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In this paper, we present the reconstructed residual error, which evaluates the quality of a given segmen-
tation of a reconstructed image in tomography. This novel evaluation method, which is independent of
the methods that were used to reconstruct and segment the image, is applicable to segmentations that
are based on the density of the scanned object. It provides a spatial map of the errors in the segmented
image, based on the projection data. The reconstructed residual error is a reconstruction of the difference
between the recorded data and the forward projection of that segmented image. The properties and
applications of the algorithm are verified experimentally through simulations and experimental micro-
CT data. The experiments show that the reconstructed residual error is close to the true error, that it
can improve gray level estimates, and that it can help discriminating between different segmentations.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In many applications of tomography [1], such as the delineation
of anatomical structures (in medical imaging) and object detection
(in computer vision), the reconstructed image must be segmented
before the results can be analyzed. Segmentation is defined as the
classification of image pixels into distinct classes, based on
similarity with respect to some characteristic. Numerous methods
have been proposed, such as global and local thresholding, region
growing, clustering, and atlas-guided approaches [2–4].

Given a segmentation, objectively evaluating the accuracy of
that segmentation is not a trivial task [5,6]. Supervised methods
evaluate a segmentation algorithm by comparing its output with
gold standard segmentations. However, since such segmentations
are typically not available in practice, they must often be generated
manually, which is not easy and may make the evaluation subjec-
tive. Unsupervised methods (also sometimes called stand-alone
methods [7]) do not need gold standards, as they evaluate the
segmentation results directly, using one or more of the de facto
standard criteria of Haralick and Shapiro [2]. These methods are
objective and applicable to a wide variety of images, but their
analysis is restricted to the segmentation result itself. A possibility
that is often overlooked, in the specific case of tomography, is
exploiting the available projection images, which can provide
external information about the segmented image.

The current paper introduces the reconstructed residual error,
which does exploit the original projection images. Our method is
applicable to reconstruction problems for which the segmentation
is based on the density of the scanned object, where we use the
term density to refer to the particular physical property of the
object of which linear projections are acquired during the scanning
process (e.g., mass density, X-ray attenuation, electron beam
scattering, etc.). The reconstructed residual error is an unsuper-
vised evaluation in the terminology of [6], since it is an objective
evaluation at the level of the segmentation itself that does not need
a reference image [6, Fig. 1]. In contrast to the unsupervised
methods surveyed in [6], the proposed method does not have
to rely on the criteria of Haralick and Shapiro, since it uses the
projection images as external information.

The reconstructed residual error evaluates a given segmenta-
tion by providing a spatial map of the errors. It is computed by
reconstructing the difference between the recorded data and the
forward projection of that segmentation. The computation of the
error map is independent of the methods that were used for recon-
structing the image and determining the segmentation.

The remainder of this paper is organized as follows. In Section 2,
the reconstructed residual error is defined and its properties are
described in detail. Section 3 reports on the results of experiments,
using both simulations and experimental micro-CT data. These
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results are discussed in Section 4, and conclusions are drawn in
Section 5.

2. Reconstructed residual error

Here, we describe the reconstructed residual error. We first
present an intuitive overview of its computation, before giving a
complete description of its properties.

2.1. Overview

Fig. 1 presents an overview of the computation of the recon-
structed residual error. The example is based on a two-dimensional
slice through objects with simple geometrical shapes and only two
different gray levels (Fig. 1a). The original projection data (Fig. 1b)
is a sinogram, acquired by rotating around the object. This sino-
gram is then reconstructed (Fig. 1c) and segmented (Fig. 1e). For
this overview figure, the segmented reconstruction was computed
by thresholding Fig. 1c, and subsequently choosing gray levels. The
reconstructed residual error is computed from the original projec-
tion data (Fig. 1b) and the segmented reconstruction (Fig. 1e). The
original (non-segmented) reconstruction (Fig. 1c) is not used.

To compute the reconstructed residual error, the segmented
reconstruction (Fig. 1e) is first projected forward. The result of this
operation (Fig. 1d) is then subtracted from the original projections,
resulting in the residual projection error (Fig. 1g). The residual pro-
jection error is then reconstructed to provide the reconstructed
residual error (Fig. 1h), which provides a spatial map of the seg-
mentation error. From Fig. 1h, it is clear that both gray levels of
the segmented reconstruction are incorrect. The erroneous lines
and dots in the segmented reconstruction (Fig. 1e), which are
caused by artifacts in the reconstruction (Fig. 1c), are also clearly
visible in Fig. 1h. Note that the true error (Fig. 1i), which is the dif-
ference between the original object (Fig. 1a) and the segmented
reconstruction, is quite close to the reconstructed residual error.
Fig. 1. Overview of the computation o
An alternative that might be considered, is to simply compute
the difference between the original and the segmented reconstruc-
tion (Fig. 1f). However, this difference can be expected to show
much more reconstruction artifacts, as is explained in Section 2.4.
An intuitive way to see this is that, for phantom experiments,
the segmented reconstruction can potentially be identical to the
phantom, in which case the residual projection error (Fig. 1g)
would be zero. Hence, a perfect segmentation would result in the
reconstructed residual error (Fig. 1h) being zero everywhere, while
the difference between the original and the segmented reconstruc-
tion (Fig. 1f) will always exhibit the reconstruction artifacts of the
original reconstruction (Fig. 1c).
2.2. Notation and concepts

The projection process in tomography can be modeled as a lin-
ear operator that is determined by the projection geometry. This
leads to a system of linear equations,

Wxþ n ¼ ~p; ð1Þ

where ~p 2 Rm is the measured projection data, n 2 Rm is the noise,
and x 2 Rn is the unknown image. The linear operator is repre-
sented by the m� n matrix W , the projection matrix. An approxi-
mate solution x̂ 2 Rn of (1) can then be computed, for example by
minimizing some norm kWx� ~pk.

In Sections 2.4 and 2.5, we assume that n ¼ 0 and explicitly
refer to the ground truth object as g 2 Rn, which leads to
p ¼Wg, where p 2 Rm are noiseless projections. We denote a gen-
eral reconstruction algorithm as an operator R : Rm ! Rn, which
leads to x̂ ¼ RWg. The so-called shortest least squares solution is
denoted as xþ, where xþ ¼Wþp, with Wþ the Moore–Penrose
pseudoinverse [8, Section 7.3] of W . We denote the row (or image)
space of W by RðWÞ, and the null space by NðWÞ. See again [8] for
details on these concepts from linear algebra.
f the reconstructed residual error.
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A segmentation partitions the pixels of an image into sets
Y1; . . . ;Yd, where d is the number of classes (segments) in the
segmented image. Determining d can be a difficult problem [9].
However, since the proposed method operates on an already
segmented image, we can assume d to be known. If it is assumed
that the segmentation is based on the density of the scanned
object, then it is possible to assign a gray level qk to each class
Yk that is also related to that density. In Section 2, we assume that
segmentation has been performed and gray levels have been
assigned, resulting in a segmented image s 2 Rn. The actual
segmentation algorithm and the way in which the gray levels were
selected is not relevant for the definition and the properties of the
proposed method. In Section 3, we do detail how we performed
these operations in the experiments.

2.3. Definition

Here, we define the reconstructed residual error. Inputs are the
segmented image s and the measured projection data ~p. First, s is
forward projected to give ps 2 Rm, so ps ¼Ws. The residual
projection error pe 2 Rm is then defined as pe ¼ ~p� ps. Second, the
residual error is reconstructed by computing an approximate
solution of the system

We ¼ ~p� ps; ð2Þ

as for the system of (1). Here, e 2 Rn corresponds to the (unknown)
error image. The approximate solution ê 2 Rn is then defined to be
the reconstructed residual error. The least squares solution is again
denoted by eþ, as for xþ.

The theoretical treatment of the reconstructed residual error in
Sections 2.4 and 2.5 is applicable in two and three dimensions, and
is independent of the geometry of the scanner (e.g., parallel beam,
cone beam, etc.), since that simply results in a different W in (1)
and (2).

2.4. Least squares approach

In this section, we study the reconstructed residual error
under the assumption that the Moore–Penrose pseudoinverse
Wþ is used, both for the original reconstruction and to compute
the reconstructed residual error itself. Doing so makes the recon-
struction algorithm a well-defined operator, and allows us to be
mathematically rigorous. However, despite being useful as a
mathematical model, the Moore–Penrose pseudoinverse is not
a practical reconstruction method due to, e.g., its susceptibility
to noise and high computational cost. Therefore, inverting the
projection matrix is not attempted in practice, and iterative
methods are used to solve the reconstruction problem [10].
Hence, after our initial analysis using the pseudoinverse, we
switch to practical reconstruction methods in Section 2.5 and
show that these also result in an error map that is close to
the true one.

First, we formally define what we mean by the term artifact.
Typically, a reconstructed image contains different types of arti-
facts, with causes such as scanner imperfections, noise, the recon-
struction algorithm, and the segmentation algorithm. In the
current paper, we consider all differences between the ground
truth object and the (possibly segmented) final image to be
artifacts.

Definition 1. The artifacts of an image y 2 Rn are g � y, where
g 2 Rn is the ground truth object.

Each image y 2 Rn can be split into two orthogonal components,

with the first in the row space and the second in the null space of
W . We write this as y ¼ yR þ yN , with yR; yN 2 Rn, and yR ? yN .
Below, we reiterate a few basic properties of W and Wþ, for
convenience.

Property 1: RðWÞ ? NðWÞ.
Property 2: WWþW ¼W .
Property 3: WþWy ¼ yR.

Property 3 implies that the shortest least squares reconstruc-
tion xþ exactly recovers the row space component of g, since
xþ ¼Wþp ¼WþWg ¼ gR.

Proposition 1. g � xþ 2 NðWÞ, i.e., the artifacts of the shortest least
squares solution are in the null space of W .

We have xþ ¼Wþp ¼WþWg. It is instructive to split xþ into
the ground truth and a component that represents the artifacts,
as xþ ¼WþWg ¼ g þ ðWþW � IÞg. On forward projection, the sec-
ond component disappears, since WWþW �W ¼ 0. Hence,
Wxþ ¼Wg, and the artifacts are indeed in NðWÞ.

The implication of Proposition 1 is that the reconstruction arti-
facts of xþ cannot be studied or further reduced by comparing
them with the projection data p after forward projection.

This changes when the reconstruction is segmented. Recon-
struction artifacts are typically non-homogeneous structures
such as streaks and blurring. Segmentation into regions that
each have a given gray level qk, however, results in an image
that is composed of homogeneous regions, since the segmenta-
tion removes the small variations of the gray levels within each
region. Hence, it removes a large part of the reconstruction
artifacts, while, of course, also introducing new artifacts. These
new artifacts are typically very different from reconstruction
artifacts, and mainly consist of erroneous gray levels and
wrongly classified pixels at the edges of different regions in
the image. In contrast with reconstruction artifacts, which are
in the null space of W , segmentation artifacts are not expected
to have zero ray sums. In a homogeneous region with a gray
level offset, individual pixels all share the same error, resulting
in a nonzero total contribution. This means that the artifacts of
s are expected to have a (large) component in RðWÞ, and can
be studied and further reduced by comparing them with the
projection data after forward projection. The reconstructed
residual error is an application of this.

Denote the segmentation artifacts a 2 Rn of s as a � g � s. We
then have the following proposition.

Proposition 2. eþ ¼ aR, i.e., the reconstructed residual error exactly
recovers the row space component of a.

From (2) (with noiseless p substituted for ~p) and ps ¼Ws, we
have eþ ¼Wþðp� psÞ ¼WþWg �WþWs ¼WþWa ¼ aR.

This means that the reconstructed residual error is a reconstruc-
tion of the segmentation artifacts in the same way that the original
image is a reconstruction of the scanned object, i.e., we have
eþ ¼ aR and xþ ¼ gR. The main implication of Proposition 2 is that
the reconstructed residual error can be used to study the segmen-
tation artifacts directly, starting from the segmented
reconstruction.

Finally, we briefly return to the alternative of using the differ-
ence between the reconstruction and the segmented reconstruc-
tion, xþ � s, as an estimate of the segmentation artifacts a, as
mentioned in Section 2.1. We compare the artifacts of xþ � s with
those of eþ. The artifacts of eþ are a� eþ. The artifacts of xþ � s,
seen as an estimate of a, are exactly the artifacts of xþ, since
a� ðxþ � sÞ ¼ g � s� xþ þ s ¼ g � xþ. And, since kak � kgk, we
typically expect that ka� eþk � kg � xþk, which would imply that
the artifacts of xþ � s make it a poor estimate of a.



Fig. 2. Phantom images. (a) Two gray levels, 64� 64 pixels. (b) Two gray levels,
based on the FBP reconstruction of a mouse femur. (c) Three gray levels.
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2.5. General reconstruction algorithms

Leaving behind the ‘‘perfect’’ reconstruction algorithm that is
the Moore–Penrose pseudoinverse, we now investigate how the
results from Section 2.4 change when Wþ is replaced by a practical
reconstruction algorithm. In Section 3, we show experimentally
that doing so still results in useful maps of the segmentation
artifacts. There, we employ several different reconstruction
algorithms, not restricted to linear ones for the reconstruction of
the original image.

If a general, possibly non-linear, reconstruction algorithm is
used for the initial reconstruction, then Proposition 1 is no longer
applicable. However, the reconstructed residual error is computed
from a segmented reconstruction s, which is still expected to have a
(large) component in RðWÞ. Hence, the effectiveness of the recon-
structed residual error is not affected. Moreover, depending on
the component of the artifacts that is in RðWÞ, it might be possible
to study the artifacts of the original reconstructed image directly,
without a separate segmentation step. An obvious example of this
are discrete algorithms such as DART (Discrete Algebraic Reconstruc-
tion Technique), which directly produce a fully segmented result
[11].

A general reconstruction algorithm can also replace Wþ for the
computation of the reconstructed residual error itself. The result is
then no longer exactly the row space component of a. We have the
following proposition.

Proposition 3. For a general reconstruction algorithm R, ê ¼ RWa,
i.e., the reconstructed residual error is the reconstruction of the
segmentation artifacts a.

From (2) (with noiseless p substituted for ~p) and ps ¼Ws, we
have ê ¼ Rðp� psÞ ¼ RðWg �WsÞ ¼ RWa.

Proposition 3 states that ê is a reconstruction of a in the same
sense that x̂ is a reconstruction of the ground truth, since
x̂ ¼ RWg. Together with the shortest least squares solution often
not being a desirable solution anyway, due to noise in the projec-
tion data, this implies that Wþ can be replaced by a suitable more
general reconstruction algorithm for computing the reconstructed
residual error.

3. Experiments and results

In this section, we describe the experiments, for both
simulated and experimental data, that were carried out to
investigate the properties of the reconstructed residual error.
To improve the clarity of the presented results, the simulation
experiments are based on two-dimensional slices and parallel-
beam geometry. However, as was already mentioned in
Section 2.3, the method is readily applicable to three-dimensional
objects and other geometries such as cone beam. The applica-
tion in Section 3.3 uses cone-beam geometry. Since computing
the reconstructed residual error is essentially a reconstruction
problem, the quality of the result depends on the number of
available projections. To demonstrate that the algorithm is also
useful when only relatively few projections are available, most
experiments were based on synthetic datasets with only 90
projections.

Three phantom images were created, the first one (Fig. 2a) is of
size 64� 64 pixels, to allow exact least squares computations
using Wþ. The experiment using Phantom 1 was performed on
a grid of size 64� 64 pixels. Phantoms 2 and 3 (Fig. 2b and c)
are of size 2048� 2048 pixels. These phantoms have a higher res-
olution than the reconstruction grid, which is of size 512� 512
pixels, to reduce the effect of the pixelation on the
reconstructions.
Below, we provide a brief overview of the reconstruction algo-
rithms that were used in the experiments.

(1) FBP (Filtered Backprojection) is an analytical technique
that is directly related to the inverse Radon transform
[1]. A standard implementation of FBP was used, with a
Ram–Lak filter and linear interpolation in the projection
domain.

(2) CGLS (Conjugate Gradient Least Squares) is an algebraic tech-
nique that computes the shortest least squares solution of
(1) [12]. We used 300 iterations of CGLS to approximate
the effect of Wþ, allowing for the use of a larger reconstruc-
tion area than is possible when using the pseudoinverse
directly.

(3) SIRT (Simultaneous Iterative Reconstruction Technique) is an
algebraic technique that computes a weighted least squares
solution of (1) [13]. SIRT was implemented as defined in
[14], performing 300 iterations.

(4) PDART [15] (Partially Discrete Algebraic Reconstruction Tech-
nique) is a partially discrete technique that assumes that
only the densest material is homogeneous. The gray level
of the densest material is exploited as prior knowledge. A
total of 300 iterations was performed.

We used the well-known global thresholding method by Otsu
[16] to compute all segmentations. Otsu’s method provides a
threshold (or several thresholds for the multi-level version of the
algorithm) that can then be used to assign each pixel of the image
to a segmentation class Yk. If appropriate gray levels q1; . . . ;qd are
known, e.g., through prior knowledge about the scanned object,
they can then be assigned to the pixels in the sets Y1; . . . ;Yd, result-
ing in the segmented image s 2 Rn. We did not assume such prior
knowledge in the experiments, and have used the mean of all pixel
values of the original reconstruction that share a segmentation
class as an initial estimate,
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q̂k ¼
1
jYkj

X

y2Yk

y; for each k 2 f1; . . . ; dg: ð3Þ

In the experiments of Sections 3.2 and 3.3, the reconstructed resid-
ual error itself is used to improve upon these initial estimates.

For all experiments, the reconstructed residual error was com-
puted using 300 iterations of SIRT, to make the results comparable.

To determine numerically how close a given error image e 2 Rn

is to the true error, we used the relative Euclidean distance
d : Rn ! R, defined as

dðeÞ ¼ ke� etk2

ketk2
; ð4Þ

where et 2 Rn is the true error.
We now provide an overview of the experiments that follow.

First, the basic properties of the algorithm are studied (Section 3.1).
Then, two applications are presented. It is demonstrated that the
technique can be used to detect and correct errors in the estimate
of the gray levels (Section 3.2). Finally, the technique is applied to
experimental micro-CT data (Section 3.3), to interpret the
differences between two segmentations.
3.1. Properties of the algorithm

The first experiment demonstrates the least squares approach
from Section 2.4. Both the original and the segmented reconstruc-
tion were split into their row and null space components. To be
able to compute Wþ in practice, a small reconstruction area of size
64� 64 pixels was used, and only 32 projections were taken. This
results in a system matrix W of size 2048� 4096, and Wþ of size
4096� 2048. A synthetic dataset was created from Phantom 1
(Fig. 2a), also shown in Fig. 3d, using 32 equiangular parallel beam
projections. Different from the other simulation experiments, noise
was not added to this dataset. The reconstruction (Fig. 3e) was then
computed using the Moore–Penrose pseudoinverse Wþ, making it
the exact shortest least squares solution. The reconstruction was
segmented using Otsu’s method (Fig. 3g). The gray levels of the
segmented reconstruction were determined using (3) on the pixels
Fig. 3. Complete results for a simple phantom, using a least squares approach. Artifacts of
components.
of the original reconstruction, with the Otsu segmentation classes
as Yk (k ¼ 1;2).

The artifacts of the reconstruction are shown separately
(Fig. 3f), and split into row and null space components. As shown
theoretically by Proposition 1, the artifacts are completely in the
null space component (Fig. 3j). The row space component
(Fig. 3a) is zero everywhere. The artifacts of the segmented recon-
struction are also shown separately (Fig. 3h). The main assumption
that was made in Section 2.4, was that the segmentation artifacts
have a (large) component in the row space of W . This assumption
is confirmed by again splitting these artifacts into row and null
space components. The null space component (Fig. 3k) is not zero,
but most of the artifacts are clearly in the row space component
(Fig. 3b). Using the least squares approach of Section 2.4, this
row space component is exactly eþ. However, when the recon-
structed residual error is computed using SIRT (Fig. 3c), the result
is very close to eþ, indicating that SIRT is an acceptable practical
alternative for Wþ in this case. The true error (Fig. 3m), which is
the difference between the original object (Fig. 3d) and the seg-
mented reconstruction (Fig. 3g), is close to both eþ and the recon-
structed residual error as computed with SIRT. The difference
between the original and the segmented reconstruction (Fig. 3i)
can clearly not be used as an alternative. This is confirmed numer-
ically through the first row of Table 1, where (A) is the distance, as
defined by (4), between Fig. 3b and m, (B) is the distance between
Fig. 3c and m, and (C) is the distance between Fig. 3i and m.

The second experiment makes the transition from the least
squares approach to a more practical approach on a larger recon-
struction grid. For this experiment, a synthetic dataset was created
from Phantom 2 (Fig. 2b), using 90 parallel beam projections,
evenly spaced at 2� intervals. A detector with 512 pixels was used,
to simulate the practical situation where the detector pixel size
equals the width of the reconstruction grid. Poisson noise, corre-
sponding to 105 initial photons per detector pixel, was applied to
the synthetic dataset. The dataset was then reconstructed using
300 iterations of SIRT (Fig. 4a), and segmented using Otsu’s method
(Fig. 4d). The gray levels of Fig. 4d were determined using (3) on
the pixels of Fig. 4a, with the Otsu segmentation classes as Yk

(k ¼ 1;2).
both the original and the segmented reconstruction are split into row and null space



Table 1
Distance (4) between true error and (A) row space component of artifacts, (B)
reconstructed residual error computed with SIRT, and (C) difference between original
and segmented reconstructions. The first column shows the phantom and algorithm
that were used for the original reconstruction.

Reconstruction A B C

Phantom 1, Wþ 0:14 0:15 7:31
Phantom 2, SIRT 0:67 0:81 1:98
Phantom 3, FBP 0:66 0:95 3:14
Phantom 3, SIRT 0:80 1:31 2:32
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Using 300 iterations of CGLS as an approximation of Wþ, the
artifacts of both the original and the segmented reconstruction
were then split into their row and null space components. The arti-
facts of the reconstruction are again mainly in the null space com-
ponent (Fig. 4c), even though SIRT has replaced Wþ as the
reconstruction algorithm. The row space component (Fig. 4b) is
small. For the artifacts of the segmented reconstruction, this is
clearly different. The gray level error of the ‘‘bone’’ material, which
Fig. 4. (a) SIRT reconstruction of Phantom 2. (b) Row space component of the reconstruct
SIRT reconstruction of Phantom 2. (e) Row space component of the segmentation artifa
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Fig. 5. (a) Reconstructed residual error for the segmen
is quite subtle because the gray levels were computed from the
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If the reconstructed residual error is computed using SIRT
(Fig. 5a), then the result is close to the row space component of
the segmentation artifacts (Fig. 4e). The reconstructed residual
error is also close to the true error (Fig. 5b). As before, Table 1 (sec-
ond row) numerically confirms that both the row space component
(A) and the reconstructed residual error (B) are closer to the true
error than the difference between the original and the segmented
reconstruction (C).

The third experiment demonstrates that relatively subtle differ-
ences between segmented reconstructions can be visualized using
the reconstructed residual error. This experiment is based on Phan-
tom 3. A synthetic dataset was created, again using 90 parallel
beam projections. Poisson noise, again corresponding to 105 initial
photons per detector pixel, was applied. The dataset was then
reconstructed twice, once using FBP (Fig. 6a), and once using 300
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Table 2
Improving gray level estimates, showing true gray levels (qk), estimated gray levels
ðq̂kÞ, estimated gray level errors ðêkÞ, and corrected gray levels q̂0k

� �
. The first column

shows the phantom and algorithm that were used for the original reconstruction.

Reconstruction Param. k ¼ 1 k ¼ 2 k ¼ 3

Phantom 1, Wþ qk 0:000 1:000
q̂k 0:004 0:985
êk �0:004 0:015
q̂0k 0:000 1:000

Phantom 2, SIRT qk 0:000 1:000
q̂k 0:012 0:904
êk �0:011 0:071
q̂0k 0:000 0:975

Phantom 3, FBP qk 0:000 0:502 1:000
q̂k �0:005 0:474 0:973
êk 0:004 0:024 0:024
q̂0k �0:001 0:498 0:998

Phantom 3, SIRT qk 0:000 0:502 1:000
q̂k 0:003 0:495 0:992
êk �0:003 0:006 0:010
q̂0k �0:000 0:502 1:002
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iterations of SIRT (Fig. 6d). The gray levels were again computed
from the original reconstruction, using the Otsu segmentation
classes.

As before, the reconstructed residual error (Fig. 6b and e) is
close to the true error (Fig. 6c and f, respectively). This is again
confirmed numerically through Table 1 (third and fourth row).
The gray level errors are apparently quite small, in particular for
the segmented SIRT reconstruction (Fig. 6e). However, as we show
numerically in Section 3.2, Fig. 6e can still be used to correct the
gray levels from Fig. 6d.

3.2. Application—improving gray level estimates

In this section, we demonstrate that the gray level estimates of
a segmented reconstruction can be improved using the recon-
structed residual error. Visually, Figs. 3c, 5a, and 6b already suggest
that the gray levels of the different objects are not correct, since
there is a clear and relatively uniform error inside the objects. In
Fig. 6e, this effect is less obvious, but Table 2 shows that this result
can still be used to correct the gray levels.

Table 2 provides a numerical overview of the corrections that
were achieved for the experiments of Section 3.1. The true gray
levels qk were taken from the phantoms (Fig. 2), with k ¼ 1;2 for
Phantoms 1 and 2, and k ¼ 1;2;3 for Phantom 3. The estimated
gray levels q̂k are the gray levels of the segmented reconstructions,
computed using (3) from the original reconstructions. The esti-
mated gray level errors êk were computed from the reconstructed
residual error using (3), the same procedure as for the q̂k. The sum
of q̂k and êk is shown as the corrected gray level q̂0k.

From comparison of the corrected gray levels q̂0k with the true
gray levels qk from the phantom, it is clear that êk is a good
estimate of the difference between q̂k and qk, and that it can be
used to correct q̂k. The corrections that are applied to the gray
levels are relatively small. However, they still have a visible effect
on the segmented reconstructions. This is clear from the
reconstructed residual error (Fig. 7) for reconstructions in which
the corrected gray levels were used, when Figs. 7a–c are compared
with Figs. 5a, 6b, and 6e, respectively.
Fig. 6. (a) Segmented FBP reconstruction of Phantom 3. (b) Reconstructed residual erro
Reconstructed residual error of (d). (f) True error of (d).
3.3. Application—discriminating between segmentations

In this experiment, the reconstructed residual error was com-
puted for experimental cone beam data. A dataset of an ex vivo
mouse femur was acquired with a SkyScan 1172 micro-CT scanner
using 376 projections at 0:5� intervals, at a detector resolution of
5 lm. The SkyScan NRecon software package was used to correct
for ring and beam-hardening artifacts.

The dataset was reconstructed using two different algorithms.
First, it was reconstructed using 300 iterations of SIRT (Fig. 8a)
and segmented using Otsu’s method (Fig. 8b). The gray levels of
the segmented reconstruction were estimated using (3) and the
SIRT reconstruction. Second, it was reconstructed using 300
iterations of PDART (Fig. 9c), using the gray level from the bone
material of the segmented SIRT reconstruction as prior knowledge.
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Fig. 8. (a) SIRT reconstruction of a single slice of the femur dataset. (b) The reconstruction from (a), segmented using Otsu’s method. (c) PDART reconstruction, using the
initial gray level estimate. (d) PDART reconstruction after six correction steps.
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For the segmented SIRT reconstruction, the reconstructed resid-
ual error (Fig. 9a) shows that the gray level for the bone is under-
estimated. Corrections for the gray levels were computed by
applying (3) to the reconstructed residual error of Fig. 9a. With cor-
rected gray levels for the segmented reconstruction, the recon-
structed residual error (Fig. 9b) does not show a systematic error
anymore, in the sense that the bone now contains both positive
and negative errors. For the initial PDART reconstruction (Fig. 8c),
the reconstructed residual error (Fig. 9c) also shows that the gray
level for the bone is underestimated. Additionally, Fig. 9c suggests
that the bone structures are too wide, since they have a region of
negative errors at their edges. From Fig. 9c, the gray levels can
again be corrected using (3). For this particular algorithm, it makes
sense to redo the reconstruction with the corrected gray levels,
since those gray levels are an input of the algorithm. Fig. 8d shows
the resulting PDART reconstruction after six such correction steps.

4. Discussion

In tomography, most techniques that are used for segmentation
and segmentation evaluation do no exploit the projection data.
There are a few algorithms that do exploit this information during
segmentation [17,18], however, they compute a quality measure
that is a single number (the projection distance in [17] and the
segmentation inconsistency in [18]). In contrast, the reconstructed
residual error is a spatial map of the segmentation quality. This
allows studying local variations of the error, which is not possible
using a single number. Moreover, it allows evaluating any given
segmentation, including those that have been computed through
a technique that is not tomography-aware.

The reconstructed residual error can exploit the projection data
because the artifacts of the reconstruction, which are typically lar-
gely in the null space of the system matrix (Figs. 3j and 4c), are lar-
gely in the row space after the segmentation step (Figs. 3b and 4e).
Computing the exact row space component of the segmentation
artifacts is infeasible in practice, due to computational constraints
and noise. However, a regular reconstruction algorithm such as
SIRT can be substituted without much degradation of the results
(compare Figs. 3c and 5a with Figs. 3b and 4e, respectively). This
allows using the reconstructed residual error for practical datasets.

Using the reconstructed residual error, it seems possible to
detect even small errors in the gray levels (Fig. 6b and e), as is evi-
dent from Table 2. Larger errors in the gray levels are visible too
(Fig. 9a and b), but more important in this case is that structural
problems in the original reconstruction are also revealed (Fig. 9c).

The results for experimental micro-CT data also illustrate
another type of analysis that is enabled by the proposed method.
After correction of the initial gray levels of the segmented SIRT
reconstruction (Fig. 8b), the reconstructed residual error (Fig. 9b)
suggests an uneven density of the bone. The conclusion might be
that this effect is real, or that it is due to the scanning process.
However, when the PDART algorithm is used (Fig. 8d), the uneven
density almost completely disappears (Fig. 9d). Hence, this seg-
mentation is compatible with the bone material having a homoge-
neous density. Given the relatively small differences between the
segmented images (Fig. 8b and d), it is not obvious how to choose
between them without access to the reconstructed residual error.
5. Conclusions

We have introduced the reconstructed residual error, as a way
to evaluate the segmentation quality of a reconstructed image in
cases where the segmentation is based on the density of the
scanned object. We have used the Moore–Penrose pseudoinverse
as a mathematical model for investigating the properties of the
technique, and then generalized this approach to practical recon-
struction algorithms.
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The reconstructed residual error provides an accurate map of
the errors in a segmented tomogram. Visually, this map can be
used to study the distribution of the errors. Numerically, it can
be used to improve the gray level estimates. The method has also
been applied successfully to experimental datasets.

The necessary tools to implement the technique in practice are
a forward projector and a reconstruction algorithm. The computa-
tional cost of the algorithm is modest, since only a single forward
projection and a single reconstruction are needed. These aspects
make the adoption of the method quite feasible in practice.
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