (-, 200,+1 + 0 MNH
U1(C2[10]J,PRC(ETA,P(T(ml 2),P(T(PSI),J(-.100,+1 ,+ 0)
U1(c2[11],PRC(ETA,P(T(kl 2),P(T(PSI),J(-.500,+1 ,+ O DK
U1(c2[12]PRC(OMEGAA(1) x ETA,P(T(l 3),P(T(m1),P(T(A1),”
P(T(B1),J(- 0 —1005+1)3

U1(ce[13]PRC(OMEGA/}\(1) x ETA,P(T(k1 3),P(T(m1),P(T(B1 2),
J(-.100,+1 ,+ 0 DNNHE

U1(CB2[2]PRC(ETA P(T(k1 2),J(~.400,+1 ,+ O IH

Ul(c2[14]PRC(OMEGA/M 1) x RTxGAMMA/(a+cO) P(T(k1 2),P(T(mul),
P(T(A1),P(T(E1),J(-.100,+1 + O NN

U1(c2[15]PRC(OMEGA)L(1) x RTXGAMMA/(a+c0),P(T(k1 2),P(T(mul),
P(T(B1),P(T(E1),J(+ 0 ,+.100,+1))N));

UL(CE2[1]PRC(RTXGAMMA/(a+cO) P(T(k1),J(+ 0 ,+.200,4+1)));
U1(C2[16],PRC(RTXGAMMA/(a+c0), P(T(k1),P(T(CST1), '

J(0 7 +.200,+1)3

ui(c2[17],PRC(RTXGAMMA/(a+c0),P(T(k1), P(T(CSTZ),

J+ 0 7 +.200,+1)))));

Ul(c2[18]PRC(RTxGAMMA/(a+c0) x 1/(a+c0), P(T(kl) P(T(E1 2),

J- 0 .100,+1)3

U1(c2[19]PRC(OMEGA/}\(1) x RTXGAMMA/(a+c0),P(T(k1 2),P(T(mul),
P(T(A1),P(T(E1),J(-.100,+1 ,+ O M3 :

U1(c2[20]PRC(OMEGA/K(1) x RTXGAMMA/(a+c0),P(T(k1 2),P(T(mul),
P(T(B1),P(T(E1),J(+ 0 ,+,100,+1))));

U(COE2,Sum(1 ,CE2));

U(CE2A2,Q(PRC(-1,Sum(1 ,CA2)),T(COE2)));

U(CE2B2,Q(PRC(-1,Sum(2 ,CB2)),T(COE2)));

U(COE2,Q(PRC(-1,Sum(20 ,C2)),T(COE2)));

FLOPC({CE2A2 _4» CE2A2); FLOPC(<]:CE2B2 =},CE2B2);

FLOPC({COE2 =},COE2);

U1(CA2[1],PRC(RHO x g,P(T(CZ2A2),J(1,0))));

U1(CB2[1 L.PRC(RHO x g,P(T(CZ2B2),J(1,0))));

Ui(c2[1]J,PRC(RHO x g,P(T(C0Z2),J(1,0))));

Ul(c2[2],PRC(OMEGA x OMEGAA(1) x RHO,P(T(k1 2),

P(T(A1 2), J(+.100,+1 , 0 MN;

uL(c2[3]PRC(OMEGA X OMEGAA(-1) x RHO,P(T(kl 2),
P(T(A1),P(T(B1),J(- 0 = 100,5+1)3

U1(cAa2[2],PRC(OMEGA x RHO J- 0 -.200,+1)));

viu(c2[4 1,P(T(PST),J(-.100,+1 ,+ O))),

ui(cz[5],PRC(OMEGAA(-1) x ETA,P(T(kl 4),P(T(AL 2),
J- 0 —o200,+1 N)));

Ul(c2[6]PRC(OMEGA/f\(1) x ETA,P(T(kl 4),P(T(A1),
P(T(B1),J(-.200,+1 ,— 0 ~)))N);

U1(Cc2[7 1PRC(OMEGAM-1) x ETA,P(T(kl 2),P(T(ml 2)s
P(T(A1),P(T(B1),J(-.200,+1 ,+ O NN

ui(c2[8],PRC(OMEGAAN-1) x ETA,P(T(kl 2),P(T(ml 2),
P(T(B1 2),J(- 0 ,+.200,5+1)3

Ul(CA2[3 1,PRC(ETA, P(T(k1 2),J(=.800,+1 ~ O N3
U1(CB2[2 1],PRC(ETA,P(T(kl),P(T(m2),J(+ 0 ,+.400,+1)))));

-38=

comment Continuation of Calculation program;

TI(C2T 9 1,PRC(ETA,P(T(kL 2),P(T(PSD,J(+ 0 o+.400,+1)))))3
U1(c2[10],PRC(ETA,P(T(k1),P(T(m1), P(T(PSD),J(+ 0 o +.400,+1)3
U1(C2[11].PRC(OMEGAA(-1) x ETA,P(T(kl 4),P(T(A1 2),

J- 0 .400,+1 N3

Ui(cz[12],PRC(OMEGA/M 1) x ETA,P(T(k1 2),P(T(ml 2),P(T(A1),
P(T(B1),J(-.200,+1 ,+ O DO

U1(C2[13],PRC(OMEGAA(-1) x ETA,P(T(kl 4),P(T(A1),P(T(B1),
J(-.600,+1 ,+ 0 NINHE

vi(czl 14]PRC(OMEGAA(1) x ETA,P(T(k1 2),P(T(m1 2),P(T(B1 2),
J+ 0 ,+.200,+1)))));

U1(cz[15]PRC(OMEGA/{\(1) x ETA,P(T(k1 4),P(T(BL 2),

J+ 0 s +e200,+1)N));

U1(c2[16],PRC(OMEGAAM-1) x RTXGAMMA/(a+c0),P(T(k1 3),P(T(Al),
P(T(E1),J(- 0 o= 1005+1))N)3

ui(c2[17]PRC(OMEGA/}\(1) X RTXGAMMA/(a+c0),P(T(k1 3),P(T(B1),
P(T(E1),J(-.100,+1 .+ 0 ~ N3

U1(CA2[4],PRC(SIGMA,P(T(k1 2),P(T(CZ2A2),J(+.400,+1 ,- 0 M)
Ui(CB2[3],PRC(SIGMA,P(T(k1 2),P(T(CZ2B2),J(+.400,+1 ,- O IMNE
UL(c2[18],PRC(SIGMA,P(T(k1 2),P(T(COZ2),J(+.400,+1 ,- O M5
U(coeffll,Sum(4 ,CA2)); ‘
U(coeffi2,Sum(3 ,CB2));

U(coeff13,PRC(-1,Sum(18 ,C2)));

FLOPC({coeff1l =},coeffll); FLOPC({coeffl2 =},coeff12);
FLOPC(<coeffl3 =},coeff13)s

U1(C2[1],PRC(OMEGAA(-1) x (a+c0) x (a+c0) x D,P(T(k1),P(T(mul 2),
P(T(A1),P(T(E1),J(+ 0 W+ 1005+1 N5

UL(c2[2],PRC(OMEGAM-1) x (a+co0) X (a+c0) x D,P(T(k1),P(T(mul 2),
P(T(B1),P(T(E1),J(+.100,+1 + O NI

UL(CA2[1],PRC((a+c0) x (a+c0) x D ,P(T(mu2) ,P(T(CE2A2),J(1,0)))));
U1(CcB2[1 1,PRC((a+c0) x (a+c0) x D,P(T(mu2),P(T(CE2B2),J(1,0)))));
Uu@[3]H&Mm@xwmmxDHﬂmMP@@MMJumm?'
UL(c2[4 L,PRC((a+c0) x (a+c0) x D,P(T(k1),P(T(CST1),J(1,0))))):"

ui(c2[5]J,PRC((a+c0) x (a+c0) x D,P(T(mul),P(T(CST1),J(1,0))));
U1(C2[6],PRC((a+c0) x (a+c0) x D,P(T(ml),P(T(CST2),J(1,0)))));

Ul(c2[7 1,PRC((a+c0) x (a+c0) x D,P(T(mul),P(T(CST2),J(1,0)))));
Ul(c2[8 1,PRC(OMEGAA(-1) x (a+c0) x (a+c0) x D,P(T(kl 3),P(T(A1),
P(T(E1),J(+ 0 ,+.100,+1)3

vi(c2[9]PRC(OMEGA/}\(1) x (a+c0) x (a+c0) x D,P(T(k1 3),P(T(B1),
P(T(E1),J(+.100,+1 ,— 0 MN);

ui(c2[10 1,PRC((a+c0) x D,P(T(mul),P(T(E1 2),J(+.200,+1 + O N
UL(C2[11],PRC(OMEGAAM-1) X GAMMAchx(a+cO) P(T(k1 4)P(T(Al 2,
J+ 0 »+.300,+1)3

U1(c2[12 1,PRC(OMEGAA(-1) x GAMMAxcOx(a+c0),P(T (k1 4),P(T(A1),
P(T(B1),J(+.400,+1 .~ 0 ~)N);

U1(C2[13],PRC(OMEGAN-1) x GAMMAXxcOx(a+c0),P(T(kl 2),P(T(m1 2),
P(T(A1),P(T(B1),J(+.200,+1 .- O NN

U1(c2[14],PRC(OMEG (-1) x GAMMAXxcOx(a+c0),P(T(k1 2),P(T(m1 2),
P(T(B1 2),J(- 0 —200,+1)))));

vi(caz2[2]PRC(GAMMAchx(a+00) P(T(kl 2),J(+.400,+1 ,+ O INE

=39=

comment Continuation of Calculation programg;

UI(CB2T 2 1,PRC(GAMMAxc0x(a+c0),P(T(k1),P(T(m2),

J- 0 ;=0 200,+1 D)3

U1(c2[15 1,PRC(GAMMAXcO0x(a+c0),P(T(k1),P(T(m1),P(T(PSI),

J- 0 y—e200,+1 1))

Ui(c2[16 1,PRC(GAMMAxcOx(a+c0),P(T(k1 2),P(T(PSID),

J- 0 2200,+1 N)));

U1(c2[17]PRC(OMEGA/M 1) x GAMMAxcOx(a+c0),P(T(k1 4),

P(T(BL 2),J(- 0 —.100,+1)))));

U1(cz[18],PRC(GAMMAx(2><c0+a) P(T(k1 2),P(T(A1),P(T(E1),
J(+.100,+1 ,+ 0 MN)s

U1(c2[19 1, PRC(GAMMAx(zxc0+a) P(T(k1),P(T(m1),P(T(B1),P(T(E1),

J- 0 .100,+1 NIN)s

Ui(c2[20]PRC(OMEGA x OMEGAAM-1) x GAMMAXa, P(T(k1),P(T(mul),
P(T(A1),P(T(E1),J(-.1004+1 ,+ O NI

U1(c2[21],PRC(OMEGA x OMEGM(1) x. GAMMAXxa,P(T(k1),P(T(mul),
P(T(B1),P(T(E1),J(+ © ,+.100,+1)3

U1(CA2[3],PRC(OMEGA x GAMMAxa ,P(T(CE2A2),

J+ 0 ,+.200,+1))));

U1(CB2[3 ,PRC(OMEGA x GAMMAxa,P(T(CE2B2),

J+ 0 ,+.200,+1))))s

U1(c2[22 1,PRC(OMEGA x GAMMAXa,P(T(COE2),J(+ 0 ,+.200,+1))));
U1(c2[23],PRC(OMEGA x GAMMAXa,P(T(CST1),J(+ 0 ,+.200,5+1))));
U1(C2[24],PRC(OMEGA x GAMMAXa,P(T(CST2),J(+ 0 ,+.200,+1))));:
ul(c2[25 1,PRC(GAMMAXxa,P(T(k1 2),P(T(A1),P(T(E1),
J(+.100,+1 ,+ 0 DK

u1(cz[26 1, PRC(GAMMAxa P(T(k1), P(T(ml) P(T(B1),P(T(E1),

J- 0 s—o100,+1)n)n),

U1(c2[27],PRC(GAMMAXa,P(T(k1),P(T(mul),P(T(A1),P(T(E1),
J(-,100,+1 ,+ 0 IMDNE
U1(C2[28],PRC(GAMMAXa,P(T(k1),P(T(mul),P(T(B1),P(T(E1),

JH+ 0 o+ 100,+1)N

U(coeff21,Sum(3 ,CA2));
U(coeff22,Sum(3 ,CB2)):

U(coeff23, PRC(-1,Sum(28 ,C2)));

FLOPC(4coeff21 icoetfﬂ) FLOPC({coeff22 =},coeff22);
FLOPC(qcoeff23 coeff23)s

comment From the label CALCULATION until so far this program

Is, besides slight differences concerning the lay-out, constructed

by the Second order program. Finally A2 and B2 are calculated;
U(PSIL,S(P(T(coeff11),T(coeff22)),PRC(-1,P(T(coeff12),T(coeff21)))));
U(A2,Q(S(P(T(coeff13),T(coeff22)),PRC(-1,P(T(coeff12), T(coeff23))))
T(PSD)); FLOPC({Az =},A2)3
U(B2,Q(S(P(T(coeffil),T(coeff23)),PRC(-1,P(T(coeff13),T(coeff21)))),
T(PSD)); FLOPC(B2 =},B2); RUNOUT

end

@l Qw

References

1 R.P. van de Riet Algebraic operations in ALGOL 60 (series
expansions)
Report T.W. 97, Mathematical Centre, Amsterdam.

2 M. van den Tempel, R,P, van de Riet: Damping of waves by surface=
active materials

Journal of Chemical Physics, april 1965,

