
Robust artefact reduction in tomography using
Student’s t data fitting

Folkert Bleichrodt∗, Tristan van Leeuwen†, K. Joost Batenburg∗‡§
∗Centrum Wiskunde & Informatica

Science Park 123, 1098 XG Amsterdam, The Netherlands
Email: {F.Bleichrodt,K.J.Batenburg}@cwi.nl

†Utrecht University
Budapestlaan 6, 3584 CD Utrecht, The Netherlands

Email: T.vanLeeuwen@uu.nl
‡University of Antwerp

iMinds-Vision Lab, Universiteitsplein 1, B-2610 Antwerp, Belgium
§Leiden University, Mathematical Institute

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract—Algebraic methods are popular for tomographic
image reconstruction from limited data. These methods typically
minimize the Euclidean norm of the residual of the correspond-
ing linear equation system. The underlying assumption of this
approach is that the noise has a Gaussian distribution. However,
in cases where large outliers are present in the projection data,
e.g., due to defective camera pixels, photon starvation from metal
implants etc., the equation system is not consistent and the
reconstruction will be fitted to these outliers, resulting in artefacts
in the reconstruction.

In this paper we use a penalty function for the residual that
is based on the maximum likelihood estimate from the Student’s
t distribution, which assigns a smaller penalty to outliers. No
preprocessing is required to locate the outliers. We demonstrate
the effectiveness of this approach on a 3D cone-beam simulated
dataset for a series of perturbations in the projection data.
Our results suggest that artefacts due to metal objects, defective
camera pixels, or corrupted (randomized) projection images can
be suppressed by using algebraic reconstruction methods in
combination with the Student’s t penalty function.

I. INTRODUCTION

Tomography is a technique for reconstructing a 3D volume
from 2D projection images, such as X-rays obtained in CT-
scanners. A 3D reconstruction can be obtained from the
projection images by solving an inverse problem. In algebraic
reconstruction methods a linear system of equations is solved
that represents a discretization of the Radon transform [1, 2]:

Wx = p. (1)

The projection matrix W ∈ RM×N relates pixel values in
the tomographic reconstruction x ∈ RN (gray values) to
discrete detector measurements p ∈ RM . In experiments the
projections are perturbed by an unknown noise vector ε,

p̃ = p+ ε.

Most algebraic methods such as SIRT, CGLS or LSQR [3,
4, 5] optimize the consistency of the reconstruction in the
Euclidean norm, known as least squares solution:

x∗ = argmin
x

1

2
‖Wx− p̃‖22. (2)

It is well known that this approach is equivalent to finding
the maximum likelihood estimate (MLE) of x under the as-
sumption that the error term or noise ε is Gaussian distributed
[6]. However, the `2-norm assigns a heavy penalty to outliers
in the projection data. Outliers may arise due to acquisition
problems ranging from hardware problems to physical effects
such as scattering or photon starvation due to high density
particles [7]. Because these errors are heavily penalized by
the `2-norm, the solution of eq. (2) will be fitted to these
outliers, producing artefacts in the reconstruction.

In this paper we propose the use of algebraic methods
combined with the Student’s t penalty function to solve the
reconstruction problem in eq. (1). The Student’s t distribution
has heavy-tails meaning that outliers in the noise are penalized
less compared to the `2-norm. Therefore the Student’s t
MLE of the reconstruction should be influenced less by such
outliers.

Many methods for artefact reduction are aimed to remove or
suppress outliers from the projection data [8, 9, 10, 11], which
rely heavily on the accuracy of segmentation techniques to
locate outliers. By minimizing the Student’s t penalty of the
data-fit there is no need for segmentation and therefore the
method is not biased by the result of a segmentation step.

We explain the method for finding the Student’s t MLE
of the reconstruction in section II. Subsequently, results are
presented for a series of 3D cone-beam simulation experiments
for reduction of several kinds of artefacts in section III. Finally,
we discuss the results and conclude the paper in section IV.

II. METHODS

In general, maximum likelihood estimation of x in eq. (1)
gives rise to a maximization problem

max
x

ρ(Wx− p̃),

where ρ(·) is the probability density function (PDF) of the
probability distribution of the noise ε. In practice, the problem



is posed as a minimization problem by taking the − log:

min
x
− log ρ(Wx− p̃).

The resulting estimate x̂ can be interpreted as the most likely
solution of eq. (1) under the assumption that the noise is indeed
distributed according to ρ. When ρ represents the Gaussian
PDF, this leads to the conventional least squares formulation,
eq. (2). When the data contain large outliers, the Gaussian
assumption is violated and a different PDF has to be employed.
A possible choice is the multivariate Student’s t distribution

ρ(r) ∝
∏
i

(1 + r2i /ν)
−(ν+1)/2

,

where ν is the variance. Such an assumption on the noise
allows for large outliers to be present in the residual, whereas
under a Gaussian assumption large outliers are extremely
unlikely and thus the reconstruction will aim to fit them.

The penalty derived from the Student’s t distribution is

p(r) =
∑
i

log(1 + r2i /ν), (3)

and a graph is shown in fig. 1a. The maximum likelihood
estimate is now obtained by solving

min
x
p(Wx− p̃)

using Newton’s method [12]. This leads to an iterative method
of the form

x(k+1) = x(k) + αks
(k),

where αk is the stepsize, determined by a backtracking line-
search and s(k) is obtained by solving

W TH(k)Ws(k) = −W Tg(k). (4)

Here, the gradient g(k) and diagonal matrix Hk are given in
terms of the residual r(k) =Wx(k) − p̃ as

g
(k)
i =

2ri
ν + r2i

,

and
h
(k)
ii =

2

ν + r2i
.

Note that we can use any algebraic method to solve eq. (4), but
in our case we chose the CG method. In effect, the algorithm
repeatedly performs a reconstruction with a weighted residual,
where the weight (ν + r2i )

−1 down-weights large residuals.
If we look at the so-called influence-function [13] of eq. (3)

in fig. 1b which is defined by the gradient, it is clear that
the influence of large residuals r2 � ν is small. However, for
r2 < ν the influence behaves similar to a least squares penalty.
The role of ν can be seen as tuning parameter to indicate
the magnitude of outliers. This parameter can be adjusted
automatically [14], however, in our experiments we estimate
the parameter empirically.

From this point forward we will refer to the methods for
MLE estimation using least squares and Student’s t penalties
as LSQR-MLE and ST-MLE respectively, where we use the
method LSQR for minimizing the `2-norm.
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Fig. 1: Least squares and Student’s t penalty functions and
corresponding influence-functions with ν = 0.5.

(a) 3D rendering (b) slice

Fig. 2: (a) 3D rendering of the Shepp–Logan head phantom
with a wedge cut out of the sample; (b) central slice of size
256× 256.

III. EXPERIMENTS AND RESULTS

In these simulation experiments we consider a 3D Shepp–
Logan head phantom of size 256×256×256 of which a central
slice is shown in fig. 2b. We used the ASTRA tomography
toolbox [15] to generate 180 projection images with 1◦ angular
separation using the cone-beam geometry. The detector has a
size of 284×284 pixels and was positioned in the origin. The
projection matrix is generated on-the-fly by the GPU back end
of the toolbox using a slice interpolation kernel [16].

In the following sections we will discuss several distortions
or perturbations in the projection images that cause severe
artefacts in the reconstruction and we compare a least squares
approach to data fitting using the Student’s t penalty function.

A. Metal artefact reduction

In this experiment we consider the 3D Shepp–Logan head
phantom with six small dense particles that represent metal
implants (density is 10 times that of the outer “skull” region).
A single slice is shown in fig. 3a, the six particles form the
vertices of an octahedron.

In the area of the detector where the metal implants are
projected the data becomes corrupted due to beam hardening,
scatter and photon starvation. For this experiment we focus
on the effects of photon starvation. In the projection data we
simulated a saturation due to photon starvation by setting the
region corresponding to the metal objects to a constant, large
value. The effect of this missing or corrupted data if we apply



(a) slice of phantom (b) LSQR-MLE (c) ST-MLE

Fig. 3: Metal particles Shepp–Logan head phantom and cor-
responding least squares fit and Student’s t fit.
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Fig. 4: Convergence of the `2-norm compared to Student’s t
penalty. These are relative residuals.

LSQR-MLE is shown in fig. 3b. Usually, these regions in the
projection data are either ignored or filled in by interpolation
or inpainting techniques [8, 10, 11]. These methods rely on
sophisticated segmentation techniques in order to locate the
metal implants.

We show a convergence plot in fig. 4 of both penalty func-
tions. This figure shows that the ST-MLE method converges
rapidly compared to LSQR-MLE. Note, however, that the ST-
MLE method requires solving of eq. (4) in each iteration and
is therefore significantly more costly. In all of the following
experiments, the ST-MLE method converges in approximately
10 iterations.

Our proposed method ST-MLE is able to suppress most of
the artefacts, as shown in fig. 3c, while still reconstructing
the metal implants without needing to locate the outliers in
the projection images. There is an underestimation of the gray
value of the skull area, however, visually the reconstruction
is very useful for detecting also smaller details, such as the
three ellipses below the bottom metal particle. Moreover, the
ST-MLE solution can be used initially to obtain a better
segmentation of the metal particles.

B. Defective camera pixels

In the second experiment we simulate the effect of defective
camera pixels. We assume that the detector has several “dead”
detector pixels which measure no photons at all. This produces
bright pixels in the projection images that are constant between

(a) LSQR-MLE (b) ST-MLE

Fig. 5: Defective camera pixels lead to semicircular reconstruc-
tion artefacts. The Student’s t solution is much less affected
by these artefacts.
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Fig. 6: Mean squared error of the reconstruction compared to
the ground truth for an increasing number of dead detector
pixels.

projections. The uncorrected projection data will produce ring
artefacts which are typically removed by inpainting of dead
pixels [9].

We simulated a dataset with 100 randomly selected dead
pixels which we set to a constant value of two times the
maximum value of the projection data. The least squares
solution is shown in fig. 5a. The artefacts are severe, but the
Student’s t approach in fig. 5b is able to remove the artefacts
almost completely.

In fig. 6 we show the effect of increasingly many dead pixels
on the mean squared error of the reconstruction compared to
the ground truth. Surprisingly, even if the number of dead
pixels is close to 50% of the total number of detector pixels
the ST-MLE solution does not seem to be influenced by this
missing data.

C. Randomized projection images

In the final experiment we created a dataset of which we
replaced 50 from the 180 projections by completely random
images (white noise) with average intensity similar to the other
projection images. Although this is not a very realistic dataset,
we want to see how far we can stress our ST-MLE method
and see if it can ignore such inconsistent data.

The LSQR-MLE solution is shown in fig. 7a, which is very
noisy due to the randomized projections. The ST-MLE solution



(a) LSQR-MLE (b) ST-MLE

Fig. 7: LSQR and Student’s t fit for dataset with 50 randomized
projection images out of 180 total projection images.
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Fig. 8: Mean squared error of the reconstructions for an
increasing number of random projections replacing the original
projections.

(fig. 7b) suffers far less from the random projections and only
shows mild noise. There are some streak artefacts because the
projection images in these directions are missing, but this is
expected.

We also compared LSQR-MLE and ST-MLE on datasets
with an increasing number of random projections. Of course
we cannot expect that the ST-MLE solution will be unaffected
by this as was the case in the previous experiment, because
we are essentially removing projections. However, the result
shown in fig. 8 indicates that the ST-MLE method is beneficial
for each of these dataset and is a large improvement over the
least squares solution.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have discussed the Student’s t penalty
function that can be used in combination with Newton’s
optimization approach to produce the maximum likelihood
estimate of the tomographic reconstruction problem eq. (1)
corresponding to the Student’s t distribution. In our exper-
iments we have seen that perturbations introduced in the
projection data due to hardware problems or photon starva-
tion from metal implements is significantly reduced using
our proposed method ST-MLE when compared to algebraic
reconstruction methods that minimize the Euclidean norm of
the residual (LSQR-MLE). In contrast to other methods for
artefact reduction, there is no need to locate outliers in the

projection data by segmentation methods. Therefore, the ST-
MLE method can be applied effectively without any pre-
processing steps. Moreover, the Student’s t penalty can be
used in combination with other reconstruction algorithms and
image priors and has other potential use cases such as artefact
reduction from diffraction effects.
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