
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

H.J.J. te Riele

Applications of supercomputers in mathematics

Department of Numerical Mathematics Note NM-N8502 October

Ttie Centre for Mathernat1cs and Computer Science 1s a research institute of the St1chting
Mathernatisc h
mg at !he

wrnch was founded on February 11, 1946. as a nonprofit 1nst1tut1on a1m
of mathematics, computer science, and their applications. It is sponsored by

the Dutch Government !he Netherlands Organization for the Advancement of Pure
Research W 0 }

Copyright St1chting Mathemat1sch Centrum, Amsterdam

APPLICATIONS OF SUPERCOMPUTERS IN MATHEMATICS
===
by

Herman J.J. te Riele
Cent~e fo~ Mathematics and Compute~ Science
Kruislaan 413
1098 SJ Amste~dam

The Netherlands

Course notes for the Short Course:
SUPERCOMPUTERS IN SCIENCE AND ENGINEERING
15 - 16 Octobe~ 1985
Southampton, England

These course notes provide a concise survey of the role played by vector

and parallel processors in the solution of problems in computational mathematics.

Some vectorization and parallelization techniques are discussedo Many examples

illuminate the discussion.

Report NM-N8502

Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB .Amsterdam, The Netherlands

1. INTRODUCTION

The advent of extremely powerful computers like the CRAY-1

in 1976 and the CYBER 205 in 1981 has strongly stimulated the interest

of scientists and engineers in finding ways to Cre-)organize their

algorithms such that these computers can solve their problems with

maximal performance. One could say that pipelining and parallelism in

hardware has added a new dimension to algorithm design and analysis.

The CRAY-1, CYBER 205, FACOM VP-200, HITACH S810 are examples

of so-called pipelined or vector processors, which perform in an

optimal way when they operate on long vectors of data. Reformulation

of algorithms in terms of (long) vectors is called vectorization.

In the past few years parallel computers, i.e., computers with

more than one central processor which can operate independently and

concurrently, have appeared (like the CRAY X-MP and the Denelcor HEP).

For these machines it is important to parallelize algorithms, i.e., to

trace (possibly different) subprocesses which can be executed

independently.

Vectorization and parallelization are techniques which, of course,

have much in common (cf. section 2.3). Therefore, we will only

distinguish between the two concepts (and between vector and

parallel computers) if this is necessary in the given context.

In the above development, one may perceive two trends: one is a

tendency to optimize algorithms for a particular vector or parallel

computer by exploiting specific hardware and software features of the

machine; the other is to adapt and implement algorithms in such a way

that the resulting software is portable and can be auto-vectorized by

a good compiler. At this moment it is difficult to judge which approach

is to be preferred: rapid developments in parallel hardware and in its

prize-performance ratio, and lack of standards in programming tools for

vector and parallel computers are factors which make a definite

choice difficult, if not impossible. Maybe the best choice at this

moment is to "divide-and-conquer": develop portable software

and if the performance obtained with auto-vectorization on a given

machine is unsatisfactory, try to optimize the software for the given

machine.

The solution of many problems in.mathematics and physical sciences

requires heavy computations. The corresponding algorithms can often be

formulated in terms of operations on vectors and in terms of a (small

or large) number of independent subcomputations. In particular,

algorithms from numerical linear algebra, which operate on

vectors and matrices, play a crucial role in many

computational problems. A bibliography from Bochum (F.R.G.) ([BRS])

entitled: "Parallel Computing" illustrates the rapid developments:

the total number of references in the second edition of September

1983 is 5161, against 2610 in the first edition of June 1982.

Table 1 gives the "top ten" list of subjects from this bibliography.

Table 1
The top ten subjects from [BRS]

Subject Number of references

Computer Architecture
Algorithms
Numerical Algorithms
Multiprocessors
Vector Computer
Networks
Image Processing
Complexity
Linear Algebra
Programming Languages

1779
1177

680
592
5 1 5
39 0
338
324
303
238

2

Here, hardware subjects show the highest scores (architecture, multi-

processor, vector computer). This is reflected in the kind of subjects

covered by a number of recent conferences on supercomputers and

applications ([DR], [EM]). Table 2 presents a list of main subjects

from mathematics and physical sciences with their scores in the Bochum

Bibliography.

Table 2
Mathematical and Physical Sciences subjects from [BRS]

Mathematics

Matrix Algorithms
PDEs
FFT
Graph Theory
Arithmetic Expressions
Iterative Methods
Sorting
Optimization
Matrix Multiplication
Sparse Matrices
Tridiagonal Matrices
ODEs
Direct Methods
Runge Kutta Methods

II

192
11 6
1 11

87
82
73
60
57
53
47
41
22
17

4

Physical Sciences

Fluid Dynamics 69
Pattern Recognition 68
Transonic Flow 35
Air Traffic Control 33
Potential equation 31
Radar Control, Systems,

Data Processing 24
Poisson equation 22
Weather Forecast 20
Monte Carlo Method 18
Ballistic Missile Defense 14
Navier-Stokes equation 8
Nuclear Physics 8
Quantum Chemistry 5

In Section 2 of these course notes some general concepts

concerning supercomputers and parallelism will be treated. Section 3

discusses a number of applications in mathematics and

Section 4 treats important vectorization and parallelization techniques

employed in these applications.

Excellent surveys on vector and parallel computers and algorithms

are: [HE], [HJ], [MI], [OV], [SA], [SCHE], [VL] and [ZA].

3

2. SOME GENERAL CONCEPTS CONCERNING VECTOR AND PARALLEL COMPUTING
===
2.1 Some definitions

The speed of vector and parallel computers is often expressed in

MFLOPS: the number of Million FLOating Point operations per

Second. If a vector or parallel computer has a clock cycle time of

c nanoseconds (e.g., c = 12.5 for the CRAY-1 and c = 20 for the

CYBER 205), and if one result per cycle is produced (which is usually

the case for the operations+, - and*), then the speed is 1000/c

MFLOPS. In certain cases operations can be chained or linked such that

two results per cycle can be produced, which gives a speed of 2000/c

MFLOPS. However, these performances are difficult to reach in practice

since there is always some overhead which decreases these figures.

When we compare MFLOPS-speeds of different computers, we should be

aware that different computers usually have different clock cycle

times. For example, when two computers with different cycle times show

the same MFLOPS-speed for some problem, then apparently the computer

with the smallest clock cycle time shows the largest overhead.

When for a given problem we compare the CPU-times of a serial and

a parallel or vector computer, then the speed-up S is defined as the

quotient Ts/Tp where Ts is the serial and Tp the parallel CPU-time.

According to Stone ([ST]), for a parallel processor with p processors

typical speed-up ratios are the following:

s

kp
kp/log(p)

klog(p)
k

(independent
of p)

Examples of Algorithms with this speed-up

Matrix computations, mesh calculations
Sorting, tridiagonal linear systems,
linear recurrence relations,
polynonomial evaluation
searching
Certain nonlinear recurrence relations,
certain compiler processes

4

Here, k is a machine-dependent constant, independent of p.

is If Sp is the speed-up for p processors, then the efficiency Ep

defined as the quotient S P /p. Ep measures how busy the parallel

processors are during the computation. The longer the processors

are idle, or carry out extra calculations introduced through the

parrallelisation of the algortihm, the smaller becomes E
p

On the various architectures the arithmetic operations may be

executed in three different modes, viz. serial, pipelined and parallel.

Consider, for example, the problem of adding two floating-point

vectors x = (xi) and y = (yi)• to obtain the sum vector z = (z.)
l.

(i = 1 , 2 , ••• , n) , where zi = x.
l.

• The operation of adding a pair

xi, Yi may be divided into four sub-operations, viz.,

(1) compare the exponents,
(2) shift,
(3) add mantissae, and
(4) normalize.

Figure 1 exemplifies the three different modes (derived from [HJ]).

Figure 1
Comparison of serial, pipelined and array architectures

X:ex2P y:fx29

Addition

~~mpare

'

exponen. ts EB Shift
Add
Namal1se

(p-q)

Z:X+y

Overlap suboperat1ons Replicate units

Pipeline Serial Array I
x,,y, x,,y, x~·Y2 XN,YN l''Y I~ Il··· Il tl

X21Y2

Il r z, J"y' Z1 Z2 z,,
z,

EB EB···EB Z2

E9
Z3

N processors
Z2

1 clock/result J'"Y' 4 docks/N results

x4 xN
STAR 100 ZJ N
TIASC EB ILLIAC IV 64

CRAY-1 I CL OAP 4096

CYBER 205 4 docks/result STARAN 8192

5

It may be interesting to remark here that many supercomputers (like

the CYBER 205) have both a vector and a scalar processor which may

operate concurrently on different data. We have not yet seen any

applications which exploit this feature of supercomputers.

2.2 Classification

Attempts have been made to arrange the various computer designs in

classes. The s lest scheme is due to Flynn ([FL]): single(S) and

multiple(M) streams of instructions(!) and data(D) are distinguished.

This gives four possibilities: SISD, SIMD, MISD and MIMD. SISD is the

classical von Neumann model: a single instruction stream operates on

a single stream of data. SIMD is the class to which array processors

and pipelined computers belong: all the processors interpret the same

instructions and execute them on different data. The MISD class may

be argued to be empty (cf. [SCHE, p. 121]). The MIMD class is the multi-

processor version of the SIMD class: all processors interpret different

instructions and operate on different data. For the four classes,

Table 3 gives examples of machines and, schematically, examples of

operations which can be executed at the same time.

Table 3
Flynn's classification

type

SIMD
SIMD

MISD
MIMD

operations which can be
executed at the same time

a + b
a + b, c + d

a + b, a * b
a + b, c * d

examples

conventional von Neumann
processor array (ICL/DAP, ILLIAC IV)
pipelined processor

(CRAY-1, CYBER 205)

multi-processors (CRAY X-MP, HEP)

A problem in this classification scheme are the pipelined processors.

Usually, they are placed in the SIMD class although, strictly spoken,

the instructions on different data are not executed at the same time;

rather, each clock cycle one result is delivered from the input

data stream(s).

6

A classification of parallel computers based on how computations

proceed and how components in the architecture interact, is given in

Table 4 (derived from [BO]). Other taxonomies of computers are

given by Shore ([SH]) and by Schwartz ([SCHW]).

Table 4
Computer architectures and their underlying computational model

Model of Computation Corresponding Computer Architecture

A. Sequential control on A 1 • von Neumann-type computers
scalar data A2. Multifunction CPU

A3. Pipelined computers

B. Sequential control on B 1 • Vector computers
vector data B2. Array processors

C. Independent, communicating C1. Shared memory multiprocessors
processes C2. Ultra computers

C3. Networks of small machines

D. Functional and data-driven D1. Reduction machines
computation D2. Dataflow machines

2.3 Algorithm parallelism

It is customary ([HJ]) to define, at any stage of an algorithm,

the degree of parallelism of that algorithm as the number of indepen-

dent operations that can be performed in parallel, that is to say

concurrently or simultaneously. On a pipelined computer the data would

be interpreted as vectors and the operation would be performed on one

vector. The parallelism is then the same as the vector length.

On a processor array the data for each operation are allocated to

different processing elements of the array and the operations on all

elements are performed at the same time. The parallelism is then

the number of data elements being operated upon in parallel in this

way. The degree of parallelism may remain constant during the different

steps of the algorithm, or it may vary from step to step.

7

Usually, there are two ways to analyse algorithms for use on

vector and parallel procesors:

1. Try to find, in a given algorithm, as many as possible independent
subprocesses;

2. Devise a new algorithm with as many as possible independent sub
processes.

The following scheme suggests which type of computer is suitable,

depending on whether the algorithm can be divided into few/many

equal/different subprocesses.

/equal<
many -----> pipelined

few -----> parallel, serial
subprocesses "'\,

many -----> parallel
different<

few -----> parallel, serial

Various techniques for vectorization and parallelization are known,

like recursive doubling, cyclic reduction, divide-and-conquer,

pipelining and broadcasting. In fact, there is some overlap in these

techniques. In Section 4 we shall explain the two most important ones,

viz., recursive doubling and cyclic reduction. An interesting survey

of many techniques, aimed at a theoretical analysis of parallel

algorithms, was presented recently by Van Leeuwen ((VL]).

2.4 Organization of data

In algorithms for parallel processing, the organization and dynamic

arrangement of the data play a decisive role. Let us consider a very

simple example of a SIMD processor with three processors P 1 , P 2 and P3 ,

each of which has access to three storage locations. Suppose that the

elements of a 3 x 3 matrix A= (a ..) are stored in their "natural"
1-J

order, as shown below:

8

p 1

a 11

a 21

a 31

a 12

a 22

a 32

He:re, we assume that P 1 has access to a 11 , a 21 and a31 and P2 and P3

to the second and third columns of A, :respectively. However, P 1 does

not have access to the second and third column, and so on. Then,

parallel operation is possible on the rows and main diagonals of A,

but not on the columns of A. However, the following skew arrangement

enables us to operate also on the columns:

a 11

a 23

a 32

a 12

a 21

a 33

Some general results concerning conflict free storage access in

array processors are given in [SCHE].

A related, notorious problem, called memory bank conflict, may

rise because of the presence of a so-called memory bank cycle time,

which means that when loading an element from one memory bank, it

is not possible to load another element from that same bank in the

next few, e.g., three, clock cycles. For example, suppose we have

an 8-bank machine and a vector is stored in the memory as follows:

the elements with index 8m + n, O ~ n ~ 7, are stored in bank number

n. Then, if we need the elements with indices O, 1, 2, ••• there

will be no memory bank conflict and the speed of loading is one

vector element per cycle. However, if we would need the elements with

9

indices o, 4, 8, ••• there is a memory bank conflict and the speed

of loading will be one element per two cycles. If we need the elements

with indices O, 8, 16, the loading speed will only be one element

per three cycles. A remedy against memory bank conflicts would be

to store the elements in some skewed order. Of course, the best way

to do this depends very much on the particular problem at hand.

2.5 Numerical stability

Not much is known yet about stability, rounding errors and error

propagation in parallel algorithms. In some cases, it appears that

parallel processing leads to numerically inferior results, but this

is not always the case. The following example shows how a parallel

version of a simple algorithm actually yields better stability results

than the serial version.
N

Consider the sum SN :=~ak where, for simplicity, we take N = 2n.
k=l

The serial algorithm for finding SN reads as follows:

SO : = 0, S k : = S k-l + a k , k = 1 , 2, ••• , N.

If the mantissa of the floating point numbers has s binary places,

then the machine approximation SN of SN satisfies the inequality:

- s I I
N

< 2-s a N (N + 1) ,

where a = max a I •
k k

A parallel version of this algorithm reads as follows:

SOi := ai, 1:1,2, ••• ,N

: = 3 k-I 2i-1
'

+ \-1 2i
'

, k=1,2, ••• ,n;

SN := Sn! •

Here, estimation of the overall error yields:

-s+l
!sN - SN I < 2 aNlog2 N,

n-k
i=1,2, ••• ,2

2 which improves the serial O(N)-upperbound to O(NlogN).

10

For this parallel algorithm, it is not difficult to compute, for a

given number p of parallel processors, the speed-up SP and

efficiency EP • For N=8 and p=2, 3 and 4, the results are given below.

4
3
2

p s p

713
7 /4
7 /4

E p

7/12
7/12
7 /8

I l

3. APPLICATIONS

In the Bochum Bibliography [BRS], many fields of mathematics are

mentioned in connection with parallel computing (cf. Table 2). Here,

we shall discuss a number of important examples.

3.1 Solution of systems of linear equations

An excellent survey of parallel linear algebra algorithms and their

complexity is given by Heller ([HE]). He treats the following subjects:

* linear systems
- general dense matrices

triangular systems
tridiagonal systems
block tridiagonal and band systems
spafse matfices

* eigenvalues

Presently, much research is carried out on vector and parallel

algorithms in numefical linear algebra. We mention a few groups:

* Van der Vorst (Delft, The Netheflands)
* Dekker, Hoffmann (Amsterdam, The Netherlands)
* Axelsson (Nijmegen, the Netherlands)
* Evans (Loughborough, UK)
* Young (Houston, Texas, USA)
* Dongarra (Argonne, Illinois, USA)
* Sameh (Urbana, Illinois, USA)

Here, we shall briefly describe an algorithm for solving linear

dense systems of equations on a CYBER 205, as presented by Hoffmann

([HO]). First some notational conventions: lower case greek letters

denote real scalars, lower case roman letters denote vectors and

upper case letters stand for matrices. The j-th column of

the matrix A is given as a . and the i-th :row as a. • The non-zero
oJ 1o

part of a column or row of a triangular matrix is indicated by writing

a bar above the character which denotes the column or row. The order of

a matrix is denoted by n. The algorithm used is the well-known Gaussian

elimination process which is equivalent to the factorization of the

12

coefficient matrix A into A = LDU (apart from pivoting). Here, U is

an upper triangular, L a lower triangular and D a diagonal matrix,

whose elements are denoted by u .. , A. .. and o. , :respectively.
1-J l. J l.

The elements a .. of A satisfy
l.J the equations:

min(i,j)
I

k=l
a ..

l. J i,j E: {1,2, •• .,n}.

In the following algorithm the matrices L and U (and the information

for D) are built up in the location of A which should be clear from the

notation. The choice of the diagonal elements of L, D and U is left

open yet.

for k = I (I)n do

begin determine q E {k, ••• ,n}

a ~ aok .q

l)kk

akk +- ok ?

A.kk

for J k+ I (I)n da

begin akj +- l)kj ak/ (cSk/..kk)

a +- a - (ukj 0k)°£ok • j •J

end

end

max lakj I f search for maximum t
k:Sj :Sn

f interchange two length n columns t

f choose diagonal normalization, store t

f calculate k-th col of L and store t

f next element in ~. and store t

f update next column of A t

When we study this algorithm, it may be clear that the choice
-I

A.kk = ukk = ok gives optimal results, since it makes the calculations

of 1.kand ukj trivial. The description of the algorithm then becomes

much shorter, especially if the introduction of the names for L, D

and U is eliminated:

l 3

for k = l(l)n do

begin { maximum search and column interchange }

foP j = k+J(l)n do

a . + a . - (nk./akk)a k
oJ •J J •

en.d

On a 1-pipe CYBER 205, Hoffmann obtained the following MFLOPS-speeds

for various values of the order n of the matrix A:

speed in
HFLOPS

n = 25

7. 3

50

15.5

100 200 400

28.4 46.1 63.6

In [HO] many more experiments are reported and a comparison is made

with standard routines for solving dense linear systems from the

program libraries LINPACK, NAG and QQLIB. The above algorithm gives

the smallest CPU-time.

Dongarra and Hewitt ([DH]) have implemented dense linear algebra

algorithms on a CRAY X-MP-4 using multitasking and obtained a MFLOPS-

speed of more than 700. They remark that a system of equations of

order 1000 can now be factored and solved in less than one second!

3.2 Expressions: evaluating a polynomial

Given a real number x0 and a polynomial

2 n
P (x) = a0 + a Ix + a2 x + • • • + an x ,

the well-known rule of Horner for computing PCx0) reads as follows:

b : = a
n n

b. :=a.+xb.
J J 0 J+I

j = n-1 (-1) O,

P(x 0) := b0 •

If we would have 2 processors, able to work in parallel, we could write

P(x) as:

P(x) = ao + a x2 + a x 4 + ...
2 4

(even powers)

+ x(a I + a x2 + ...)
3

(odd powers).

14 -

The first and the second processor could then compute the even and the odd

powers sum, respectively, as follows:

first processor second processor

b . - a n-1 . - n-1

2
: = a n-2 + x 0 b n b

2
b n-3 . - a n-3 + XO n-1

------> <.--------
bi

t
p (XO) : = b 0 + b I x 0

This process can be generalized for many processor systems.

3.3 ODEs

Let us consider the scalar ordinary differential equation

y' = f(x,y), x > O, y(O) = Yo·

At first sight, it seems that there is little scope for parallelism

in solving (scalar) ODEs, since the usual integration methods are

essentially sequential. However, there exist parallel versions of serial

predictor-corrector methods (cf. [ML]). We will describe one of them

in some detail. Fix a mesh size h and let xn := (n-1)h, n=1,2, ••• , and

let Yn be an approximation to the solution y at xn • Then one serial

predictor-corrector scheme is the following:

p c c c
] ' Y n+l . - Yn + (h/2)[3fn - fn-1 . -

c c
(h /2)[

p c
] ' y n+I . - Yn + f n+I + f n

where
p

Yn and
c

Yn are predicted and corrected values of y , respectively,
n

and f~ and f~ represent f(xn ,y~) and f(xn ,y~), respectively. The sequel

of computations is shown in Figure 2a where the upper line represents the

P r o c e s s f o r y np and f P an d the 1owe11' 1 i n e for y c and fc
n n n

• The sequence of

p p c c
computations here is: --> Y n+I --> f n+l --> Yn+I --> f n+l --> and the

computational front is indicated by the dotted line. This process is

15

essentially sequential. For the alternative pair of predictor-corrector

ro.-mulas

p . - c 2hfp
y n+I . - y

n-l + ' n
c . - c (h /2)[fp fc] . yn . - y n-1 + +

n n-l

the computational process may be divided into two concurrent parts:

-->
p --> "'p --> I • n+i

--> c --> f' c --> Yn . n

which can be processed in parallel, since the computational front is now

skewed. See Figure 2b. This kind of parallelization has been extended to

many (~ 2) processors and to other algorithms like the Runge-Kutta method.

Figure 2a
A serial predictor-corrector scheme

p

c
n-1 n n+1

Figure 2b
A parallel predictor-corrector scheme

-~~~0--------
-------- ----........<.--o----------o--------

p

c
n-1 "" n n+1

3.4 PDEs

There is an extensive survey paper by Ortega and Voigt ([OV])

which surveys the present status of numerical methods for partial

differential equations on vector and parallel processors, together with

a discussion of applications in fluid dynamics (Navier-Stokes equations,

potential equation, reservoir simulation, numerical weather prediction),

structural analysis, acoustic wave propagation, plasma physics, design

of VLSI devices, molecular dynamics, etc,

16

Generally spoken, discretization of place variables in PDEs may yield

large systems of ODEs or of Cnon)linear equations. For vector and parallel

machines, it seems that explicit methods for the former and iterative

methods for the latter are more suitable than their respective counter-

parts: implicit and direct methods.

We mention here a few groups of people working on "vector and

parallel" software:

Schonauer, 3D - problems;

Barkai, Brandt
Hackbusch, Trottenberg, Stuben
Hemker, Wesseling

multigrid methods;

Stelling, Wubs, Shallow water equations.

etc. etc.

3.5 FFT

The discrete Fourier Transform of a vector a= (aj), j:0,1, ••. ,N-1,

is given by

N-1
l wija.

j=O J
i = 0 (1) N-1, w = exp(2 7T i/N).

This is a complex matrix-vector multiplication requiring O(N 2) operations.

However, in the Fast Fourier Transform the matrix n = (Jj) is factorized
n+l in (assuming, for simplicity, N = 2) log N = n + very simple matrices,

and the cumulative product is computed. The number of operations required

now is O(N log N). The FFT algorithm can be described as follows:

for r = O (1) N-1, k = 0 (1) n, let
n

r . - [r or I . . . r] = I r 2J
' r. = 0 or 1 ,

n j=O n-j 1

f(}'.',k) . - [r o ••• r k-1 0 rk+I r J , . -
n

h(f,k) . - [r o ••. r k-1 rk+I r J ,
n

g(ir,k) . - [r k r k-1 l" 0 0 J • ·o

ir ev (r) . - [r 'I" ro] (= g(r,n)) . . - n·n-1

17

FFT: i
z . : = w (i :: 0 (1) N-1) ' 1.

c . . - a. (i :: 0 (1) N-1) ' 1. . - 1.

for k: ::0 step 1 until n do

ci : = cf(i,k) + z g(i,k) • c h(i,k) (i:: 0 (1) N-1),

od,

bi ::: crev(i) i = 0 (1) N-1).

It should be observed that either f(r,k) = :r d h (k) ,,. + 2 n-k an r, = •
f (k) __ ,.. _ 2n-k

or r, • and h(:r,k) = r, so the movements for c within ,

do-loop are well-structured. One should be careful in order to avo~
~

memory bank conflicts. The book by Hackney and Jesshope ([HJ]) pro~.

an excellent discussion of parallel aspects of the FFT and of othe~

discrete transforms. Recent work on vectorizing the FFT ([FO], [KL7~

[SWA], [WA]) indicates that the efficiency increases with the numbe~

transforms.

3.6 Number Theory

In the last decade, methods for factorization of positive intege-

have attracted much attention, partly, because of the discovery that

the security of certain cryptographic systems depends on the diffic~

of the decomposition of integers into prime factors (cf. [RIJ).

Factorization methods like the quadratic sieve method and Lenstra's

recent elliptic curve factorization method have certain features by

which these algorithms may be very suitable for implementation on v~

and parallel computers. As an example, we mention one of the steps ~

quadratic sieve methods, viz., to compute, modulo a given number N,

the product of a large number M of integers with values between 0 a(

The scalar FORTRAN version of this step reads as follows:

~ (here, it is assumed that the square of N can still be represented

an integer, and the integers to be multiplied are stored in the art

18

INTEGER N, M, PROD, A(M)
PROD = 1
DO 1 I = 1 , M

PROD= MOD(PROD* A(I), N)
CONTINUE

A vector version of this step has been implemented on a 1-pipe CYBER 205

and looks as folows:

INTEGER N, M, PROD, A(M), B(M/2), C(M/2), K, K2
REAL REVN
REVN = 1.0 I N
K = M
K2 = K I 2

A(K2+1; K2)
REVN

B(1; K2) = A(1; K2) *
C(1; K2) = B(1; K2) *
A(1; K2) = 8(1; K2)
IF (2*K2 .EQ. K) THEN

N * VINT(C(1;K2); K2)

K = K2
ELSE

A(K2+1) = A(K)
K = K2 + 1

END IF
IF (K .GT. 1) GOTO 1
PROD = A(1)

The technique used here is a form of recursive doubling (cf. Section 4.1):

two vectors which consist of the first and the second half part of A are

multiplied (modulo N); the result is stored in the first half of A. This

multiplication and storage step aire repeatedly applied on A, where in each

step the length of A is halved.

The REAL REVN (:1/N) is used because vector multiplication is much cheaper

than vector division (on a 1-pipe CYBER 205, multiplication of two vectors

of length N requires 52 + N clock cycles and division 80 + 25N/4).

Vector syntax is used. E.g., ACI;J) is the vector consisting of A(I), A(I+1),

••• , A(I+J-1), The vector function VINT computes the integral pa1:ts of all

the elements of its vector argument.

Some timings are given below.

N

10,000
50,000

scalar version

0.016 sec.

vector version

0.002 sec.
0.009 sec.(28 MFLOPS)

19

3.7 Numerical verification of the Riemann Hypothesis

--
The Riemann Hypothesis says that all the complex zeros of the Riemann

l.S

zeta function ,:;(s) have real part 1/2. This 11a famous 125 yeair old statement

of Riemann, which has resisted up till now the efforts of the best mathema-

ticians to prove or disprove it. In order to verify the Riemann Hypothesis

numerically, it is necessary to know, for many (hundreds of millions) values

of t, the sign of the following real-valued function:

z (t) =
m

-~
2

\'
l k •

k=l
cos(t.log(k) - 6(t)) + R (t) ,

m

where m = l(t/2::) !J . The time needed to compute S(t) and Rm (t) is

negligible compared with the total time needed for Z(t).

Three versions to compute Z(t) on a 1-pipe CYBER 205 have been developed :

a half, a normal and a double precision version. With the first very fast

version about 99j of the values of Z(t) could be computed with certainty.

With the second version, about 99% of the remaining values could be deter-

mined with certainty. The double precision version was accurate enough to

cover all the remaining values. The half precision version gained a speed

of about 134 MOPS (Million Operations per Second), the normal precision

version about 57 MOPS, so that the CYBER 205 turned out to be extremely suitable

to solve this problem (reasons: pipelining, different precisions possible,

possibility to link operations, e.g., constructs like IA(I)l*B + IC(I)I

require 1 clock cycle in a vector call on the CYBER 205; this corresponds

to a speed of 400 million operations per second!). Details may be found

in [RWL), [WR] and [LRW].

20 -

4. VECTORIZATION AND PARALLELIZATION TECHNIQUES

===
Quite a number of techniques are known for generating parallel

algorithms. One important distinction should be made in this respect:

the numbe~ of available processors is limited oli" not. The latter case

is interesting from a theoretical point of view, yielding results like:

a non-singular n x n matl(ix can be inverted in O(log 2 n) time, using

OCn 4) prrocesso)i"s ([CS]). The fol!'meir case is more pfactical, since it

is usually concerned with a pal!'ticulair pairallel processor with a given

number or processing elements, or a pipelined pirocessor with fixed

characterristics like clock cycle time, start up time, memory bank cycle

time.

In this Section examples of recursive doubling and cyclic reduction

techniques will be treated. Moreover, techniques for matrix-vector

and matrix-matrix multiplication will be discussed. Finally, some results

will be given of implementation and optimization on a CYBER 205 of a set

of standard matrix-vector subroutines (so-called Extended BLAS).

A number of examples given in this Section are derived from a lecture

by H.A. van der Vorst presented at the Colloquium 'Numerical Aspects

of Vectol!' and Parallel Processing' on the meeting of Sept. 27, 1985

which was held in Amsterdam.

4.1 Recul'."sive doubling

Recu~sive doubling is a powe~ful method of generating parallel

T b · 1·aea is to r_epeatedly separate each computation
algorithms. he as1c

into two independent pa~ts of equal complexity which can then be

computed in parallel. For example,

N

I
i=I

a .. =
1..

n-1

l
i=I

a.
1

) + (
N

l
i=n

a .) '
1

21

n = f N/2 l '

and by further application of this splitting, the sum can be computed

in f log N 1 steps using N /2 processors. Th is may be implemented on a

pipelined processor as follows (here, like in Section 3.6, we use vector-

syntax for the CYBER 205):

WHILE N > 1 DO
M = { N+1) I 2
A(1; M) : A(1; M) +A (M+1; N-M)

N = M
OD

If an addition of two vectors of length N on a pipelined computer takes

a+ bN clock cycles (a is the start-up time), and if scalar addition

takes c clock cycles, then the times needed for the sequential algorithm

and for the parallel version are approximately cN and a.log 2 N + bN cycles.

Comparing these two times, we can compute the approximate turning point

for which the parallel version becomes faster than the sequential. Some

examples are given in Table 5.

Table 5
Turning point from which parallel addition algorithm runs faster
than sequential version

a + bN: number of clock cycles needed for vector addition (length N)
c number of clock cycles needed to add two scalars

Computer

CRAY-1
p-pipe CYBER 205
CRAY X-MP
FUJITSU VP-100

a

30
51
30
30

b

3
1/p

1
2

c

6
5

value of N for which a.log 2 N + bN ~ cN

59
81 for p:1, 69 for p=2, 65 for p=4

Recursive doubling is applicable in a large number of instances. Table 6

is taken from [ST1]. Theoretically, most of the recurrences mentioned there

can be computed in O(log N) time if O(N) processors are available. However,

actual implementation (like the one given above) is needed to show the real

benefit obtainable with this technique.

- 22 -

Table 6
Functions suitable for ll'ecursive doubling

Function Description

---x. = x. 1 + a. Sum the elements of a vector l. i- l.

x. = X. 1 * a . Multiply the elements of a vector l. i- l.

x. = min(x. 1 ' a . Find the minimum l. i- l.

x. = max(x. 1 a.) Find the maximum l. i- l.

x. = a. x . 1 + b . First or dell' linear rrecu!l'7i'ence,
l. l. i- l.

inhomogeneous

x. = a. x . 1 + b. x. 2 Second 07j'def linear recuffence
l. l. i- l. 1-

x. = a. x. 1 + b. x. 2 + ... Any 011'de71' linear fe CU7i'7i'ence,
l. l. i- l. 1-

homogeneous 011' inhomogeneous

x. = (a. x. 1 + b.) I (c . X. I + d.) F il"St oirde7i' irational fraction
l. l. i- l. l. l.- l. recurrence

x. = a. + b. IX. 1 Special case of first o7i'der
l. l. l. l.-

irational f7j'action

x. sqrt(2 2) Vector = X. I + a. no7i'm
l. l.- 1

Anothe7i' example of recursive doubling occuirs in the solution of

bidiagonal lineair systems Ax = b, wheire

a2 1

a3 1
A = x =

The standafd solution method is:

x i : = b .
l.

a. *
l. ' i = 2,3, ... ,N.

23

x I b I

X2 b 2

x3 b 3
b =

Some (scalar) improvement can be obtained by loop-unfolling (cf. (VK,

section 3.8]). A recursive doubling technique for solving the bidiagonal

linear system can be described as follows. Left-multiplication by the

matrix -A+ 2I yields the equation A1 x = b' where

1
0 1

a3 0

Ai = a'
4

0

a I Q
N

with obvious values of a~ Ci=3,4, ••• ,N) and b!
l. l.

(1:1,2, ••• ,N).

Next, we left-multiply with the matrix -A' + 21 to obtain the equation

A"x=b", where

A II =

1
0
0
0
a" 5

1
0
0
0

a" 6

1
0
0

0

a"
7

1
0

0

0

0

0 0

Repeating this process at most f log 2 N l steps eliminates all the unknowns

and yields the solution in the vector b. On a parallel processor with N

pirocessing elements, this would yield the solution in about log 2 N time

steps. However, the total number of operations in this parallel algorithm

is much larger than that in the serial version, and, even though

the operations now are all vector operations, the actual performance

on a vector computer (like the CRAY-1) is worse than the loop-unrolled

version. Speeds of 2 - 5 MFLOPS are reported for the parallel version

24

implemented on pipelined computers. For the loop-unrolled scalar version

[VK] report speeds of 8.0 MFLOPS on a CRAY-1 and 7.8 on a CYBER 205

(1- and 2-pipe) with N=SOOO. Veiry recently, J. Schlichting of CDC and

the CW! managed to reach a speed of 12 MFLOPS with N=3000.

4.2 Cyclic reduction

It seems that the technique of cyclic reduction was first used to

solve tridiagonal equations by Hockney in 1965 (in collaboration with

Golub; cf. [HJ, p.286]). We illustrate this technique with the bidiagonal

equation of the previous section. Eliminating x 1 from the second

equation, x3 from the fourth, and so on, we obtain the system

a' 4 1

a' 6 =

b'
2

b'
4

b'
6

where a Zi = - a2i * a2i-1

This process can be repeated, if suitable, and on a parallel processor

with N processors, this algorithm needs about log 2 N steps.

In [VK] experiments with this algorithm on pipelined computers like

the CRAY-1 and the CYBER 205 are reported. On the CRAY-1 speeds

close to 12 MFLOPS (for N=5000) were obtained, and 9 MFLOPS on a 2-pipe

CYBER 205.

4.3 Matrix-vector and matrix-matrix multiplication

The usual method of computing the matrix-vector product y := Ax

is by taking innerpiroducts of rows of A with x:

y. : =
l.

N

l
j=l

a ..
l.J

x.'
J

i = 1,2, ••• ,N.

25

Implementing this method on a CRAY-1, a speed of 53 MFLOPS is obtained (N:300)

For N=200 and 201, the speeds are 37 and 49 MFLOPS, respectively (this is due

to memol!'y bank conflicts). On the CYBER 205, however, there is a so-called

st~ide problem which means that elements have to be loaded from memory which

are not stored in contiguous locations (arrays in Fortran are stored column-

wise). The speed obtained on a 1-pipe CYBER 205 is 5.7 MFLOPS. However, by

reordering the computations column-wise:

Y • -. - + +

where a . is the 1-th column of the matrix A, the speed obtained on a 1-pipe
cl

CYBER 205 is 66 MFLOPS and on a 2-pipe CYBER 205 106 MFLOPS!

' If, however, we would have to compute y := A x, the inner product version

should be used on the CYBER 205. If the matrix A is symmetric and if only

the upper (or lower) part is available in storage, a combination of the two

methods mentioned above should be used on the CYBER 205.

For band matrices, the picture is quite different (cf. [MRK]). Consider,

for example, the tl('idiagonal band-matrix product

r y I al I al2
't l

Yz a21 a22 a23 x2 I
'

Y3 . - a32 a33 a34 x3 I . -
l

I

YN a
N,N-1 aNN

I
:N J

In ordeir to save space, band mati;ices are usually stored in rectangular

arrays such that the non-zero diagonals al('e stored in rows or column of the

array. The above multiplication can be executed very efficiently on a vector

computer by expressing the product as a sum of three vector-vector multipli-

cations:

- 26

y i

N-l I

: y I

L N J

. -. - ' .
' I • :
'

l
. * i
I

i
' i ,

I a l
' N-1 N-2 I

La N ,:-1 J

\ +

a
22

a
33

x N-2 l I aN-1 N-1

x N-11 La NN '

*

x
l

x
2

x
3

x
N-1

x
N

+

a
12

a
23

a
34

a
N-1,N

*

x
2

x
3

x
4

x
N

Hence, the time for this expression is essentially 5N clock cycles (3N for the

multiplication and 2N for the addition of the vectors), if we neglect start-up

times and if the diagonals of the matrix are stored column-wise.

If there are diagonals with constant value, the number of clock cycles can

be decreased by N for each constant diagonal (except the last) by using

chaining or linked triads.

The ideas described here can be extended to matrix-matrix ~ultiplication.

For example, in [DGK] six possible permutations of the three loop indices

in matrix-matrix multiplication programming are described.

This gives rise to six possible implementations of matrix multiplication.

Each implementation has quite different memory access patterns, which will

have an important impact on the performance of the algorithms on a given

vector or parallel processor. Also cf. [MRK].

4.4 Extended BLAS

Recently, Dongarra et al. ([DDHH]) have proposed a standard set of routine

for matrix-vector multiplication, rank-1 and rank-2 updates, and inversion of

triangular systems of equations, called the set of Extended BLAS (Basic Linear

Algebra Subroutines). This extends the existing set of BLAS, which are

standard routines for operations on vectors ([LHKKJ).

The extended BLAS routines will become available in Fortran 77. Besides that

the proposers hope that efficient implementations will become available on a

27

wide range of computer architectures. At the CW! an implementation of the

extended BLAS on the CYBER 205 is being developed. Here we will give a short

description of the contents of the set of extended BLAS, and present some

timings obtained on the CYBER 205.

Three types of basic operations (MV, R1/R2 and TR) are proposed:

a) Matrix vector (MV) products of the form

y : = a Ax + y, and y : = a A' x + y

where a is a scalarr, x and y are vectors and A is a matrix, and

x := Tx and x := T'x,

where T is an upperr or lower triangular matrix.

b) Rank-one (R1) and rank-two (R2) updates of the form

A:= axy' +A and A:= axy' + ayx' +A.

c) Solution of triangular equations (IV) of the form
-1

x := T x,

where T is an upper or lowerr non-singular triangular matrix.

The subroutines have a name which consists of five characters. The first

character is an S (indicating real versions; other possibilities are C

for complex, D for double precision). Characters two and three denote the

kind of matrix involved and the final two character denote the type of

operation. There are sixteen subroutines, marked by an * below.

operation

type of matl!'ix MV R 1 R2 IV

GE general matrix * *
GB general band *
SY symmetric * * *
SP symmetric packed * * *
SB symmetric band *
TR triangular * *
TP triangular packed * *
TB tiriangular band * *

The following table gives timings in milliseconds of the 16 subroutines.

The timings of the packed matrix versions are the same as those of the

28

unpacked versions, and are omitted. Two timings per routine aire given:

that of the Fortran 77 version and that of the 1-pipe CYBER 205 optimized

version. The final column gives MFLOPS-speeds of the optimized veirsions.

The oirdeir of the matrices used was 500 foir full matrices and 30000 foir band

matirices. In the case of band matirices, the number of non-zero diagonals

was: 2 upper and 3 lower in the geneiral case, 2 in the symmetiric case

and 5 in the triangular case.

Subiroutine Foirtiran 77
CYBER 205
Optimized MFLOPS-speed of Opt.

--SGEMV 7 7 75
SGBMV 107 15 26
SSYMV 58 8 63
SSBMV 184 12 27
STRMV 4 4 63
STBMV 98 14 24

SGER1 7 7 75
SSYR1 4 4 60

SSYR2 8.5 7.8 64

STRIV 6 62
STBIV 230 2

The geneiral matrix routines all run with a speed which comes quite

close to the optimal speed of 100 MFLOPS, obtainable foir general matrix

multiplication. In the band matrix case, the speeds aire negatively

influenced by the irow-wise storage convention for the diagonals: this

requires gathering of the diagonal elements. If column-wise storage

would be allowed, then the MFLOPS-speeds could be multiplied by a factor

of at least 1.6, which would bring these speeds reasonably close to

the optimum of 50 MFLOPS, obtainable for band matrix operations.

29

5. References

[BO] A.P.W. Bohm, Dataflow computation, CWI Tract 6, Centre for Mathematics
and Computer Science, Amsterdam, 1983.

[BRS] u. Bernutat-Buchmann, D. Rudolph and K.-H. Schlosser, Parallel
Computing I, Eine Bibliographie, Bochumer Schriften zur Parallelen
Datenverarbeitung 1, Computing Centre, Bochum, second ed., Sept. 1983.

[CS] L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput.
5(1976)618-623.

[DDHHJ J.J. Dongarra, J. Du Croz, s. Hammarling and R.J. Hanson, A proposal
for an extended set of Fortran Basic Linear Algebra Subprograms,
Techn. Memo. No. 41, Argonne National Lab., Argonne, Ill. 60439,
Dec. 1984.

[DH] J.J. Dongarra and T. Hewitt, Implementing dense linear algebra
algorithms using multitasking on the CRAY X-MP-4 (or approaching the
gigaflop), Techn. Memo No. 55, Argonne National Laboratory, Argonne,
Aug. 1985.

[DGK] J.J. Dongarra, F.G. Gustavson and A. Karp, Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine, SIAM Review
26(1984)91-112.

[DR] I.s. Duff and J.K. Reid(eds.), Vector and Parallel Processors in
Computational Science, Proceedings of the second International
Conference in VPPCS, Oxford August 1984, North-Holland, Amsterdam,
1985.

[EM] A.H.L. Emmen(ed.), Supercomputer Applications, Proc. of the Inter
national Supercomputer Applications Symposium, Amsterdam Nov. 1984,
North-Holland, Amsterdam, 1985.

[FL] M.J. Flynn, Very high speed computing systems, Proc. IEEE 14(1966)
1901-1909.

[FO] B. Fernberg, A Vector Implementation of the Fast fourier Transform
Algorithm, Math. Comp. 36(1981)189-191.

[HE] D. Heller, A survey of parallel algorithms in numerical linear algebra,
SIAM Review 20(1978)740-777.

[HJ] R.W. Hackney and C.R. Jesshope, Parallel Computers, Adam Hilger Ltd,
Bristol, 1981.

[HO] W. Hoffmann, Gaussian elimination algorithms on a vector computer,
Rept. 85-10, Dept. of Math., Univ. of Amsterdam, June 1985.

[KL79J D.G. Korn and J.L. Lambiotte, Jr., Computing the Fast Fourier Transform
on a Vector Computer, Math. Comp. 33(1979)977-992.

[KL83] G.A.P. Kindervater and J.K. Lenstra, Parallel algorithms in
combinatorial optimization: an annotated bibliogfaphy, Report BW 189
/83, Centre for Mathematics and Computef Science, Aug. 1983.

[LHKK] c. Lawson, R. Hanson, D. Kincaid and F. Krogh, Basic Linear Algebra
Subprograms for Fortran usage, ACM Trans. on Math. Software 5(1979)
308-323.

[LRW] J. van de Lune, H.J.J. te Riele and D.T. Winter, On the zeros of the
Riemann zeta function in the critical strip. IV, Report NM-8515,
Centre for Mathematics and Computer Science, Amsterdam, June 1985
(to appear in Math. Comp.).

[MI] W.L. Miranker, A survey of parallelism in numerical analysis, SIAM
Review 13(1971)524-547.

[ML] W.L. Miranker and W.M. Liniger, Parallel methods for the numefical
integration of ODEs, Math. Comp. 21(1967)303-320.

[MRK] Matrix multiplication by diagonals on a vector/parallel processo~,
Information Process. Letters 5(1976)41-45.

[OV] J.M. Ortega and R.G. Voigt, Solution of partial differential equations
on vector and parallel computers, ICASE Rept. No. 85-1, NASA Langley
Research Center, Hampton, Virginia 23665, Jan. 1985.

NoK. Madsen, GoH. Rodrigue and Jolo Karush,

30

[RI]
[RMK]

[RWL]

[SA]

[SCHE]

[SCHW]

[SH]

[ST 1]

[ST2]
[SWA]

[SWE]

[TR]

[VK]

[VL]

[WA]

[WR]

[ZA]

H. Riesel, Prime numbers and computer factorization, Birkhauser 1985.
G.H. Rodrigue, N.K. Madsen and J.I. Karush, Odd-even reduction for
banded linear equations, JACM 26(1979)72-81.
H.J.J. te Riele, D.T. Winter and J. van de Lune, Numerical verification
of the Riemann hypothesis on the CYBER 205, pp. 33-38 in (EM].
A.H. Sameh, Numerical parallel algorithms - A survey, pp. 207-228 in:
D.J. Kuck et al.(eds.), High speed computer and algorithm organization,
Acad. Press, 1977.
U. Schendel, Introduction to numerical methods for parallel computers
(translated from German), Ellis Horwood Ltd, Chichester, 1984.
J. Schwartz, A Taxonomic Table of Parallel Computers, based on 55
designs, Ultra computer Note No. 69, Courant Institute, New York Univ.,
198 3.
J.E. Shore, Second thoughts on parallel processing, Comput. Elect. Eng.
1 (1973)95-109.
H.S. Stone, An efficient parallel algorithm for the solution of a
tridiagonal linear system of equations, JACM 20(1973)27-38.
H.S. Stone, Problems of parallel computation, pp. 1-16 in [TR].
P.N. Swartztrauber, FFT algorithms for vector computers, Parallel
Computing 1(1984)45-63.
R.A. Sweet, A cyclic reduction algorithm for solving block-tridiagonal
systems of arbitrary dimension, SIAM J. Numer. Anal. 14(1977)706-719.
J.F. Traub(ed.), Complexity of sequential and parallel numerical
algorithms, Acad. Press, 1973.
H.A. van der Vorst and J.M. van Kats, The performance of some linear
algebra algorithms in Fortran on CRAY-1 and CYBER 205 supercomputers,
Techn. Rept. TR-17, ACCU, Utrecht, 1984.
J. van Leeuwen, Parallel computers and algorithms, Rept. RUU-CS-83-13,
RU Utrecht, Sept. 1983.
H.H. Wang, On vectorizing the Fast fourier Transform, BIT 20(1980)233-
243.
D.T. Winter and H.J.J. te Riele, Optimization of a program for the
verification of the Riemann hypothesis, Supercomputer, 5(1985)29-32.
v. Zakharov, Parallelism and array processing, IEEE Trans. Comp. C-33
(1984)45-78.

31

