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Reconstructing binary images from discrete X-rays

ABSTRACT
We present a new algorithm for reconstructing binary images from their projections along a
small number of directions. Our algorithm performs a sequence of related reconstructions, each
using only two projections. The algorithm makes extensive use of network flow algorithms for
solving the two-projection subproblems.
    Our experimental results demonstrate that the algorithm can compute reconstructions which
resemble the original images very closely from a small number of projections, even in the
presence of noise. Although the effectiveness of the algorithm is based on certain smoothness
assumptions about the image, even tiny, non-smooth details are reconstructed exactly. The
class of images for which the algorithm is most effective includes images of convex objects, but
images of objects that contain holes or consist of multiple components can also be
reconstructed with great accuracy.
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original images very closely from a small number of projections, even in the presence of noise. Although the

effectiveness of the algorithm is based on certain smoothness assumptions about the image, even tiny, non-

smooth details are reconstructed exactly. The class of images for which the algorithm is most effective includes

images of convex objects, but images of objects that contain holes or consist of multiple components can also

be reconstructed with great accuracy.

Keywords: Discrete tomography, Image reconstruction (I.4.5), Projections (I.4.7.d), Network problems

(G.2.2.d)

1. Introduction
Discrete tomography (DT) concerns the reconstruction of a discrete image from its projections. In
our context, the image is defined on a discrete set of lattice points and the set of possible pixel values
is also discrete. The latter property distinguishes discrete tomography from continuous tomography.
We will restrict ourselves to images that have only two possible pixel values, 0 (white) and 1 (black).
Typically, the number of directions in which the projection data are available is very small.

Before practical applications of discrete tomography were considered, several problems of DT had
already been introduced as interesting combinatorial problems. In 1957, Ryser [19] and Gale [7]
independently presented necessary and sufficient conditions for the existence of a binary matrix with
prescribed row and column sums. Ryser also provided a polynomial time algorithm for reconstructing
such matrices.

Over the past ten years many of the basic DT problems have been studied extensively. A prin-
cipal motivation for this research was a demand from material sciences for improved reconstruction
techniques due to advances in electron microscopy [15, 16, 21]. Since its inception around 1994, the
field of DT has attracted many researchers, resulting in numerous publications and meetings. Dis-
crete tomography is considered one of the most promising approaches to making atomic resolution
3D reconstructions of crystals in electron microscopy. Besides applications in electron microscopy DT
has several other applications, such as medical imaging (particularly angiography [22]) and industrial
tomography.

Although polynomial-time algorithms have been shown to exist for a number of specific DT prob-
lems, many of the more general DT problems have been proved to be NP-complete. In particular it
was shown by Gardner, Gritzmann and Prangenberg [8] that the problem of reconstructing a binary
image from three or more projections is NP-complete.

In general, the problem of reconstructing binary images from a small number of projections is
underdetermined. When only two projections are available, horizontal and vertical, the number of
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solutions can be very large [24]. Moreover, there can be solutions which are substantially different
from each other. Similar difficulties occur when more than two projections are given: the number of
solutions can be exponential in the size of the image for any set of projection directions.

Fortunately, images that occur in practical applications are rarely random; they usually exhibit
a certain amount of “structure”. Several authors have come up with algorithms for reconstructing
binary matrices that satisfy additional constraints, such as certain forms of convexity or connectedness
[3, 5]. In some cases a reconstruction can still be found in polynomial time. However, in practical
situations such assumptions on the structure of the image are often too restrictive. Also, few proposed
algorithms for the two-projection case can be generalized to the case where more than two projections
are available.

Algorithmic approaches for more general DT problems have been proposed in [6, 10, 13]. In [6]
the authors propose a relaxation of the original problem that can be solved efficiently by linear
programming. In [10] several greedy heuristic algorithms are described for reconstructing binary
images from more than two projections. The authors of [13] propose an iterative algorithm which
starts at a real-valued solution and gradually moves toward a binary solution. Several enhancements
on this approach are presented in [4].

A well-known technique that can be used to improve reconstruction quality in some cases is the
introduction of a smoothness prior. For the binary reconstruction problem this means that we try
to find a reconstruction for which most local neighborhoods of pixels are either completely black or
completely white. For images that occur in practice, such smoothness assumptions are often satisfied.
A disadvantage of this approach can be that very tiny local details tend to be neglected by the
reconstruction algorithm, in favor of the smoothness constraints.

In this paper we present a new algorithm for approximately reconstructing binary images from
their projections. Although smoothness assumptions are used to guide the algorithm during the
reconstruction procedure, they are not so dominant that they blur out the very fine details. In
this way, the relative smoothness of many practical images can be used by the algorithm to obtain
reconstructions, while the resulting reconstructions still show a very high detail level. Even single-pixel
details are often reconstructed exactly.

The algorithm is very effective on a large class of binary images. We will show experimental
evidence that the algorithm can – when used on images that contain large black or white areas –
compute reconstructions that are almost or even completely identical to the original image, from a
very small number of projections. The class of images for which the algorithm performs well includes
the images of convex objects, but even objects that contain a large number of “holes” or consist of
many separated components can be reconstructed with very high accuracy. We present reconstruction
results for 256× 256 pixel images.

Our algorithm reconstructs an image from three or more projections by performing a sequence of
related reconstructions, each using only two projections. We use a network flow approach for solving
the two-projection problems.

In Section 2 we introduce some notation and describe our reconstruction problem in a formal
context. Section 3 forms the main part of this paper. We introduce our algorithm and describe each
of its parts in detail. In Section 4 we present extensive experimental results on the performance of
our algorithm and show how the algorithm can be adapted to work with noisy projection data. We
also give a brief performance comparison between our algorithm and two alternative approaches.

2. Preliminaries
In this paper we restrict ourselves to the reconstruction of 2-dimensional images, although the algo-
rithm that we propose can be used for d-dimensional images where d > 2 as well. The cases d = 2, 3
are of most practical interest.
We denote the cardinality of a finite set V by |V | and we denote the set
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{n ∈ Z : n ≥ 0} by N0. Let m,n be positive integers. Put

A = {(j, i) ∈ Z2 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and let F denote the collection of mappings A → {0, 1}. We call m and n the height and width of A
respectively. For the sake of convenience we will sometimes regard the elements of F as matrices or
images. Similarly, we will refer to the elements of A as entries or pixels respectively and to the values
of pixels as colors, black (1) and white (0).
We call a vector v = (a, b) ∈ Z2\{(0, 0)} a lattice direction if a and b are coprime. For every lattice
direction v, we define the lattice line Lv = {nv | n ∈ Z}. We denote the set of lines parallel to Lv

by Pv = {Lv + t | t ∈ Z2} and the subset of lines in Pv that contain at least one point of A by
Sv = {P ∈ Pv | P ∩A 6= ∅}. Let F ∈ F. We call the function XvF : Sv → N0 defined by

XvF (P ) = |{(x, y) ∈ Z2 : (x, y) ∈ P ∩A and F (x, y) = 1}|

for P ∈ Sv the (discrete) 1-dimensional X-ray parallel to v. We will also refer to the X-rays as
projections.
In the inverse reconstruction problem, we want to construct a function F ∈ F which has prescribed
1-dimensional X-rays, parallel to a number of lattice lines v1, v2, . . . , vk. More formally:

Problem 1 (Reconstruction problem).
Let k ≥ 1 and v1, . . . vk be given distinct lattice directions. Let φi : Svi

→ N0

(i = 1, . . . , k) be given functions. Find a function F ∈ F such that Xvi
F = φi

for i = 1, . . . , k.

Because the functions φi all have finite domains, we sometimes consider φi to be a vector of |Svi |
elements. We will refer to this vector as a prescribed projection and to its elements as prescribed
linesums.
It is important to notice that there may be many F ∈ F having the prescribed X-rays even if the
number of lattice directions is large [12]. However, the number of solutions depends heavily on the
actual X-rays, which in turn depend on the “original image” that was measured. The experimental
results in Section 4 provide valuable insights regarding the feasibility of computing a reconstruction
that closely resembles the original image when the original image is relatively smooth.
Our algorithm is based on the fact that the problem of reconstructing binary images from two pro-
jections can be solved efficiently. Problem 1 is trivially equivalent with the following problem:

Problem 2 (Reformulated reconstruction problem).
Let v1, . . . , vk and φ1, . . . , φk be as in Problem 1.
Find a function F ∈ F such that for 1 ≤ i < j ≤ k: XviF = φi and Xvj F = φj.

The formulation of Problem 2 emphasizes the fact the if F is a solution of the reconstruction problem,
F must satisfy all pairs of prescribed projections simultaneously. In each iteration our algorithm takes
one such pair of projections and finds an image which satisfies those two projections exactly.
We use polynomial time network flow algorithms for solving the two-projection problems. See [1] for
an excellent reference on network flow algorithms. In the next sections we will assume that the reader
is familiar with the basic ideas of network flows.
One can also regard the reconstruction problem as the problem of finding a 0-1 solution of a system
of linear equations, which describes all the linesum constraints. We write this system as

Bx = b,

where every entry of the vector x corresponds to a pixel and every row in the matrix B corresponds
to a projected lattice line. The column vector b contains the linesums for each of the k projections.
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We will use this notation several times in the next sections, referring to B as the projection matrix
and to b as the vector of prescribed linesums. When we consider an image as a vector of pixel values,
we refer to the vector representation of an image.
Let x be the vector representation of an image. We define the distance dist(x) between the projections
of x and the prescribed projections as

dist(x) = |Bx− b|,

where |.| denotes the Euclidean norm. We use this distance for defining termination conditions for
our algorithm, as it does not always converge to a perfect reconstruction.

3. Algorithm description
3.1 Overview
Before we delve into the details, we will first give a global description of our algorithm. The purpose
of the algorithm is to solve the Reconstruction Problem 1 for more than two lattice directions. Our
algorithm is iterative: in each iteration a new reconstruction is computed, using the reconstruction
from the previous iteration.

Every iteration consists of choosing two lattice directions and then constructing an image that
satisfies the linesums in those directions perfectly. Typically, this two-projection problem has many
solutions. We use the reconstruction from the previous iteration (corresponding to a different pair
of lattice directions) to determine which of the solutions is selected. A weighted network flow model
is used for solving the two-projection problems. By choosing appropriate weights, the reconstruction
from the previous iteration can be incorporated into the new reconstruction process quite efficiently.
The weights are chosen in such a way that the new reconstruction is not very different from the
previous reconstruction. In this way, the information gathered from previous reconstructions, using
different pairs of projections, is passed on to the new reconstruction.

The choice of the weights also depends on local smoothness properties of the image that resulted
from the previous iteration. In this way, the assumption that the image is relatively smooth is used
throughout the algorithm. As we will show in Section 4, this does not restrict the algorithm to the
reconstruction of completely smooth images. It is merely used for guiding the algorithm into the right
direction in the search space.

At the start of the algorithm there is no prior reconstruction. Instead, we solve a real-valued
relaxation of the binary reconstruction problem, using all lattice directions, which provides a first
approximate solution.

3.2 Network flow approach
Our algorithm makes extensive use of the network flow method for reconstructing binary images from
two projections. This approach has been studied by several authors [2, 22]. As an example, consider
the two-direction problem in Figure 1, where the horizontal projection r = (r1, r2, r3) and the vertical
projection s = (s1, s2, s3) of a 3× 3 binary image F are given.

R R R1 32
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? ? ? 2
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Figure 1: A 3× 3 reconstruction problem and the corresponding network.
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Figure 2: A solution of the transportation problem in G corresponds to a solution of the reconstruction
problem.

We construct a capacitated network G, as shown in Figure 1. The row nodes R1, R2, R3 correspond
to the image rows, the column nodes C1, C2, C3 correspond to the image columns. There is an arc
between every pair of row and column nodes. Each arc (Ri, Cj) corresponds to a single pixel of the
image (the cell that intersects with row i and column j). Therefore we will refer to these arcs as pixel
arcs. All pixel arcs are assigned a capacity of 1. The row nodes act as sources. The linesum for each
row determines the (nonnegative) excess at the corresponding row node. The column nodes act as
sinks. Every column node has a nonpositive excess, which is the negated linesum of the corresponding
column. We denote the flow through arc (Ri, Cj) by xij . We now consider the transportation problem
in G, which is the problem of finding a flow X = (xij) such that

3∑
j=1

xij = ri for i = 1, 2, 3,

3∑
i=1

xij = sj for j = 1, 2, 3,

0 ≤ xij ≤ 1 for 1 ≤ i, j ≤ 3.

This transportation problem is a special case of the more general max-flow problem. It is a well
known fact that there exists a solution for which all the arc flows xij are integral, i.e., 0 or 1. Efficient
methods for finding such a flow are described in [1].

A reconstruction F ′ which has the same row and column sums as F can now be computed by first
solving the transportation problem in the network G. Subsequently, each pixel of F ′ is assigned the
flow through the corresponding pixel arc of G (either 0 or 1). Figure 2 illustrates the construction.
The thickness of each arc depicts the flow through that arc (0 or 1).

The construction does not require the two directions to be horizontal and vertical, any pair of
lattice directions can be used. The resulting bipartite graph is not necessarily complete: the nodes
that correspond to two lattice lines are connected by an arc if and only if they intersect within the
image domain A. In the remainder of this section we will keep using the notation of the example,
involving the horizontal and vertical projections. All presented concepts can be used for other pairs
of lattice directions as well.

As noted before, the problem of reconstructing binary images from two projections can have a
large number of solutions. When extra a priori information is available, such as an approximate
reconstruction, we can use this information to select the most preferable solution by assigning a
weight wij to every pixel arc (Ri, Cj). We will refer to these weights as pixel weights. Instead of
finding any solution of the transportation problem in G, we now try to find a solution that maximizes
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the total weight:
maximize

∑
(j,i)∈A

wijxij

such that X = (xij) is a solution of the transportation problem in G.

In the same way as the transportation problem is a special case of the general max-flow problem, the
problem of finding the solution of maximal weight is a special case of the min-cost max-flow problem
(in which the arc costs are the negated weights). Several efficient algorithms exist for this type of
problem. This weighted network flow approach was already presented in [22] for reconstructing an
image of the left ventricle using a priori information.

We will now illustrate the idea by an example. Suppose that we have an image Y ∈ F and we want
the resulting reconstruction to have the same value as Y = (yij) in as many lattice points as possible,
while completely satisfying the prescribed horizontal and vertical projections. Put

wij = yij 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In this way, we express the preference for sending positive flow along pixel-arcs for which the cor-
responding pixel-value in Y is 1. It is not difficult to see that solving the corresponding min-cost
max-flow problem results in the two-projection solution which has the least pixel-differences with Y .

3.3 An iterative network flow algorithm
Unfortunately, the problem of reconstructing binary images from more than two projections cannot
be described as a single network flow problem. Every pair of projection directions has a corresponding
network. As was emphasized by Problem 2, a binary image is a solution to the reconstruction problem
if and only if the corresponding flow in each of those networks is feasible and maximal. Because the
reconstruction problem is NP-hard for more than two projections the equivalent problem of simul-
taneously solving the network flow problems is also intractable. In [20] a push-relabel algorithm is
described for finding an approximate solution, using the network flow model.

We propose a different, iterative approach. First, a start solution is computed by solving a real
relaxation of the binary problem. This start solution is used to determine the pixel-weights of the
network that corresponds to the first two directions. By solving the minimum cost network flow
problem a binary solution is obtained which satisfies the projections in the first two directions exactly,
while closely resembling the start solution. Subsequently, the new solution is used for determining
the pixel-weights of the network that corresponds to a different pair of directions. The procedure is
repeated until some termination condition is satisfied. Figure 3 shows the basic steps of the algorithm.

At a very basic level, a similar approach was suggested in [11], but as far as we know it has never been
further explored. The authors of [11] suggested an iterative algorithm in which only the value of a pixel
in the previous reconstruction is used to determine the pixel-weight for that pixel in the new iteration.
When only information about the pixel itself is used, the algorithm usually does not converge and
does not yield good reconstructions. When neighboring pixels are also taken into account, however,
the performance of the algorithm turns out to improve dramatically. We use the neighboring pixels
in combination with a smoothness assumption, which favors neighborhoods of pixels having the same
value over random neighborhoods.

In the next subsections we will provide concrete algorithms for computing the start solution, choos-
ing the pair of directions for every step of the algorithm and choosing the pixel-weights.

3.4 Computing the start solution
At the start of the algorithm we do not have a solution of a previous network flow problem that we
can use for choosing the pixel-weights of the first network. One approach would be to assign equal
weights to all pixels. A different approach is to use another reconstruction algorithm, for example one
of the algorithms from [10] and use the resulting image for determining the weight distribution. We
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Compute the real-valued start solution X∗ = (x∗ij) (see Section 3.4);

Compute the binary start solution X0 by solving a min-cost

max-flow problem for directions d1 and d2, using wij = x∗ij ;

i := 0;

while (stop criterion is not met) do

begin

i := i + 1;

Select a new pair of directions va and vb (1 ≤ a < b ≤ k),

see Section 3.6;

Compute a new solution Xi by solving the min-cost

max-flow problem for directions va and vb, using

the weight function from Section 3.5;

end

Figure 3: Basic steps of the algorithm.

have chosen to solve a real-valued relaxation of the binary tomography problem and determine the
pixel-weights of the first network from the real solution. Consider the system of linear equations

Bx = b (1)

where B is the projection matrix and b is the vector of prescribed linesums. We now allow the pixel-
values (the entries of the vector x) to have any real value instead of just 0 and 1. Because the system of
equations is underdetermined it usually has an infinite number of solutions. We compute the shortest
solution x∗ with respect to the euclidean norm. The motivation for using this particular solution
comes from the following two observations, both from [12]:

Observation 1 Suppose that the system (1) has a binary solution, x̃. Let x̂ be any binary solution
of (1). Then |x̂− x∗| = |x̃− x∗|.

This follows from the fact that x∗ is the orthogonal projection of the origin onto the solution
manifold W = {x ∈ Rmn : Bx = b}. Because x̃ is also in W we can apply the Pythagorean formula:

|x̃− x∗|2 = |x̃|2 − |x∗|2

But because x̃ is a binary vector we have

|x̃| = |{1 ≤ i ≤ mn : x̃i = 1}| =
t∑

j=1

bj

where b1, . . . , bt are the linesums corresponding to the first lattice direction. We observe that |x̃− x∗|
only depends on b. By substituting x̂ for x̃ we find that |x̂− x∗| = |x̃− x∗|. Observation 1 shows that
x∗ is “centered in between” all binary solutions.

Observation 2 Suppose that the system (1) has a binary solution x̃. Let x̄ be an integral solution of
(1). Then we have |x̃| ≤ |x̄|.

This follows from the fact that
mn∑
i=1

x̃2
i =

mn∑
i=1

x̃i =
t∑

j=1

bj =
mn∑
i=1

x̄i ≤
mn∑
i=1

x̄2
i .



3. Algorithm description 8

where b1, . . . , bt are the linesums corresponding to the first lattice direction. We use the fact that
0 and 1 are the only integers that are not less than their squares. Observation 2 shows that the
binary solutions of (1) have the smallest norm among all integer solutions. Therefore the smallest real
solution of the system seems to be a good first approximation to a binary solution.

We use the iterative projection method from [23] for solving the system (1). Because the matrix
B is very sparse all computations can be performed efficiently. The accuracy that is required for our
purpose is quite low, because we are only seeking a first approximation. Therefore we can terminate
the iterative algorithm after a small number of iterations. For all experiments in Section 4 we used
300 iterations.

After the pair of projections for the first iteration of the reconstruction algorithm has been selected,
the entries of x∗ are used as pixel weights in the corresponding transportation problem.

3.5 Computing the pixel-weights
In every iteration of the algorithm the pixel-weights are recomputed for all pixels in the image. In
this computation we incorporate the preference of smooth images over random images, having no
particular structure. The new weight of a pixel depends not only on the corresponding pixel value
in the reconstruction from the previous iteration, but also on the values of pixels in a neighborhood.
The basic idea is that a black pixel that is surrounded mainly by black pixels is more likely to remain
black in the next reconstruction than a black pixel that is surrounded by white pixels.

Let F ∈ F be the reconstructed image from the previous iteration. As a neighborhood of the pixel
p = (xp, yp) we choose a square centered in (xp, yp). The reason for preferring a square neighborhood
over alternatives is that the required computations can be performed very efficiently in this case.

Let p = (xp, yp) ∈ A. Let r be a positive integer, the neighborhood radius. Put

N = { (x, y) ∈ A : xp − r ≤ x ≤ xp + r, yp − r ≤ y ≤ yp + r }.

In case p is near the boundary of the image, the neighborhood N may contain fewer than (2r + 1)2

pixels. Let s be the number of pixels in N that does not have the same color as p, and let f be the
relative fraction of such pixels:

s=| { (x, y) ∈ N : F (x, y) 6= F (xp, yp) } |,

f=
s

|N |
.

Put d = F (xp, yp)− 1
2 . We now choose the pixel-weight wxp,yp of p:

wxp,yp
=

F (xp, yp) + 8d (f = 0)
F (xp, yp) + (3− 4f)d (0 < f < 0.35)
F (xp, yp) (f ≥ 0.35).

In each of the three cases, a preference is expressed for retaining the pixel value of p in the next
reconstruction, instead of changing it. In the case that the whole neighborhood of p has the same
color as p, this preference is very strong. If the neighborhood contains a few pixels having a different
color, the preference is smaller. If there are many pixels in the neighborhood that have a different color,
the preference is even smaller. The chosen pixel weights are somewhat arbitrary. Several alternative
expressions performed equally well, but we used this weight function for all our experimental results.
The neighborhood radius is not constant during the algorithm. In the experiments, we used two
phases: during the first phase, which resolves the coarse structure of the image, we use r = 8. The
large neighborhood radius leads to a strong smoothing effect. After 50 iterations, the neighborhood
radius is set to 1. From this point on, the fine details in the image are gradually reconstructed.
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3.6 Choosing the direction-pair
In every iteration of the algorithm a new pair of projections is selected which must be different from
the pair of the previous iteration. It is allowed however that one of the two chosen projections is also
used in the previous iteration.

When the number of prescribed projections is small (not greater than 6), we choose to iterate over all
possible pairs of two directions. It is of great importance for the performance of the algorithm that all
pairs of projections are used, not just all single projections. For example, in the case of four directions
– horizontal, vertical, diagonal and anti-diagonal – the algorithm performs much better when all 6
pairs of directions are used than when only the pairs horizontal/vertical and diagonal/anti-diagonal
are used. Tables 1 and 2 show the order in which the projection pairs are used for the case of four
and five prescribed projections respectively, where the projections are numbered from one through
four (five). These orders perform very well in practice, but several other orders which show similar
performance can be chosen.

iteration 1 2 3 4 5 6
1st dir. 1 3 1 2 1 2
2nd dir. 2 4 3 4 4 3

Table 1: Projection-pair order for four projections

iteration 1 2 3 4 5 6 7 8 9 10
1st dir. 1 3 5 2 4 1 2 3 4 5
2nd dir. 2 4 1 3 5 3 4 5 1 2

Table 2: Projection-pair order for 5 projections

When the number of directions is larger it is no longer feasible to iterate over all possible direction
pairs, which grows quadratically with the number of directions. Instead we use a heuristic to select
the new direction pair. The heuristic first computes all projections of the current images. Then
it compares these projections to the prescribed projection data and selects the pair of directions
for which the total difference (the sum of the absolute values of linesum differences) between the
image projections and the prescribed projections is the largest. We remark that unless the current
reconstruction perfectly satisfies all projection constraints, these directions will always be different
from the two directions used in the previous iteration. This heuristic is not suitable when the number
of projections is very small. When reconstructing from 4 projections, for example, using the heuristic
would result in using only 2 direction pairs, alternating between those pairs. Such cycling is much
less likely to occur when the number of projections is larger.

3.7 Stop criterion
As we cannot evaluate how close the current reconstructed image is to the unknown original image,
the only measure for the distance between those two images is the distance between their respective
projections. In theory, this is not a good measure at all, since there may be two images which are very
different, yet have similar projections. For the classes of smooth images that we focus on, however, this
does not seem to be the case. In all our experiments using more than three projections we found that
when the projections of the reconstruction got close to the prescribed projections, the reconstructed
image was also close to the original image. Only when using three projections it sometimes occurred
that the reconstructed image was quite different from the original image while the projections of both
images were almost the same.
We use the distance between the projections of the current reconstructed image and the prescribed
projections for defining termination conditions for our algorithm. When the reconstructed image
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has exactly the prescribed projections, the algorithm terminates. If no improvement is made in the
distance between the prescribed projections and the projections of the reconstructed image in the last
T iterations, where T is a positive integer, the algorithm also terminates. We used T = 100 for all
experiments in Section 4.
Whenever the distance between the projections of the current image and the prescribed projections
becomes less than a certain constant S the algorithm will always terminate after a maximum of N
iterations, where N is a positive integer. This is to avoid cycling around the optimal solution. We
used S = 100, N = 50 for all experiments. The algorithm always terminates after a maximum number
U of iterations. We used U = 1500 in the experiments. Termination after the maximum number of
iterations usually means that the algorithm did not find an accurate reconstruction.

4. Results
4.1 Experimental setup
We have implemented our algorithm in C++. We use the CS2 network flow library by Andrew
Goldberg for solving the minimum cost flow problems (see [9]). This library is publicly available for
noncommercial use. All results in this section were obtained using an AMD Athlon XP2800 PC.

The main criterion for evaluating the performance of any DT algorithm should be the resemblance
of the reconstructed image to the true physical object. Although in practical situations the “original”
image is unknown, we can compare the original image to the reconstruction when working with
artificial test images.

Different classes of images require a different number of projections to be reconstructed correctly.
So far, we have no way to compute in advance how many projections will be enough. In this paper,
we do not focus on which set of directions is best for our algorithm. We use a fixed set of directions
instead. Put

D := {v1, . . . , v16} = {(1, 0), (0, 1), (1, 1), (1,−1), (1, 2), (2,−1), (1,−2), (2, 1),
(2, 3), (3,−2), (2,−3), (3, 2), (1, 3), (3,−1), (1,−3), (3, 1)}

When reconstructing images from k ≤ 16 projections, we use the set {v1, . . . , vk} of directions.

4.2 Qualitative description of algorithm performance
Our algorithm can be used for a wide range of images and a wide range of available projections.
The number of projections that is required for accurate reconstruction greatly depends on the type of
image. Before describing more detailed results for specific image classes, we will give a more qualitative
description of the performance of our algorithm.

For reconstructing images such as the one shown in Figure 4a, four projections usually suffice.
The structure of the object boundary is fairly complex, but the object contains no “holes”. Our
algorithm reconstructed the image perfectly from four projections (horizontal, vertical, diagonal and
anti-diagonal).

Figure 4b shows a much more complicated example. The object contains many cavities of various
sizes and has a very complex boundary. Some of the white holes inside the black region are only
a single pixel in size. In this case, our algorithm requires six projections to compute an accurate
reconstruction. Some of the fine details in this image are not smooth at all. Still, the fine details are
reconstructed with great accuracy. The image 4c is even more complex. It requires 8 projections to
be reconstructed perfectly.

When the image contains no structure at all, our algorithm performs very badly. Figure 4d shows
an image of random noise. The reconstruction from 12 projections shows that our algorithm has
a preference for connected areas of white and black pixels. In this case, however, the smoothness
assumption is obviously not satisfied by the original image. The distance between the projections of
the image found by our algorithm and the prescribed projections is very small, however.

The image in Figure 4e has more structure, but it contains no large black areas. Still, the image
is smooth enough to be reconstructed perfectly from only 5 projections. This example also illustrates
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a. Original image Reconstruction, k = 4 b. Original image Reconstruction, k = 6

c. Original image Reconstruction, k = 8 d. Original image Reconstruction, k = 12

e. Original image Reconstruction, k = 5 f. Original image Reconstruction, k = 12

Figure 4: Six original images and their reconstructions.

that very fine, non-smooth details can be reconstructed by our algorithm, as long as the entire image
is sufficiently smooth.

Figure 4f shows a vascular system, containing several very thin vessels. Our algorithm can recon-
struct the original image perfectly from 12 projections. This is quite surprising, since the very thin
vessels have a width of only one pixel, so they are not very smooth. Still, the smoothness of the
thicker vessels provides the algorithm with enough guidance to reconstruct the original image.

Although the examples in Figure 4 give an impression of the reconstruction capabilities of our
algorithm, we cannot draw general conclusions from them. In the following two sections we propose
three classes of images from which a random sample can be taken. We will report statistical data on
the performance of our algorithm on a large number of test instances.

Our experiments with the algorithm show clearly that for each class of images, there is a certain
minimum number of projections, kmin which is required to reconstruct all images correctly. When the
number of prescribed projections is smaller than kmin, many reconstructions fail. When more than
kmin projections are known, the algorithm converges faster to an accurate solution. Figure 5 shows
what happens when the number of prescribed projections is too small. The algorithm still converges,
but the resulting image is very different from the original image. Even though the projections of the
reconstructed image are still different from the prescribed projections, the reconstructed image is a
fixpoint of the iterative procedure. After adding an extra projection, the algorithm can reconstruct
the original image perfectly, within a small number of iterations.
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Original image Rec., k = 4 Rec., k = 5

Figure 5: Using too few projections results in very bad reconstructions.

4.3 Random polygons
For our first class of test images, we implemented a program which generates images that consist of a
number of black polygons on a white background. The program takes as input the size of the image,
the number n of polygons and the number p of points that are used to generate each polygon. In order
to generate a polygon, a random set of p pixels is generated, using a uniform distribution. The convex
hull of these pixels is used as the new polygon. The final image is a superposition of n polygons that
have been generated in this way. Figures 6 shows several example images that were generated by the
program, using two different pairs of parameters (n, p).

Figure 6: Test images generated by the polygon program. Top row: n = 5, p = 8. Bottom row:
n = 12, p = 4.

For both these pairs (n, p) we performed 200 test runs, using 3, 4 and 5 projections. All test images
are of size 256× 256. For more than three projections, the algorithm typically either converges to an
image which (almost) perfectly satisfies the projection constraints, or it converges to an image which
does not even come close to satisfying those constraints. In the former case, we always observed that
there were very few differences between the reconstructed image and the original image. Only when
using three projections, we observed that for many reconstructed images the difference between their
projections and the prescribed projections was small, yet they were very different from the original
images. For each set of test parameters, we report not only the average results over all test cases,
but also the average results over the set of test cases for which the reconstruction was succesful. By
a succesful reconstruction we mean that the distance between the projections of the image found by
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our algorithm and the prescribed projections is less than 20k (where k is the number of projections).
In other words, the projections of the reconstructed image approximate the prescribed projections
very well. The reason for letting the definition of a successful reconstruction depend on the number
k of projections is that pixel errors in the resulting image (compared to the original image) typically
result in errors in each of the projections. A single pixel error in the resulting image results in a larger
distance from the prescribed projections when the number of projections is larger.

n p k #success #perfect proj.error pixel error #iter. time(s)
5 8 3 200 59 32 538 109 14

4 200 200 0.0 0.0 66 11
3 195 0 51 2428 119 15
3* 50 2408 118 15

12 4 4 190 190 12 62 123 18
4* 0.0 0.0 106 16
5 200 200 0.0 0.0 108 18
6 200 200 0.0 0.0 63 14

Table 3: Experimental results for the “random polygons” test cases

Table 3 shows the test results. The first three columns contain the test parameters n, p and k. The
next two columns contain the number of successful and perfect reconstructions among the 200 test
runs. We consider a reconstruction to be perfect if it is identical to the original image from which the
projection data was computed. The next four columns contain the average projection error, average
number of pixel differences with the original image, average number of iterations (network flow steps)
and average running time. For those sets of test parameters for which only a subset of the images was
reconstructed successfully, we also show the average results for this subset. We use an asterisk (*) to
indicate that we consider only succesful reconstructions. Our algorithm typically requires far fewer
iterations for successful reconstructions compared to unsuccessful reconstructions.

When using our definition of a succesful reconstruction, all images for the case (n, p, k) = (5, 8, 3) are
reconstructed “successfully”. The results show clearly however, that although the average projection
error is very small, the average pixel error is quite large. In this case, having a small projection distance
is apparently not sufficient for reconstructing an image which is very similar to the original image.
For more than three projections the situation is different. The results for the succesful reconstructions
(indicated by an asterisk) show that in these cases having a small projection distance implies that the
reconstruction is very similar to the original image.

4.4 Random ellipses
For the second class of test images we implemented a program which generates images that consist of
a number of black ellipses on a white background. The parameters of the program are the size of the
image, the number n of ellipses and the minimal and maximal radius (rmin and rmax respectively) of
the ellipses (for both axes), measured in pixels. The program generates a random image containing
the desired number of ellipses. For each ellips, a random point (xc, yc) ∈ A is chosen as the center.
Both radii rx and ry are selected randomly as integers from the interval [rmin, rmax], using a uniform
distribution. A random angle φ ∈ [0, π] is selected, over which the ellips is rotated. Put a = 1

r2
x
, b = 1

r2
y
.

The equation describing the interior of the ellips becomes

(a cos2 φ + b sin2 φ)(x− xc)2 +
(a sin2 φ + b cos2 φ)(y − yc)2 +
2(b− a) cos φ sinφ(x− xc)(y − yc) ≤ 1

All pixels (x, y) which satisfy this equation are colored black. While generating ellipses, the ellipses
that have already been drawn are not taken into account in any way. Therefore it may happen that a
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previously drawn ellips is completely covered by a new one. Figure 7 shows five examples of images
that were generated by this program, each using different parameter settings.

a. (15, 20, 40) b. (50, 5, 35) c. (50, 5, 25) d. (100, 5, 25) e. (200, 5, 10)

Figure 7: Five images that were generated by the ellips program, each using different parameters
(n, rmin, rmax).

The images generated by the program are all very smooth: they contain large white and black areas.
As Figure 7 shows, by adjusting the program parameters we can sample many classes of images, each
having their own characteristics. For each of the parameter settings shown in Figure 7 we performed
200 test runs. All test images are of size 256× 256. The results are shown in Table 4.

N rmin rmax k #suc. #perf. proj.err. pixel err. #iter. time
4 77 77 170 3257 286 36

15 20 40 4* 0.0 0.0 180 24
5 200 200 0.0 0.0 109 19
6 200 200 0.0 0.0 64 13
5 9 9 737 7597 405 57
5* 0.0 0.0 251 37

50 5 35 6 121 113 577 2779 286 43
6* 1.8 292 224 34
7 200 162 5.9 1.2 103 22
8 200 159 7.5 1.3 85 20
6 40 35 1202 6510 387 54
6* 2.6 617 329 46
7 147 109 521 1289 225 37

50 5 25 7* 7.1 1.4 154 27
8 200 162 6.3 1.1 97 21
9 200 130 13.2 1.9 92 21
7 53 11 1589 4455 395 61
7* 26 5.2 376 56
8 186 63 270 457 240 40

100 5 25 8* 35 5.9 215 37
9 200 73 31 4.5 160 31
12 49 5 6699 6157 625 117
12* 81 8.2 782 137

200 5 10 14 200 27 107 9.0 356 68
16 200 26 131 9.5 229 48

Table 4: Experimental results for the “ellips” test cases
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4.5 Random ellipses with noise
So far, the images that we described were very smooth. Surprisingly, our algorithm can also re-
construct very fine non-smooth details. We generated a relatively smooth image of size 256 × 256
with fine non-smooth details by using the ellips program of the previous section — with parameters
(n, rmin, rmax) = (50, 5, 35) — and subsequently inverting a set of s random pixels, where s is a pos-
itive integer. We remark that we still use exact projection data: the original image is “polluted” by
noise, not the projection data. Figure 8 shows three polluted images — for s = 50, 100, 200 — and
their reconstructions from 9, 11 and 12 projections respectively. Although in none of the cases the
reconstruction is perfect, most of the very fine details are accurately reconstructed.

a. s = 50 b. s = 100 c. s = 200

Reconstruction, k = 9 Reconstruction, k = 11 Reconstruction, k = 12

Figure 8: Top: polluted versions of an image generated by the ellips program. Bottom: corresponding
reconstructions of the polluted images.

4.6 Noisy projection data
In the previous section we considered noisy images for which the projection data is known exactly.
We now turn to the case where the projection data itself is noisy, which is practically more realistic.

The network flow approach from Section 3.2 cannot be used directly when the projection data is
not perfect, as the transportation problem that corresponds to any two-projection subproblem may
not have an exact solution. Instead of the transportation problem, we need to use a slightly modified
network flow problem, see Figure 9. Each arc in the network has an associated capacity u and cost c,
which are shown in the figure as u/c.

The middle layer of the network still resembles the graph that corresponds to the transportation
problem. The graph has been augmented with a source node S and a sink node T , a set of outgoing
arcs from the source node and a set of incoming arcs to the sink node. For each row node Ri, there are
two arcs from S to Ri. The first arc has capacity ri (the prescribed row projection) and cost 0. The
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Figure 9: Network for the case of noisy projection data.

second arc, which we call the overflow arc, has capacity n − ri and cost K, where K is a very large
integer. The set of arcs from the column nodes to the sink node has a similar structure, where the
overflow arc for column j has capacity m− sj . The pixel arcs all have capacity one and arc (Ri, Cj)
has cost cij = −wij , where wij is the pixel-weight of the pixel in row i and column j.

The amount F of flow through the network, which equals the number of ones (black pixels) in the
resulting image, is determined by averaging the sum of all linesums over all projections and rounding
to the nearest integer. The number of black pixels is the same for all pairs of projections.

In each iteration of the algorithm the network that corresponds to the selected pair of directions
is constructed and a flow of F units from S to T is computed that has minimal cost. Exceeding
a prescribed linesum results in a high penalty cost of K per flow unit, but is allowed. Clearly, if
F ≤ mn, this min-cost max-flow problem always has a solution and as little flow as possible will go
through overflow arcs. When the projection data is exact, the resulting min-cost max-flow solution
will be identical to the solution of the original transportation problem and none of the overflow arcs
will carry any flow.

To generate noisy projection data, we start with perfect projection data and generate for each
linesum v a random sample r from a normal distribution with average µ = 1 and variance σ2. The
original linesum is replaced by rv. This model seems reasonable, since in many practical measurements
the noise level increases with the amount of material (black pixels) that an X-ray passes. Figure 10
demonstrates the performance of our algorithm for various noise levels and number of directions.
The quality of the reconstruction degrades gradually as the noise level increases. A more accurate
reconstruction can be obtained by increasing the number of projections. Even when σ = 0.05, the
reconstruction from 12 projections reveals almost all features of the original image.

4.7 Comparison with alternative approaches
As there are hardly any test images for discrete tomography available from the literature, it is very
difficult to compare our results to those of other authors. In addition, there are few papers which
describe the reconstruction of images as large as 256 × 256 pixels. In this section we compare the
reconstruction results of our algorithm to the results of two alternative algorithms for a small set of
test images.

In their paper “The discrete Radon transform and its approximate inversion via linear programming”
[6], Fishburn et al. describe a relaxation of the Reconstruction Problem (Problem 1) that can be solved
by linear programming. The authors present reconstruction results for three small test images (around
40× 40 pixels). The resulting reconstruction is real-valued, all pixel values are between 0 and 1. We
implemented this approach using the GNU Linear Programming Kit. As a post-processing step, all
pixel values are rounded to obtain a binary solution.
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a. Original image b. Rec., k = 8, σ = 0.01 c. Rec., k = 8, σ = 0.02 d. Rec., k = 8, σ = 0.035

e. Rec., k = 8, σ = 0.05 f. Rec., k = 12, σ = 0.035 g. Rec., k = 12, σ = 0.05 h. Rec., k = 12, σ = 0.1

Figure 10: Reconstruction results for noisy projection data.

In the paper “Approximating binary images by discrete X-rays” [10], Gritzmann et al. describe a
greedy algorithm for reconstructing binary images from their projections. The paper reports recon-
struction results for images up to 512× 512 pixels. We implemented the Greedy-C algorithm and the
Improvement postprocessing step. The combination of these two procedures was reported to perform
best compared to the other proposed algorithms in the paper.

It is important to stress that the two alternative approaches do not incorporate smoothness as-
sumptions. Figure 11 shows the reconstruction results for four test images. The test images all have
a size of 128 × 128 pixels, because the running time of the linear programming approach becomes
prohibitively large for larger images. The figure indicates the number of projections that was used
for each test image and the running times for each of the algorithms. Note that the running times
depend on the actual implementation. Our implementation of the two alternative approaches could
probably be optimized more.

The reconstruction results indicate that the reconstruction quality of our algorithm is far better
than for the alternative approaches when the image is relatively smooth. Even for the vessel-like
structure, which contains many thin lines our algorithm computes a very accurate reconstruction.
The algorithm from Gritzmann et al. is the fastest, but it results in a poor reconstruction quality.
Our algorithm is not much slower and is even very fast compared to the approach of Fishburn et al.

5. Discussion
The experimental results show clearly that for a broad spectrum of images, our algorithm can compute
high quality reconstructions from a small number of projections. This gives rise to great optimism on
the feasibility of reconstructing images from so few projections. Many important theoretical results
have been focused on the reconstructibility of general images, for which no a priori assumptions
are given. These results tend to be very pessimistic. We have shown that rather soft smoothness
assumptions are already sufficient to change the reconstructibility properties dramatically.

Although discrete tomography has a substantial number of potential applications, it has never been
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a. k = 4 b. 2.7s a. 67s a. 1.6s

a. k = 7 b. 5.7s a. 1260s a. 2.8s

a. k = 10 b. 14s a. 1853s a. 0.5s

a. k = 5 b. 4.6s a. 783s a. 0.1s

Figure 11: Reconstruction results for four test images. a. Original image; b. result of our algorithm;
c. result of Fishburn et al. [6]; d. result of Gritzmann et al. [10].

used in large practical areas. We think that our soft smoothness assumptions are satisfied in many
cases that occur in practice. In practice, most images are neither completely random, nor do they
obey strict mathematical constraints, such as convexity. Our algorithm performs very well in this
intermediate case, by using the assumption that the image is relatively smooth while not enforcing
any rigid structure assumptions, so that tiny, non-smooth details can also be reconstructed.

The grid model that we use, in which lattice lines only contain a discrete set of grid points, is widely
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used in the literature on discrete tomography (see, e.g., [14]). In particular, it serves as a model for the
electron microscopy application, where atoms are arranged in a lattice. For several other applications,
however, the modelling of images as plane sets is more appropriate (see, e.g., [18], [17]). In medical
imaging, for example, the measured linesums are actually line integrals of a certain density function
on the plane. The basic principles of our algorithm can be generalized to cover a much wider range of
discrete tomography models. We intend to report on several such generalizations in future publications.

For each of the image classes that we used for testing, the results showed a clear and often also
sharp lower bound on the number of required projections. When raising the number of projections
above this lower bound, the running time of the algorithm decreases, up to certain point where adding
additional projections no longer results in reduced reconstruction time.

Fortunately, the best known algorithms for solving minimum cost network flow problems have a low
time complexity. Although their worst case running time is not linear in the input size, we observed
almost linear behavior when increasing the image size. Therefore our algorithm can even be used
for reconstructing images as large as 1000 × 1000 pixels, although that may require several hours of
computation time.

By adapting our algorithm as described in Section 4.6 our algorithm can also be used in the case of
noisy projection data. It is hard to make a good comparison between our algorithm and alternative
approaches, because few good alternatives are available. The results in Section 4.7 indicate that for
smooth images the reconstruction quality of our algorithm is much better than for the two alternative
approaches that we tested.

6. Conclusion
We have presented a new algorithm for reconstructing binary images from a few projections. We
demonstrated that the algorithm is capable of making very accurate reconstructions for a wide range
of test images. The algorithm utilizes soft smoothness assumptions, yet it is capable of reconstructing
very fine details. In its basic form the algorithm assumes perfect projection data, but it can be adapted
to work in the case of noisy projection data as well. A brief comparison between our algorithm and
two alternative approaches showed that for images which are relatively smooth the reconstruction
quality of our algorithm is far better than for the other two algorithms. Future work will include
the exploration of several possible generalizations and methods to lower the running time of the
algorithm.
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