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Abstract—Tomographic reconstructions are often segmented
to quantify structure parameters. However, to our knowledge,
no efforts have yet been made to visualize the accuracy of the
segmentation result. This paper introduces a way to visualize the
segmentation error, based on the residual projection error, which
is the difference between the recorded data and the forward
projection of the segmented tomogram. From the residual projec-
tion error, a segmentation error tomogram is reconstructed. This
error tomogram allows to detect errors in the gray levels of the
segmented tomogram, or to discriminate between reconstruction
artifacts and actual features of the scanned object. The proposed
technique is independent of the algorithms that were used to
create and segment the tomogram.

Index Terms—Image segmentation, error reconstruction.

I. INTRODUCTION

In many applications of tomography, the final tomographic
reconstruction (the tomogram) must be segmented before the
results can be analyzed. Segmentation amounts to the classifi-
cation of image pixels into distinct classes, based on similarity
with respect to some characteristic. Image segmentation is
a well established field, and a range of methods has been
developed, using diverse techniques such as global or local
thresholding, region growing, and clustering [1], [2].

Most image segmentation methods are not specific towards
the modality that was used to acquire the image. As a
result, such methods do not exploit the raw data (X-ray
radiographs in case of CT imaging) from which the image was
reconstructed. Recently, global and local thresholding methods
were proposed that do use the projection data to improve
the selection of threshold parameters [3], [4]. In addition,
reconstruction methods were recently developed in which the
segmentation was directly incorporated into the reconstruction
algorithm [5]–[8].

In this paper, the projection data is used to examine the
quality of the segmentation. The proposed method assumes
that the scanned object consists of homogeneous regions, and
then determines how well a given segmentation represents that
object. Moreover, the method can also be used to test for
object homogeneity, since it generates large errors for non-
homogeneous objects. The technique is independent of the
reconstruction and segmentation algorithms.
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The structure of this paper is as follows. In Section II,
the method is introduced. Section III describes the simulation
experiments that were performed to validate it. The results are
discussed and a conclusion is reached in Section IV.

II. METHOD

The projection process in tomography can be modeled as a
linear operator that is determined by the projection geometry.
This leads to a system of linear equations,

Wx = p, (1)

where p ∈ Rm contains the projection data and x ∈ Rn

corresponds to the image. The linear operator is represented
by the m×n matrix W , the projection matrix. An approximate
solution x̂ ∈ Rn of (1) can then be computed, in practice often
by minimizing some norm ‖Wx−p‖. The image x̂ can then
be segmented.

A segmentation method essentially partitions the pixels of
an image into sets Y1, . . . , Yd, where d is the number of classes
(or gray levels) in the segmented image. Since we assume
that the scanned object consists of homogeneous regions, the
segmented image should have the same gray level for all pixels
in a set Yk. From x̂, we create a segmented image s ∈ Rn

by assigning a gray level ρk ∈ R to all pixels in a set Yk, for
each k ∈ {1, . . . , d}. The values of ρ1, . . . , ρd are not known a
priori. Moreover, most of the segmentation algorithms that are
commonly used, do not have these gray levels as an output.
In such case, we use the mean of all pixel values in a class
as an estimate,

ρk =
1

|Yk|
∑
ŷ∈Yk

ŷ, for each k ∈ {1, . . . , d}. (2)

We now define the residual projection error. The segmented
image s is forward projected to give ps ∈ Rm, so ps = Ws.
The residual projection error e ∈ Rm is then defined as

e = p− ps. (3)

This projection error is then reconstructed by solving the
system Wy = e, where y ∈ Rn corresponds to the (unknown)
error image. This results in an approximate solution ŷ ∈ Rn,
the reconstructed residual error.

As mentioned in the introduction, this procedure does not
depend on any particular reconstruction or segmentation algo-
rithm. To create the segmented reconstructions, we use filtered
backprojection (FBP), with a Ram-Lak filter, as an example
of an analytical method. We use the simultaneous iterative
reconstruction technique (SIRT) [9] as an example of an
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iterative method. The reconstructions are globally thresholded
using Otsu’s method [10]. The residual projection error is
reconstructed using SIRT.

III. SIMULATION EXPERIMENTS

All simulation experiments were performed on a square
reconstruction grid of 512×512 pixels. Three phantom images
were created, as shown in Fig. 1. The size of each phantom is
2048 × 2048 pixels. The phantoms are much larger than the
reconstruction grid, to reduce the effect of the pixelation on
the reconstructions.

(a) Phantom 1 (b) Phantom 2 (c) Phantom 3

Fig. 1: Phantom images: (a) two gray levels, (b) three gray
levels, (c) continuous grayscale.

A. Optimally Segmented Reconstructions

In the first simulation experiment, the residual projection
error was reconstructed for a dataset with no noise and a
large number of projections. This demonstrates the result of the
proposed technique with minimal hindrance from reconstruc-
tion artifacts. From Phantom 1, which is a binary phantom,
a synthetic dataset was created using 360 parallel beam
projections, evenly spaced at 0.5◦ intervals. A detector with
512 pixels was used, to simulate the practical situation where
the detector pixel size equals the width of the reconstruction
grid. The “ideal” segmented reconstruction was approximated
by binning Phantom 1 to a 512×512 grid, and then segmenting
it using a threshold of 0.5.

The “ideal” segmented reconstruction was then forward
projected, and the difference with the original projections
computed. This results in the residual projection error, which
was then reconstructed using 300 iterations of SIRT. Fig. 2a
shows the result. The true error (Fig. 2b) was computed as
the difference between the original phantom (Fig. 1a) and an
upscaled version of the ideal segmented reconstruction. For
comparison, the true error is shown downscaled to the same
resolution as Fig. 2a. The true error is only nonzero at the
edges of the different structures, where errors are unavoidable,
since the original phantom is not pixelated at the size of the
reconstruction. The reconstructed residual error (Fig. 2a) is
very close to the true error.

B. Reconstructions with Homogeneous Regions

The second simulation experiment is based on Phantom 2
(Fig. 1b), which contains three gray levels. Reconstructions of
Phantom 2 should consist of homogeneous regions, since the
ground truth object is divided into several such regions (com-
pare with Phantom 3 (Fig. 1c), where this is clearly not the
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Fig. 2: (a) Reconstructed residual error for Phantom 1. (b) True
error for Phantom 1, at the resolution of Fig. 2a.

case). From Phantom 2, a synthetic dataset was created using
90 parallel beam projections, evenly spaced at 2◦ intervals.
A detector with 512 pixels was again used. This synthetic
dataset was then reconstructed twice, once using FBP and
once using 300 iterations of SIRT. These reconstructions were
then segmented using Otsu’s method. The final segmented
reconstructions are shown in Fig. 3. Due to the relatively low
number of projection angles, a number of streaks are visible,
especially in the FBP reconstruction of Fig. 3a.

(a) FBP (b) SIRT

Fig. 3: Reconstructions of Phantom 2, segmented using Otsu’s
method.

The segmented reconstructions were then forward projected,
and the difference with the original projections computed,
resulting in the residual projection error. This was then recon-
structed using 300 iterations of SIRT. Figs. 4a (FBP) and 5a
(SIRT) show the result. For comparison, the true error is also
shown, in Figs. 4b and 5b. As before, there seems to be a
close correspondence between the reconstructed error and the
true error. The streaks from the FBP reconstruction are clearly
visible in the reconstructed residual error (Fig. 4a). Hence, the
error tomogram can be used to discriminate between this type
of artifact and actual features of the scanned object. Apart from
these streaks, the largest errors are again situated at the edges
of the different structures. Figs. 4a and 5a further suggest that
the gray levels of the different objects are underestimated,
since the error is clearly positive and relatively uniform inside
the objects. This is also confirmed by the true error.

Table I shows this quantitatively. It contains an overview
of a number of parameters that were determined from the
reconstructions, while the true gray levels were taken from
Phantom 2. The computed gray levels were determined from
the segmented reconstructions (Fig. 3), from which they were
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Fig. 4: (a) Reconstructed residual error for the FBP recon-
struction of Phantom 2. (b) True error for that reconstruction,
at the resolution of Fig. 4a. The scales have been limited to
[−0.2, 0.2] to keep the smaller errors from disappearing.
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Fig. 5: (a) Reconstructed residual error for the SIRT recon-
struction of Phantom 2. (b) True error for that reconstruction,
at the resolution of Fig. 5a. The scales have been limited to
[−0.2, 0.2] to keep the smaller errors from disappearing.

computed using (2). The gray level errors were computed
from Figs. 4a and 5a, using the same procedure. To verify
the accuracy of the gray level errors, the last lines for each
algorithm in Table I show the corrected gray levels, i.e., the
sum of the computed gray levels and the gray level errors. The
last lines show that the gray level error is a good estimate of
the difference between the true gray level and the computed
gray level, and that it can be used to correct the computed gray
level. This result could potentially be improved even further
by recreating the reconstructed residual error, starting with a
segmented reconstruction that uses the corrected gray levels.

TABLE I: Estimated and true gray levels, noiseless dataset.

Algorithm Parameter ρ1 ρ2 ρ3

FBP True gray level 0.000 0.502 1.000

Computed gray level −0.004 0.476 0.979

Gray level error 0.003 0.018 0.017

Corrected gray level −0.001 0.494 0.996

SIRT True gray level 0.000 0.502 1.000

Computed gray level 0.002 0.491 0.994

Gray level error −0.002 0.010 0.009

Corrected gray level −0.000 0.502 1.002

We also ran these experiments with Poisson noise applied
to the synthetic dataset. The results are shown in Figs. 6
and 7, and in Table II. The quality of the FBP reconstruction

(Fig. 6a) has suffered more from the noise than that of the
SIRT reconstruction (Fig. 7a). In the reconstructed residual
error (Figs. 6b and 7b), the noise from the original projections
is apparent. The results in Table II, however, are still largely
comparable with those from Table I. This means that the gray
level errors in Figs. 6b and 7b, which seem drowned by the
noise, are still quite accurate when averaged. This implies that
we can decide, from the reconstructions of the residual error
in Figs. 6b and 7b, that the segmentation from Fig. 7a is more
accurate than that from Fig. 6a.

(a)
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Fig. 6: (a) FBP Reconstruction of Phantom 2, segmented using
Otsu’s method. Poisson noise was applied to the synthetic
dataset. (b) Reconstructed residual error. The scale has been
limited to [−0.2, 0.2] to make it the same as in Fig. 4.
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Fig. 7: (a) SIRT Reconstruction of Phantom 2, segmented us-
ing Otsu’s method. Poisson noise was applied to the synthetic
dataset. (b) Reconstructed residual error. The scale has been
limited to [−0.2, 0.2] to make it the same as in Fig. 5.

TABLE II: Estimated and true gray levels, dataset with noise.

Algorithm Parameter ρ1 ρ2 ρ3

FBP True gray level 0.000 0.502 1.000

Computed gray level −0.006 0.467 0.979

Gray level error 0.002 0.022 0.020

Corrected gray level −0.004 0.489 0.999

SIRT True gray level 0.000 0.502 1.000

Computed gray level 0.002 0.491 0.994

Gray level error −0.002 0.010 0.009

Corrected gray level −0.000 0.502 1.003

C. Reconstructions with Non-Homogeneous Regions
The last simulation experiment is based on Phantom 3

(Fig. 1c), in which some of the homogeneous objects of
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Phantom 2 are replaced by objects with a continuously varying
intensity. Reconstructions of Phantom 3 are not expected
to consist of homogeneous regions, since the ground truth
object is not a collection of such regions. From Phantom 3, a
synthetic dataset was again created using 90 parallel beam
projections, evenly spaced at 2◦ intervals. This synthetic
dataset was reconstructed using FBP and SIRT, and segmented
using Otsu’s method. The result is shown in Fig. 8.

(a) FBP (b) SIRT

Fig. 8: Reconstructions of Phantom 3, segmented using Otsu’s
method.

As before, the residual projection error was computed and
reconstructed using 300 iterations of SIRT. The result is shown
in Figs. 9a (FBP) and 10a (SIRT). Both figures show that the
reconstructed residual error is useful to discriminate between
objects that can be reconstructed as a homogeneous region (the
homogeneous objects from Phantom 3), and those that cannot
(the objects with continuously varying intensity, which have
large structured errors in Fig. 9a and 10a). The reconstructed
residual error is again quite close to the true error (Figs. 9b
and 10b).
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Fig. 9: (a) Reconstructed residual error for the FBP recon-
struction of Phantom 3. (b) True error for that reconstruction,
at the resolution of Fig. 9a.

IV. DISCUSSION AND CONCLUSION

If tomograms are segmented without exploiting the projec-
tion data, which is often the case, the reconstructed residual
error can still provide information on the quality of the
segmentation.

The result for the ideal segmented reconstruction from
Section III-A shows that the reconstructed residual error is a
good approximation of the true error. For objects that consist
of homogeneous regions, the experiments from Section III-B
show that the proposed method can detect errors in the gray
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Fig. 10: (a) Reconstructed residual error for the SIRT recon-
struction of Phantom 3. (b) True error for that reconstruction,
at the resolution of Fig. 10a.

levels of the segmented reconstruction, even if those are quite
small (Fig. 5), and in the presence of noise. The experiment
from Section III-C shows that the technique can discriminate
between homogeneous and non-homogeneous objects, without
this knowledge being available a priori. Several experiments
also show that artifacts that are visible in the segmented re-
construction, are also visible in the reconstructed residual error
(e.g., Figs. 4a and 9a). Together, the simulation experiments
demonstrate that the reconstructed residual error can be used
as a visual map of the errors in the segmentation.

Reconstructing the residual projection error is a simple
way to visualize the segmentation error of a tomogram. The
technique is trivial to implement, since the only necessary
tools are a forward projector and a reconstruction algorithm.
The computational cost is modest, since only a single forward
projection and a single reconstruction are needed.
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