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Abstract

Binary tomography is concerned with recovering binary images from a finite
number of discretely sampled projections. Hajdu and Tijdeman outlined an
algorithm for this type of problem in [6]. In this paper we analyze the algorithm
and present several ways of improving the time complexity. We also give the
results of experiments with an optimized version which is much faster than the
original implementation, up to a factor of 50 or more (depending on the problem
instance).



1 Introduction

Binary tomography is concerned with recovering binary images from a finite
number of discretely sampled projections. The main problem is to reconstruct
a function f : A → {0, 1} where A is a finite subset of Z

l (l ≥ 2), if the sums
of the function values along all the lines in a finite number of directions are
given. Typically, line sums are only available in a few directions. The corre-
sponding system of equations is very underdetermined and may have a large
class of solutions. The structure of this solution class was studied by Hajdu and
Tijdeman in [5]. They showed that the solution set of 0-1 solutions is precisely
the set of shortest vector solutions in the set of Z-solutions. By Z-solutions we
mean functions A → Z with the given line sums. It is also shown in [5] that
the Z-solutions form a multidimensional grid on a linear manifold (containing
the R-solutions) in a real vectorspace. The dimension of this vectorspace is the
number of elements in A.
The two results from [5] mentioned above form the basis for an algorithm for
solving the binary tomography problem, proposed in [6]. An important opera-
tion in this algorithm is the Projection operation. This operation involves com-
puting the orthogonal projection of the origin onto a linear manifold. Because
the operation is executed many times and it is very time-consuming on larger
problem instances, we will investigate a method for reducing the time complex-
ity of the operation.
This paper is an extended version of [8], in which new results have been in-
corporated, in particular in Section 4. Its main purpose is to describe several
computational aspects of the Projection operation and to present a method for
reducing the time complexity in some cases. We also describe several other ways
of improving the performance of the algorithm. Our practical results show a
great improvement in runtime over the original implementation from [6].

2 Notation and concepts

The binary tomography problem that we consider in this paper can be stated
as follows:

Problem 2.1 Let k, m, n be integers greater than 1. Let

A = {(i, j) ∈ Z
2 : 0 ≤ i < m, 0 ≤ j < n}

and f : A → {0, 1}. Let D = {(ad, bd)}k
d=1 be a set of pairs of coprime inte-

gers. Suppose f is unknown, but all the line sums
∑

adj=bdi+t f(i, j) (taken over
(i, j) ∈ A) are given for d = 1, . . . , k and t ∈ Z. Construct a function
g : A → {0, 1} such that

∑
adj=bdi+t

f(i, j) =
∑

adj=bdi+t

g(i, j) for d = 1, . . . , k and t ∈ Z.
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We call all pairs (i, j) such that adj = bdi + t for any fixed t a line and the
corresponding sum a line sum. For the theoretical treatment we will restrict
ourselves to the case where A is a two-dimensional array, but generalization
of the presented material to the case where A is an l-dimensional array with
l > 2 is straightforward. In fact, we will show in Section 5.3 that the presented
algorithm can be used for the case l > 2 without any major modification. We
will use the definitions of A and D from Problem 2.1 throughout the rest of this
paper. When trying to solve Problem 2.1 it is sometimes useful to relax the
constraint that the image of the functions f and g must be binary. Therefore
we will also use a modified version of Problem 2.1 where we consider maps from
A to R for any commutative ring R, instead of the set {0, 1}. In particular, the
cases R = Z and R = R are both relevant for this study. We will denote these
cases with (2.1a) and (2.1b) respectively.
A matrix M ∈ R

m×n corresponds directly to a function f : A → R:

f(i, j) = Mi+1,j+1 for 0 ≤ i < m, 0 ≤ j < n.

We will call M the matrix representation of f .
Another representation that we will use is the vector representation. In order
to write the linesum-constraints on a matrix M ∈ R

m×n as a system of linear
equations, having the elements of M as its variables, we regard the matrix M
as a vector. Let v ∈ R

mn. We say that M and v correspond if and only if

Mij = v(i−1)n+j for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The vector representation defines an order on the elements of M . From this
point on, we will use the term entry k to denote the kth entry in the vector
representation. Throughout this paper, we will use the function, matrix and
vector representations interchangeably.
Let s be the number of given line sums. We define the s × mn-matrix B:

Bt,k =
{

1 if line t contains entry k
0 otherwise for t = 1, . . . , s; k = 1, . . . , mn.

We call B the line sum-matrix. The constraints on the line sums of a solution
M to Problem 2.1b can now be formulated as a system of real linear equations
that the corresponding vector-representation v must satisfy:

Bv = b (1)

We define the l2-norm ‖v‖2 =
√∑mn

k=1 v2
k on the vector-representation v.

In this study our starting point will be the algorithm that is presented in [6].
We summarize the results from [5] on which the algorithm is based. Let R be
a commutative ring. We can regard the set of functions F = {f : A → R} as
a vector space over R. The set of functions that have zero linesums along all
directions of D corresponds to a linear subspace, Fz, of F .

Theorem 2.2 Let m, n ∈ N and put M =
∑k

d=1 ad, N =
∑k

d=1 |bd|. Put
m′ = m− 1−M, n′ = n− 1−N . Let R be an integral domain such that R[x, y]
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is a unique factorization domain. Then for any nontrivial set of directions D
there exist functions

muv : A → R u = 0, . . . , m′; v = 0, . . . , n′

such that
Fz = span{muv : u = 0, . . . , m′; v = 0, . . . , n′}

and any function g : A → R with zero line sums along the lines corresponding
to D can be uniquely written in the form

g =
m′∑

u=0

n′∑
v=0

cuvmuv.

A proof of Theorem 2.2 is given in [5], where an explicit way of constructing
the functions muv is presented. According to this theorem, the functions muv

form a basis of Fz. We see that if g, h are both solutions to Problem 2.1, the
difference g − h can be written as a linear combination of the functions muv,
since it has zero linesums in all given directions.
An illustration of the matrices muv for the case when all linesums in the hor-
izontal, vertical, diagonal and antidiagonal directions are given is presented in
[6]. The set of matrices muv consists of the translates of the nonzero part of a
single matrix. This nonzero part is independent of the array-size parameters m,
n. For large arrays, the matrices muv are only nonzero on a small, local group
of entries. Because of the characteristic shape of the set of nonzero entries for
the sample case, the authors of [6] denote the matrices muv by the term mills,
even in the general case where the set of directions D is variable. We will also
use this term.
The following problem connects Problem 2.1a (the integer case) to Problem 2.1
(the binary case):

Problem 2.3 Construct a function g : A → Z such that g is a solution to
Problem 2.1a and ∑

(i,j)∈A

g(i, j)2 is minimal.

Remark 2.4 Problem 2.3 is a generalization of Problem 2.1, because for any
f : A → {0, 1} that is a solution to Problem 2.1a:

∑
(i,j)∈A

f(i, j)2 =
∑

(i,j)∈A

f(i, j) =
∑

(i,j)∈A

g(i, j) ≤
∑

(i,j)∈A

g(i, j)2

with equality if and only if Im(g) ⊆ {0, 1}. Therefore an algorithm that is
capable of solving Problem 2.3 is also capable of solving Problem 2.1.
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3 Description of the algorithm

We will now describe the most important features of the algorithm from [6]. The
original paper offers a much greater level of detail than the material presented
here. For a concise description we refer to Section 3 and 4 of the original paper.
From this point on we will only use the vector representation (as opposed to the
function or matrix representation) for intermediate solutions. We will use the
same notation as introduced in Problem 2.1. At any point in the algorithm we
denote the current solution by x̃.
The algorithm tries to find a solution to Problem 2.3. The first step is to
construct a set of functions

muv : A → R u = 0, . . . , m′, v = 0, . . . , n′

that have zero line sums for all directions in D as described in Theorem 2.2, for
the case R = R. These functions can be stored in the vector representation.
The next step is to compute a solution of the real Problem 2.1b. This comes
down to solving the system of real linear equations that corresponds to the given
line sum constraints. Because this system is usually underdetermined (the num-
ber of variables is much greater than the number of line sums) many solutions
may exist.
According to Remark 2.4, the set of solutions of the binary Problem 2.1 is ex-
actly the set of solutions of the integer Problem 2.1a that have minimal length
with respect to the l2-norm. Therefore we use the solution x∗ of the real Prob-
lem 2.1b that has minimal l2-norm as a starting value for x̃. Because ‖y‖2 is
the same for all binary solutions y, it follows from the Pythagorean formula
that all binary solutions lie on a hypersphere centered in x∗ in the real manifold
W = {x ∈ R

n : Bx = b}, where B is the line sum-matrix.
Next, the algorithm enters the main loop. The general idea is that we can mod-
ify the current real solution x̃ by adding linear combinations of the mills muv

without changing the line sums. The algorithm tries to add these linear com-
binations in such a way that the entries of x̃ become integer values, preferably
0 or 1. In each iteration, one of the functions muv is fixed. This means that it
will not be used to modify the solution in future iterations.
We say that a mill muv overlaps an entry x̃i if the corresponding entry of muv is
nonzero. When all mills that overlap x̃i have been fixed, the value of this entry
cannot be modified anymore. This influences the choice which mill to fix in an
iteration. In each iteration, a border entry is chosen. The set of border entries
consists of all entries that have only one non-fixed overlapping mill. From this
set an entry x̃i∗ is chosen such that |x̃i∗ − 1/2| is maximal. Because |x̃i∗ − 1/2|
is maximal, we can usually predict which of the values 0 and 1 entry i∗ should
have in the final solution. By adding a real multiple of the overlapping mill,
the entry is given this value. After the entry has been given its final value, the
overlapping mill is fixed. We then call the entry x̃i∗ fixed as well.
The property that we can add linear combinations of the mills muv to a solution
x̃ without violating the linesum constraints is also used in the process of local
smoothening. This operation pulls the entries of x̃ towards 0 if they are negative
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and towards 1 if they are greater than 1.
The operations that involve adding a linear combination of mills to the current
solution all have a local effect, because every mill is nonzero for a small, local set
of entries. In order to smoothen the solution globally, the Projection operation
is used. The set locallyfixed is formed, which is the union of the set of fixed
entries and the set of entries x̃i that are not yet fixed for which |x̃i − 1/2| ≥ p3

where p3 is a parameter of the algorithm. A natural choice for this parameter is
p3 = 0.5. Next, all entries in the set locallyfixed are temporarily fixed at binary
values:

x̃i =
{

1 if xi ≥ 1/2
0 if xi < 1/2 for i ∈ locallyfixed

The system Bx = b of linesum equations now becomes

Bx = b and xi = x̃i for all i ∈ locallyfixed. (2)

The solution set of this equation is a sub-manifold of the manifold
W = {x ∈ R

n : Bx = b}. Similar to the computation of the start solution,
we now compute the shortest vector in the solution manifold of (2). We repeat
the projection process until either equation (2) no longer has a solution or
a stop criterion is satisfied, indicating that all entries of the current solution
are close to the range [0, 1]. The last valid solution that is found before the
projection procedure finishes is used as the new current solution x̃. We remark
that although a number of entries of x̃ may have been fixed during the Projection
operation, all entries that were not fixed before the Projection operation can
still be modified afterwards, because there are still overlapping mills that are
not fixed yet. For the details concerning the Projection operation we refer to
Section 4 of the original paper [6].
The algorithm terminates when all mills have been fixed. The resulting solution
is guaranteed to be integral, but is not necessarily binary.

4 Analysis of the Projection operation

In this section we will analyze the Projection operation and discuss how to make
it computationally efficient.

4.1 Computing the projection

According to Remark 2.4, each binary solution to Problem 2.1a has minimal l2-
norm among all integer solution vectors. When we search for binary solutions
in the real manifold W = {x ∈ R

n : Bx = b}, it seems reasonable to use the
shortest vector in this manifold as a starting point for the algorithm.

Problem 4.1 Compute the vector x∗ ∈ W such that

‖x∗‖2 = min
x∈W

‖x‖2.

5



If we assume that B has full row rank, then the product BBT is nonsingular
and the unique solution of Problem 4.1, which is the orthogonal projection of
the origin onto W (see, e.g., [2]), is given by

x̃ = BT (BBT )−1b.

One may compute x∗ = x̃ by first solving the system

BBT v = b

for v and then computing
x∗ = BT v.

The first system can be solved by using the Cholesky-factorization
BBT = LLT , where L is lowertriangular. However, as is shown in [2], this
method can lead to a serious loss of accuracy if the matrix BBT is ill-conditioned.
A different approach to solving Problem 4.1 is to use the QR decomposition.

We will call a square matrix Q orthogonal if QQT = I, where I is the identity
matrix.

Definition 4.2 Let m, n be integers greater than 0 with m ≥ n.
Let M ∈ R

m×n. Suppose that M has full column rank. A QR decomposition of
M has the form

M = Q

(
R
0

)

where Q ∈ R
m×m is orthogonal, R ∈ R

n×n is uppertriangular and nonsingular
and 0 corresponds to a (possibly empty) block of rowvectors.

From the nonsingularity of R it is easy to see that the first n columns of Q
form a basis for the column space of M . For each matrix M that has full
column rank, there is a QR decomposition such that R has only positive diagonal
elements (see, e.g., Section 4.1 of [7]). Efficient algorithms for computing the
QR decomposition are described in Section 5.2 of [4] and Section 4.1 of [7].
We will solve Problem 4.1 by using the QR decomposition of BT ∈ R

mn×s,
where m, n are the dimensions of the array A and s is the number of given
line sums. The matrix BT however will certainly not have full column rank.
For example, the sum of all line sums in any single direction must equal the
total number of ones, so whenever there are more than two directions there is a
linear dependence between the line sums. Put r = rank(B). We will use a QR
decomposition with column pivoting:

BT Π = Q

(
R S
0 0

)

where Q ∈ R
mn×mn is orthogonal, Π ∈ R

s×s is a permutation, R ∈ R
r×r

is uppertriangular and nonsingular. The bottom 0’s correspond to (possibly
empty) rectangular blocks. By applying Π we make sure that the first r columns
of the matrix BT Π are linear independent. In this paper we will denote this
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decomposition as the extended QR decomposition. An algorithm for computing
the extended QR decomposition is described in Section 5.4.1 of [4]. The time
complexity of computing the extended QR decomposition of a k × s matrix of
rank r is O(k3+ksr). In this case k = mn so the operation is O((mn)3+mnsr).
We remark that the extended QR decomposition is not unique.
The first r columns of BT Π correspond to r rows of B that form a basis of the
rowspace of B. When solving the inhomogeneous system Bx = b, these rows
completely determine the solution manifold, unless the equations corresponding
to any of the other rows make the system inconsistent. In the latter case the
system has no solution. Once we have computed the solution to Problem 4.1,
using only the first r columns of BT Π, we can check that the system is consistent
by substituting the solution into the remaining equations. We will now show
how to compute the projection using the QR decomposition. We have

Bx = b ⇐⇒ xT BT = bT ⇐⇒
xT (BT Π) = bT Π ⇐⇒ xT Q

(
R S
0 0

)
= bT Π.

Let y =
(

y1

y2

)
= QT x where y1 consists of the first r elements of y. Then

xT Q

(
R
0

)
= bT Π ⇐⇒ (

RT 0
)
QT x = ΠT b ⇐⇒

(
RT 0

)
y = ΠT b ⇐⇒ RT y1 = ΠT b.

From the fact that R is nonsingular, it follows that the last system has a unique
solution. Because Q is orthogonal, we have ‖x‖2 = ‖y‖2. It follows that we
obtain the unique solution x∗ to Problem 4.1 by setting y2 = 0:

x∗ = Q

(
y1

0

)
= Q(RT )−1ΠT b (3)

When the extended QR decomposition of BT is known, the vector x∗ can be
computed efficiently by first solving the system

RT y1 = ΠT b

for y1 and then computing

x∗ = Q

(
y1

0

)
.

The first computation can be performed in O(r2) time by forward substitution
(RT is lower-triangular), the second computation is O(mnr). We see that in
this procedure for computing x∗, computing the extended QR decomposition is
by far the operation with the worst time complexity.
The numerical properties of using the QR decomposition for solving Problem
4.1 are very favorable in comparison to using the Cholesky decomposition (see
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[2]). Moreover, we will show in the next subsections that this decomposition
can be adapted dynamically so that it can be reused many times during each
run of the algorithm. We remark that our proposed method for computing the
projection is not used in the original paper [6].

4.2 Updating the projection: fixing variables

In every iteration of the algorithm one of the mills is fixed. As a consequence the
value of certain entries of the solution x̃ becomes fixed as well. The Projection
operation also involves fixing the values of solution entries, though temporarily.
Suppose that when the Projection operation is executed the entries in I =
{i1, . . . , ik} are either already fixed or fixed temporarily at integer values. We
now project the origin onto the solution manifold of the system

Bx = b and xi1 = vi1 , xi2 = vi2 , . . . , xik
= vik

(4)

where vit
is the fixed value of the entry it. Solving this system is equivalent to

solving the system
B̃x̃ = b̃ (5)

where B̃ is obtained by removing the columns Bi1 , . . . , Bik
from B and setting

b̃ = b − (
k∑

t=1

vit
Bit

).

For each solution vector x̃, the corresponding vector x can be computed by
assigning the values vit

(t = 1, . . . , k) to the corresponding fixed entries of x and
assigning the entry values of x̃ to the corresponding nonfixed entries of x.
The projection of the origin onto the solution manifold of (5) can be found
by the procedure that is described in Section 4.1. However, this operation is
computationally very expensive. The operation may have to be executed many
times if between subsequent projections only a few entries have been fixed.
Suppose that, in order to compute the projection of the origin onto the solution
manifold of (5), we have computed the extended QR decomposition of B̃T :

B̃T Π̃ = Q̃

(
R̃ S̃
0 0

)
(6)

Now suppose that we want to fix one more entry, x̃i, of the solution x̃. As
demonstrated by equation (5) this corresponds to deleting a column from B̃ (or
a row from B̃T ). Put r = rank(B̃). Let B̄T be the matrix that is obtained
from B̃T by removing row i. In Section 4.3.6 of [7] an efficient procedure is
described for (partially) computing the QR decomposition of B̄T from the QR
decomposition of B̃T . In this way we can avoid having to recompute the QR
decomposition each time that we execute the Projection operation. The pro-
cedure makes extensive use of Givens rotations. We refer to Section 4.1.3 of
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[7] for an introduction to Givens rotations. The procedure of updating a QR
decomposition by Givens rotations is a relatively standard operation. In our
case however, we want to update an extended QR decomposition, which involves
some additional subtleties. The updating procedure from [7] leaves us with a
decomposition

B̄T Π̄ = Q̄

(
R̄ S̄
0 0

)

but this might not be a valid extended QR decomposition. If the rank of B̄T is
smaller than the rank of B̃T , the matrix R̄ will be singular: it will contain a 0
on the main diagonal. In that case, rank(B̄T ) = rank(B̃T ) − 1, and we have to
apply a second procedure, as follows.
Let i be the smallest index such that R̄ contains a 0 on the main diagonal in
column i. We denote the nonzero part of this column by v. R̄i is a linear com-
bination of the columns R̄1, . . . , R̄i−1. We will now construct a valid extended
QR decomposition of B̄T . First, we apply a permutation to B̄T that moves
column i to the last position (shifting subsequent columns one position to the
left):

B̄T Π̂ = Q̄

(
R̂ S̄ v
0 0 0

)

Because rank(B̄T ) = rank(B̃T )− 1, the columns of R̂ are linearly independent.
The matrix R̂ is not guaranteed to be uppertriangular, because the band directly
below the main diagonal may contain nonzero elements. This type of matrix is
known as Upper Hessenberg. By performing a sequence of Givens rotations we
can reduce the decomposition to the desired extended QR decomposition. This
reduction can be found in Section 4.1.3 of [7].

4.3 Updating the projection: Releasing variables

Another updating operation that we will use for improving the performance of
the Projection operation is just the opposite operation of fixing a solution vari-
able: releasing a variable, such that its value is no longer fixed. In the same
way as fixing a variable corresponds to removing a row from the QR decompo-
sition of B̃T , releasing this variable corresponds to reinserting this row in the
decomposition. Fortunately, this is also an operation that can be performed
efficiently by Givens rotations. Section 4.3.5 of [7] describes the procedure for
a standard QR decomposition. We will outline the additional steps that extend
the procedure to the case of extended QR decompositions.
Suppose that we have already computed the extended QR decomposition of
B̃T , as in equation (6). Let w be the row that has to be reinserted. Put
r = rank(BT ). By applying a sequence of Givens rotations (see Section 4.3.5
of [7]) we can transform the decomposition of B̃T into a decomposition of the
form (

B̃T

w

)
Π̃ = Q̄T̄ = Q̄


R̄ S̄

0 0
0 w̄2


 .
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where R̄ is uppertriangular and nonsingular, and the first r entries of the last
row of T̄ are zero. To transform this decomposition into an extended QR decom-
position, we have to perform a few extra steps. First move the row containing
w̄2 up, to just below R̄ and S̄, by applying a permutation to the rows of T̄ .
By applying the same permutation to the columns of Q̄, the decomposition
remains valid. If all entries of w̄2 are zero, we are done. Otherwise, apply a
permutation to the columns of T̄ , that swaps the column corresponding to the
first nonzero entry of w̄2 with column r +1. This will result in a valid extended
QR decomposition. In this case, appending w has increased the rank of B̃T .

4.4 An improved Projection operation

In order to make the Projection operation more efficient, we try to avoid re-
computing the QR decomposition as much as possible, by using the update
procedures. In addition, we attempt to reduce the number of update opera-
tions. We will now describe the method that we use to achieve these goals.
The global structure of the Projection operation is shown in Figure 1. In every

i := 0;
repeat

i := i + 1;
Fi := ∅;
for j := 1 to mn do
begin

if (|xj − 0.5| > p) then Fi := Fi ∪ {j};
fix the values of all variables in Fi;
compute the projection of the origin;

end;
until (stop criterium has been met);

Figure 1: Global structure of the Projection operation

iteration of the outer loop, the value of all entries in Fi becomes fixed and the
projection of the origin onto the corresponding linear manifold is computed.
The outer loop is repeated until either the linear system has no solutions or all
entries are close enough to the interval [0, 1]. Note that all variables that were
fixed during the Projection operation can be modified again after the Projection
operation has completed, by applying mills.
Our experimental results indicated that when the projection operation is exe-
cuted a second time, the set Fi of variables that are fixed in iteration i of the
outer loop is usually not very different from the set F ′

i of fixed variables in the
corresponding iteration of the previous Projection operation.
We use this information in the following way. Instead of just one QR decom-
position, we store a table of QR decompositions and their corresponding sets of
fixed entries. In every iteration of the outer loop, the QR decomposition that
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1 2 3 4

{1,3,4,6}

QR

{2,3,6}

QR

{4,5,6}

QR

{1,4,5,7}
diff. = 2 

diff. = 4 diff. = 7

diff. = 3

QR

{1,2,5,7}

Figure 2: The new set of fixed variables, {1, 4, 5, 7}, is compared to all sets in
the table.

corresponds to the current set of fixed variables is stored in the table. When a
new projection of the origin has to be computed, at the end of the main loop
of the Projection operation, the table is checked first to see if there is any QR
decomposition available for which the set of fixed variables is almost the same
as the current set (i.e., the cardinality of the symmetric difference between both
sets is small). If this is the case, we can transform this stored QR decompo-
sition into the required decomposition by applying the update operations from
Section 4.2 and 4.3. Figure 2 shows how the table is searched for a suitable
stored decomposition.
If the number of required update steps is too large, the QR decomposition is re-
computed entirely. Let v be the cardinality of the minimal symmetric difference
between the current set of fixed entries and all sets in the table. Let k denote
the number of free (nonfixed) entries left. Then the algorithm will choose to
recompute the QR decomposition if k < αv, where α ∈ R is a constant.
After the new decomposition has been computed, it is inserted into the table.
To avoid that the table uses too much memory space, it has a maximum size,
K. When the table is full and a new decomposition must be inserted, another
decomposition is removed. The choice which decomposition will be removed is
made according to timestamps: as a decomposition is inserted in the table it
receives a timestamp. Each time that this decomposition is used to compute
a new decomposition, it remains in the table and its timestamp is refreshed.
When the table is full, the decomposition having the oldest timestamp is re-
moved. All other decompositions in the table have been used more recently, so
they remain in the table.

5 Experimental results

We implemented the algorithm from [6] in C++, using the gcc compiler. In
comparison to the MATLAB-implementation of which the results are described
in the original paper, the current implementation has been optimized in several
ways.
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The mills muv are represented as a list of entries instead of a vector or matrix.
Because the mills are very sparse, the new representation is much more efficient.
We implemented specially tuned matrix- and vector-libraries, which are very
efficient in terms of both memory usage and execution speed.
In order to speed up the operation of finding an entry xi for which a certain
function f(xi) is maximal, priority queues implemented as binary heaps are
used. This operation has to be performed at several points in the algorithm. We
remark that this operation is not deterministic since multiple entries can have
the same function value. This property allows the algorithm to be repeated
multiple times (making different choices) with different results. For one test
case, in Section 5.2, we used this property by performing more than one run, to
get the best result.
For the implementation of the basic linear algebra routines, such as the extended
QR decomposition, we use the linear algebra package LAPACK [1].
We have tested the algorithm with various types and sizes of matrices, using
two different versions of the algorithm:
(A) Without QR updating. The QR decomposition of the matrix B̃, defined in
equation (5), is computed from scratch in each iteration of the main loop of the
Projection operation.
(B) With QR updating, as described in Section 4.4. For all tests, we used
α = 10 and K = 8 (see Section 4.4).
In order to allow for a good comparison between the results presented here
and the results presented in [6], we have used similar test data. We used an
Athlon 700MHz PC for all tests. We remark that this PC is faster than the
Celeron 566 MHz PC used in the original paper, so the comparison of run times
is not completely fair. For the two-dimensional test cases all linesums in the
horizontal, vertical, diagonal and antidiagonal directions are given.
Very small floating point errors sometimes caused differences between runs of
version (A) and (B) on the same test data.

5.1 Random images

The first set of test cases consists of random binary matrices of various sizes
and densities. By density we mean the relative number of 1’s. For the sizes
25 × 25 and 35 × 35 and for each of the densities 0.05, 0.10 and 0.5 of 1’s, we
have performed ten test runs. The results are summarized in Table 1, 2 and 3.
These tables contain two characteristics: #binary output (the number of cases
where the outcome is a binary matrix) and average runtime (in seconds).

The algorithm is not able to find a binary solution for many of the low-density
test cases. For most test cases it finds either a binary solution or an integer
solution that has only a small number (< 15) of nonbinary entries and those
nonbinary entries have small absolute values. For some of the test cases however
the algorithm finds integer solutions with many nonbinary entries, some of which
have high absolute values. In all cases, version (B) (with projection updating)
clearly outperforms version (A). In particular, version (B) is much faster for the
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problem size 25 × 25 35 × 35

algorithm old A B A B

#binary output (of 10) 7 7 7 0 0

average run time (s) 1312 22 18 193 161

Table 1: Results for random test cases with density 0.05

problem size 25 × 25 35 × 35

algorithm old A B A B

#binary output (of 10) 4 2 3 4 3

average run time (s) 10661 35 22 1178 352

Table 2: Results for random test cases with density 0.10

problem size 25 × 25 35 × 35

algorithm old A B A B

#binary output (of 10) 10 10 9 10 10

average run time (s) 12350 136 18 1670 121

Table 3: Results for random test cases with density 0.50

examples of density 0.50. For that type of problem instances, the main loop of
the Projection operation is executed many times, every time only fixing a small
number of new variables, making efficient updates of the QR decomposition
possible.

5.2 Structured images

In the original paper, the results for several test cases that originate from [3] are
presented. According to the authors of that paper, these cases represent crystal
structures. To allow for a good comparison between the implementation from
[6] and the current implementation we have used two of these test cases, denoted
by T1 and T2. We added a third example, T3, which consists of two large areas
of 1’s such that there are very few lines that are constant. We will refer to the
examples T1, T2 and T3 by the term structured examples. The test cases T1

and T2 correspond to the functions f4 and f6 respectively from [6]. The three
test matrices are shown in Figure 3 (1’s are represented by black squares, 0’s
by white squares). The results for the structured examples are summarized in
Table 4. Besides the run time the table shows the number of nonbinary entries
in the result. The results from [6] are labeled old.
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problem T1 T2 T3

problem size 29 × 46 36 × 42 40 × 40

algorithm old A B old A B A B

run time (s) 463 28 28 2901 58 55 238 188

#nonbinary entries 0 0 0 0 0 0 6 2

Table 4: Results for the structured examples

For the cases T1 and T2 each of the new implementations was able to recon-

T1 T2 T3

Figure 3: Three structured test images.

struct the original matrices exactly. The case T3 turned out to be much harder.
We had to repeat the algorithm several times, with different random seeds) to
obtain reasonable results. For T3 the best result (least nonbinary entries) of 5
runs with different random seeds are shown.
For this type of problem instances, projection updating results in less improve-
ments of the run time than for the random instances. This is due to the fact
that for these instances the Projection operation is executed infrequently and
every time a large number of new variables is fixed. As a result, recomputing
the QR decomposition is often more efficient than updating a decomposition
from the table.

5.3 Three-dimensional example

All functions A → R in the current implementation are stored in the vector rep-
resentation, as opposed to the matrix representation. This allows the algorithm
to handle three-dimensional instances just as it can handle the two-dimensional
case. We have performed an experiment with a three-dimensional instance. The
only modification to the program concerns the input- and output-routines and
the choice of the set of mills. We studied the case where the projections in the
three directions parallel to the axes are given. In this case the collection of mills
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consists of the translates of the block( −1 1
1 −1

) (
1 −1

−1 1

)

where the second 2 × 2-matrix is stacked on top of the first one.
We tested the algorithm with a problem which has the property that very few
lines are constant. Because the purpose of this test is to show if the algorithm
is capable of solving three-dimensional instances we only used implementation
A. The test problem, a 10× 10× 10 image, is shown in Figure 4 as a set of two-
dimensional slices. The algorithm found a binary solution in 1600 seconds. This
solution is quite different from the original set of matrices. Apparently using
this set of directions in three dimensions leaves much freedom in the solution
space.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 4: Slices of the three-dimensional test image.

6 Conclusions

The current implementation of the algorithm from [6] is much faster than the
implementation used in the original paper regardless of whether projection up-
dating is used or not. The new implementation has the added advantage that it
can be used for higher-dimensional arrays without any significant modification.
We have described how projection updating can lead to a reduction in the time
complexity of the Projection operation in some cases. For all of the random test
cases, of densities 0.05, 0.10 and 0.50, projection updating leads to a significant
decrease in run time in comparison to recomputing the projection from scratch.
For the structured examples, projection updating results in a small improve-
ment of the run time, because the Projection operation is executed infrequently
and every time a large number of new variables is fixed.
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The structured example T3 and the random test cases of low density show that
for certain test cases the algorithm is not able to find a binary solution. Im-
proving the quality of the resulting reconstruction will be the subject of further
research.
The test results indicate that the algorithm is capable of solving moderately
large instances. We consider our new version of the algorithm to be a promis-
ing approach to solving the reconstruction problem, and believe that there is
sufficient potential for even further improvements.
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Notes in Discrete Mathematics , volume 12, Elsevier, 2003.

16


