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Abstract

We consider discrete time branching random walk on real line where the displacements

of particles coming from the same parent are allowed to be dependent and jointly regularly

varying. Using the one large bunch asymptotics, we derive large deviation for the extremal

processes associated to the suitably scaled positions of particles in the nth generation where

the genealogical tree satisfies Kesten-Stigum condition. The large deviation limiting measure

in this case is identified in terms of the cluster Poisson point process obtained in the underlying

weak limit of the point processes. As a consequence of this, we derive large deviation for the

rightmost particle in the nth generation giving the heavy-tailed analogue of recent work by

Gantert and Höfelsauer [2018].

Key words and phrases. Branching random walk, Extreme values, Regular variation, Point

process, Rightmost point, Large deviation.
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1 Introduction

Branching Random Walk (BRW) on real line is a generalization of a branching process which allows

spatial movement of the particles on the real line. The process starts with a single particle and then

each particle moves and branches independently of the other particles. A more detailed description

is as follows: It starts with one particle at the origin of the real line at time 0. Each particle lives

for a unit time and then gives birth to an independent copy of a point process L . The number of

atoms of the point process produced by a particle denotes the number of children of the particle
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and the atom(s) of the point process denote(s) displacement(s) attached to children of the particle.

Position of a particle is defined to be displacement of the particle translated by position of its

parent. Collection of positions of the particles in the system is known as BRW. Generation of a

particle denotes time of its birth. For a more detailed mathematical description of BRW, we refer

the reader to Subsection 2.2.

Since last few decades, the model BRW attracted attention of many researchers from different

disciplines due to its connection to Gaussian multiplicative chaos (Ding et al. [2017]), Gaussian free

field (Bramson et al. [2016a]), first and last passage percolation on Galton-Watson tree, ecology,

random polymer, random algorithms (Dutta et al. [2015]) etc. We refer to Shi [2016] for a more de-

tailed overview and references therein. Groundbreaking works include Kingman [1975], Hammersley

[1974], Biggins [1976] where almost sure limit for the leftmost position is obtained for displacements

with exponentially decaying tails. In this set up, the extremes for BRW on real line are extensively

studied e.g. Bachmann [2000], Addario-Berry and Reed [2009], Aı̈dékon [2013], Bramson et al.

[2016b], Madaule [2015] to mention a few. Large deviation for rightmost position is obtained in

branching Brownian motion (BBM) in Chauvin and Rouault [1988]. Recently, Derrida and Shi

[2016] derived large deviation for the rightmost position in different variants of BBM. The large

deviation for the empirical measure in discrete time BRW is derived in Louidor and Perkins [2015],

Louidor and Tsairi [2017] and Chen and He [2017] though large deviation for extremes does not

seem to follow from these works. Recently, large deviation for the rightmost position in case of dis-

placements with exponentially decaying tail has been recently addressed in Gantert and Höfelsauer

[2018] using a comparison with independent collection of random walks.

It is known in literature that behavior of extremes changes dramatically if tail of displacement

does not decay exponentially fast (see e.g. Durrett [1979], Durrett [1983], Gantert [2000], Maillard

[2016], Bérard and Maillard [2014]). In this article, we shall focus on BRW with displacements

having regularly varying tails. It has been established in Durrett [1983] that there exists a sequence

(bn : n ≥ 1) of scalars such that b−1
n Mn converges in distribution as n → ∞ where Mn denotes

the position of the rightmost particle at the nth generation. This result has been extended in

Bhattacharya et al. [2016] and Bhattacharya et al. [2018] where weak limit of extremal processes

is obtained when positions are divided by bn. Consider another sequence of scalars (γn : n ≥ 1)

growing faster than (bn : n ≥ 1) i.e. limn→∞ γ−1
n bn = 0. Note that γ−1

n Mn converges to 0 in

probability as n → ∞. It is very natural to ask if there exists a sequence of positive scalars

(rn : n ≥ 1) such that rnP(Mn > γnx) converges to some non-zero functions for every x > 0 i.e.

the rate of convergence for P(Mn > γnx) motivated from Gantert and Höfelsauer [2018]. Note that

similar questions can be asked about the kth rightmost position, joint distribution of the rightmost

and leftmost position, gap statistics etc. This motivates and necessitates the investigation for large

deviation of point processes (see Hult and Samorodnitsky [2010], Fasen and Roy [2016]) which can

work as master key for opening many locks. Let Nn be the point process which puts unit mass to
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the positions of the particles in the nth generation when positions are divided by γn. Suppose that

M be the space of all point measures on R \ {0}. Then it is clear that Nn does not converge to an

M -valued random variable as M does not contain a point measure with atom at 0. So P(Nn ∈ A)

converges to 0 for every “nice” set A ⊂ M . In this work, we obtain a sequence (rn : n ≥ 1) such

that rnP(Nn ∈ A) converges to a non-zero limit for “nice” subsets A ⊂ M and identify the limit

in terms of a cluster Poisson point process. As a consequence, we shall derive large deviation for

the rightmost particle in the nth generation i.e. limit of rnP(Mn > γnx) for every x > 0.

We shall use tools developed in Hult and Lindskog [2006], Hult and Samorodnitsky [2010] and

Lindskog et al. [2014] to derive large deviation for extremal processes. Note that the framework

proposed in Hult and Samorodnitsky [2010] is aimed to study the large values occurring in station-

ary sequences. It is not very straightforward to adapt the framework here as positions in the nth

generation is non-stationary due to dependence structure among them. The key ingredient used in

this article is “principle of a bunch of large displacements” for random variables with jointly regu-

larly varying tail. The proof is divided into four steps where we locate the large displacement in the

first three steps and compute the contribution of the large displacement in the last step. BRW on

real line can be viewed as a collection of dependent random walks where position of a particle at the

nth generation has same distribution as position of random walker (distribution of the steps is same

as that of displacements) at time n. In the first step, we show that there can be at most one large

displacement along a path to cause large position of a particle in the nth generation. Then we shall

cut the tree at the (n−K)th generation and ignore the displacements associated to members of the

first (n−K) generations using the fact that the large displacements can occur at the last K gener-

ations with high probability. This can be justified by the fact that total number of particles upto

the first (n −K)th generation is negligible with respect to total number of particles upto the nth

generation for large enough K. In the next step, we use a truncation technique based on progeny

distribution and prune each of subtrees deleting some children with their lines of descendants. It

is rare to see large displacement associated to the deleted ones. The formalization of these three

steps is very similar in spirit to those in Bhattacharya et al. [2018] but worth mentioning. Then

we regularize the pruned subtrees. Finally we compute limit of rnP(Nn ∈ A) for “nice” A ⊂ M

explicitly in terms of a cluster Poisson process using truncation technique for number of particles

in the (n−K)th generation and facts from regular variation on RN.

In Section 2, we discuss the tools to be used (see subsection 2.1) in this article, the model BRW

with specific assumptions on genealogical structure and displacements (see subsection 2.2)and state

Theorem 2.4 with its consequences (see 2.3). In Section 3, we prove Theorem 2.4 except some of the

steps which are similar in spirit to those in Bhattacharya et al. [2018]. Finally, proofs of Corollaries

2.6, 2.7 are given in Section 4.
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2 Preliminaries and main result

In the following subsection, we give a brief review on M-convergence on RN and space of all point

measures on R0 = R\{0}. This review will be helpful to state assumptions on the joint distribution

of the displacements from same parent and Theorem 2.4.

2.1 M-convergence on Polish space and regular variation on RN

Let (S, d) is a Polish space. In Lindskog et al. [2014], M-convergence is defined to study convergence

of measures on the space S \C where C is a closed set in S. In this article, we need to consider the

case where the closed set C is a singleton. So for the sake of simplicity we shall define M-convergence

on the space S\{s0} where s0 ∈ S. A sequence of measures (ξn : n ≥ 1) converges to a measure ξ on

S\ {s0} if for every bounded continuous function f : S → [0,∞) which vanishes in a neighbourhood

of s0,

lim
n→∞

∫

S\{s0}

f(x)ξn(dx) =

∫

S\{s0}

f(x)ξ(dx).

Using this notion of convergence, regular variation on the space RN can be defined as follows.

For every a > 0 and x = (xi : i ≥ 1) ∈ RN, we define a.x = (axi : i ≥ 1) ∈ RN to be the scalar

multiplication of x by a. It is clear from the definition of scalar multiplication that from a1, a2 > 0

and a > 1, a1.(a2.x) = (a1a2).x, 1.x = x for all x ∈ RN and dist(a.x,0) > 0 for every x ∈ RN \ {0}.

A measure ξ on RN is said to be regularly varying if there exists an increasing sequence an ↑ ∞ such

that nξ(an.·) converge to a non-null measure ϑ on RN \ {0} where ξ(an.A) = ξ
(
{anx : x ∈ A}

)
for

every measurable A ⊂ RN \ {0}. It follows from the definition that the limit measure ϑ satisfies the

scaling relation ϑ(a.A) = a−αϑ(A) for some α > 0 and every A such that 0 /∈ Ā (Ā denotes the

closure of A) and ϑ(∂A) = 0 (∂A denotes the boundary of the set A).

We also define the notation πj : RN → R such that πj

(
(xi : i ≥ 1)

)
= xj for all j ≥ 1

and πj1,j2,...,jk : RN → Rk such that πj1,j2,...,jk

(
(xi : i ≥ 1)

)
=

(
xj1 , xj2 , . . . , xjk

)
for all k ∈ N.

This notation will turn out to be helpful to derive large deviation for the rightmost position when

displacements from same parent are dependent. Suppose PROJj : RN → Rj is a map such that

PROJj(x) = (x1, x2, . . . , xj) i.e. the projection to the first j coordinates of x. Let M (RN \ {0})

denote the space of all measures on RN \ {0} and M0(R
N \ {0}) = M (RN \ {0})\ {∅} where ∅ is the

null measure on the space RN \ {0}. Let (ξn : n ≥ 1) be a sequence of measures in M0(R
N \ {0})

and ξ ∈ M0(R
N \ {0}). Following fact will be used to prove Theorem 2.4.

Fact 2.1 (Theorem 4.1 in Lindskog et al. [2014]). ξn → ξ in M0(R
N \ {0}) if and only if for every

j ≥ 1, ξn ◦ PROJ−1
j → ξ ◦ PROJ−1

j on the space of all measures on Rj \ {0}.

In Appendix A of Hult and Samorodnitsky [2010], tools are developed to study convergence of
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measures on the space of all point measures on R \ {0}. We shall use this framework to derive

the limit of sequence of measures rnP(Nn ∈ ·) where (rn : n ≥ 1) is chosen appropriately. Let M

denote the space of all point measures on the space R \ {0} and M0 = M \ {∅} where ∅ denotes

the null measure on R0. Suppose that C+
c ([−∞,∞] \ {0}) denotes the space of all non-negative,

bounded continuous functions f : R → [0,∞) such that f vanishes in the neighbourhood of 0. Let

(hi : i ≥ 1) be a countable dense collection of functions in C+
c ([−∞,∞] \ {0}) and (ξn : n ≥ 1) be

a collection of countable elements in M0. Let ξn(hi) → ξ(hi) for all i ≥ 1 and some ξ ∈ M0, then

we say ξn
v
→ ξ as n → ∞ where

v
→ denotes vague convergence. Note that vague convergence in

M0 is metrizable and the metric induced by vague convergence in M0 is denoted by dvague. It can

be shown that (M0, dvague) is a locally compact, complete, separable metric space i.e. a locally

compact Polish space. Let M(M0) be the space of all measures on M0, β0 is the null measure

on M0 and M0 = M(M0) \ {β0}. Let ϑn ∈ M0 for all n ≥ 1 and ϑ ∈ M0. Then we say that

ϑn converges to ϑ in Hult-Lindskog-Samorodnitsky sense and denoted by ϑn
HLS
−−−→ ϑ as n → ∞

if ϑn converges to ϑ in the sense of M-convergence with S = M0 and s0 = {∅}. This notion of

convergence will be used to state Theorem 2.4. In Hult and Samorodnitsky [2010], a convergence

determining class of functions is identified for
HLS
−−−→ which will play fundamental role in this article

and will be described below briefly. Suppose that gi ∈ C+
c ([−∞,∞] \ {0}), ǫi > 0 for i = 1, 2.

Consider a function Fg1,g2,ǫ1,ǫ2 : M0 → [0,∞) by

Fg1,g2,ǫ1,ǫ2(ϕ) =
2∏

i=1

(
1− exp

{
−
(
ϕ(gi)− ǫi

)
+

})

for every ϕ ∈ M0 which vanishes in the neighbourhood of the null measure ∅ ∈ M .

Fact 2.2 (Lemma A.1 in Hult and Samorodnitsky [2010]). Let m1 and m2 are two elements of

M0. Then m1 = m2 if and only if for every g1, g2 ∈ C+
c ([−∞,∞] \ {0}) and ǫ1, ǫ2 > 0,

m1

(
Fg1,g2,ǫ1,ǫ2

)
= m2

(
Fg1,g2,ǫ1,ǫ2

)
.

Fact 2.3 (Lemma A.2 in Hult and Samorodnitsky [2010]). Let (mn : n ≥ 1) be sequence of

measures in M0. Then mn
HLS
−−−→ m if and only if for every g1, g2 ∈ C+

c ([−∞,∞] \ {0}) and

ǫ1, ǫ2 > 0,

lim
n→∞

mn

(
Fg1,g2,ǫ1,ǫ2

)
= m

(
Fg1,g2,ǫ1,ǫ2

)
. (2.1)

It is enough to check (2.1) holds for only Lipscitz continuous functions g1, g2.

Note that, we have to show that m(Br) < ∞ where Br = {ϕ ∈ M0 : dvague(ϕ, ∅) > r} to

establish that m ∈ M0.
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2.2 Assumptions on L

Recall that BRW on real line is a spatial branching process where each particle is assigned a position

in the real line. It starts with one particle at the origin of the real line R. Each particle in the

system lives for a unit time and before dying, each particle produces an independent copy of the

point process L independently of the other particles. Each particle is assigned a position which is

defined to be displacement of the particle translated by position of its parent. In this article, we

shall assume that

L
d
=

Z∑

i=1

δXi

where Z is an N0 = {0, 1, 2, 3, . . .}-valued random variable which is independent of the collection

of real-valued random variables (Xi : i ≥ 1). We shall follow the convention that L = ∅ if Z = 0

where ∅ denotes the null measure on the real line R. We shall also assume that

E(Z log+ Z) < ∞ (2.2)

where log+ x = log(x ∨ 1) and µ := E(Z) > 1.

Now, we shall state assumptions on displacements. We shall assume that the random variables

Xi are marginally identically distributed with regularly varying tails of index α for every i ≥ 1

and (Xi : i ≥ 1) is an R
N =

∏
j∈N

R-valued random variable with regularly varying tail i.e. jointly

regularly varying on RN. Precise assumptions on marginal and joint distribution of displacements

are stated below.

1. Marginal distribution: We assume that marginal distribution of X = (Xi : i ≥ 1) are

identical and µnP(b−1
n Xi ∈ ·) ∈ RVα(R, να) where να(·) is a measure on R such that

να(dx) = αpx−α−1
1(x > 0)dx+ α(1 − p)(−x)−α−1

1(x < 0)dx (2.3)

where

p = lim
x→∞

P
(
X1 > x

)

P
(
|X1| > x

) = 1− lim
x→∞

P
(
X1 < −x

)

P
(
|X1| > x

) (2.4)

for every i ≥ 1.

2. Joint distribution: We assume that µnP
(
b−1
n .X ∈ ·

)
∈ RVα(R

N, λ) where λ(·) is a measure

on RN. The form of λ(·) is given in Bhattacharya et al. [2018] where Xi’s are independently

and identically. distributed. The expression for λ(·) is derived in Resnick and Roy [2014]
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where X is a moving average process. It follows from Fact 2.1 that λ ◦ PROJ−1
1 = να.

Under above assumptions, we can see that the underlying genealogical tree of BRW is a su-

percritical Galton-Watson (GW) tree with progeny distribution Z. It follows from (2.2) that the

supercritical GW tree satisfies Kesten-Stigum condition. The tree will be denoted by T. We shall

use Ulam-Harris labelling to label the vertices in T. We shall use u and v as the generic labels

for vertices. Note that the displacement associated to a vertex u is denoted by X(u) and position

of the vth vertex is denoted by S(v). Generation (the time of birth) of a vertex v is denoted

by |v|. Zn denotes number of particles at the generation n for every n ≥ 0 with Z1
d
= Z. Let

S =
⋂

n>0{Zn > 0} denote survival of the underlying GW tree. Probability conditioned on the

survival of the tree will be denoted by P∗ and expectation corresponding to P∗ will be denoted by

E∗.

In Bhattacharya et al. [2018], it has been shown that

Nn =
∑

|v|=n

δb
−1
n S(v)

converges weakly (under P∗) in the space M (R0) = { space of all measures on R0} under the above

assumptions, where (bn : n ≥ 1) is an increasing sequence of positive real numbers introduced in

(2.3). Suppose that (γn : n ≥ 1) is an increasing sequence of positive real numbers such that

γ−1
n bn ↓ 0 as n → ∞. Then it is clear that the sequence of point processes

Nn =
∑

|v|=n

δγ−1
n S(v) (2.5)

does not converge in the space M0 = M (R0) \ {∅} conditioned on the survival of the tree. This

means that the sequence of measures P∗(Nn ∈ ·) converges to null-measure on the space of all

measures on M0. Following Hult and Samorodnitsky [2010], we can say that large deviation for the

point processes is to find a sequence of constants (rn : n ≥ 1) such that rnP
(
Nn ∈ ·

)
converges to

some non-null measure on M0. The aim of this article is to find the sequence (rn : n ≥ 1) and to

compute limit of the sequence of measures
(
rnP

∗(Nn ∈ ·) : n ≥ 1
)
.

2.3 Main result and its consequences

Define

rn =
(
µnP(|X1| > γn)

)−1

(2.6)

for every n ≥ 1. As µnP(|X1| > γn) ↓ 0 as n → ∞, it is clear that rn ↑ ∞ as n → ∞. Note

that mn(·) = rnP
∗(Nn ∈ ·) is an element in M0. To describe limit of the sequence of measures
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(mn : n ≥ 1), we shall need following notations.

• Let U is an independent copy of Z. Ũ denotes the random variable U conditioned to stay

positive i.e. P(Ũ ∈ A) = P(U ∈ A|U > 0) for every A ⊂ N.

• For every l ≥ 1, (Z̃
(s)
l : s ≥ 1) is a collection of independent copies of the random variable

Z̃l which is the random variable Zl conditioned to stay positive i.e. P(Z̃
(s)
l ∈ A) = P(Zl ∈

A|Zl > 0) for every A ⊂ N.

• S denotes the event that T does not die out or become extinct. pe = 1 − P(S) denotes the

probability of extinction.

• For any set G, |G| denotes the cardinality of the set G and Pow(G) denotes the power set of

G i.e. the collection of all subsets of G.

Theorem 2.4. Under the assumptions stated in Subsection 2.2,

rnP
∗(Nn ∈ ·)

HLS
−−−→ m∗(·) (2.7)

in the space M0 where m∗ can be described as

m∗(·) = (1 − pe)
−1P(U > 0)

∞∑

l=0

µ−(l+1)E

[ ∑

G∈Pow(Ũ)\{∅}

λ
(
x ∈ R

N :
∑

s∈G

Z̃
(s)
l δxs

∈ ·
)

(
P(Zl > 0)

)|G|(
P(Zl = 0)

)Ũ−|G|
]
. (2.8)

Remark 2.5. Note that the measure m∗ is very similar to the measure Υ which appeared in

Bhattacharya et al. [2018] (see Lemma 4.4 and display (4.14)) in order to verify that the point

process associated to a typical subtree (after cutting and pruning) is regularly varying. So it seems

that the approach used in the aforementioned reference to derive the weak limit of the sequence of

point processes facilitates the study of large deviation of extremal process.

Corollary 2.6 (Large deviation for the rightmost position). Under the assumptions stated in The-

orem 2.4,

lim
n→∞

rnP
∗
(
max
|v|=n

S(v) > γnx
)
= x−αc1

for every x > 0 and some positive constant c1 given below

c1 = (1− pe)
−1P(U > 0)

∞∑

l=0

µ−(l+1)E

[ ∑

G∈Pow(Ũ)\{∅}

8



(
λ
(
∪s∈G Vs

))(
P(Zl > 0)

)|G|(
P(Zl = 0)

)Ũ−|G|
]

(2.9)

where Vs ⊂ RN such that πs

(
Vs

)
= (1,∞) and πi

(
Vs

)
= R for all i ∈ N \ {s} and for all s ∈ N.

Suppose that displacements associated to L are independently distributed. Then we can see

that the limit measure λ on RN admits a special form (see Example 2.1 in Bhattacharya et al.

[2018]) and we shall denote it by

λiid(·) =
∞∑

i=1

⊗i−1
j=1δ0 ⊗ να ⊗∞

j′=i+1 δ0. (2.10)

Corollary 2.7 (Large deviation for point process with IID displacements ). Suppose that the as-

sumptions in Theorem 2.4 hold and the displacements of L are independently and identically

distributed. Then rnP
∗(Nn ∈ ·)

HLS
−−−→ m∗

iid(·) where

m∗
iid(·) = (1− pe)

−1
∞∑

l=1

µ−lP(Zl > 0)E
(
να

(
x ∈ R : Z̃lδx ∈ ·

))
. (2.11)

Remark 2.8 (Large deviation for rightmost position in case of IID displacements). If the displace-

ments are independently and identically distributed then

lim
n→∞

rnP
(
max
|v|=n

S(v) > γnx
)
= px−α(1− pe)

∞∑

l=1

µ−lP(Zl > 0). (2.12)

We can use the fact that λ =
∑∞

t=1 ⊗
t−1
i=1δ0 ⊗ να ⊗∞

i=t+1 δ0 to obtain λ(∪s∈GVs) = |G|να((1,∞)) =

|G|p. The remark follows by using this observation to right hand side of (2.9).

3 Proof of Theorem 2.4

Fix gi ∈ C+
c (R̄0) and ǫi > 0 for i = 1, 2. In view of the Fact 2.3, it is necessary and sufficient to

establish that

lim
n→∞

mn(Fg1,g2,ǫ1,ǫ2) = lim
n→∞

rnE

[ 2∏

i=1

(
1− exp

{
−
(
Nn(gi)− ǫi

)
+

})]
= m∗(Fg1,g2,ǫ1,ǫ2) (3.1)

in order to prove Theorem 2.4. We shall establish (3.1) using four steps which are described as

follows: 1. single large displacement on every fixed path, 2. cutting the tree T into subtrees, 3.

pruning the subtrees and 4. regularization of the pruned subtrees. Note that these four steps have

been used before to derive weak limit of the sequence (Nn : n ≥ 1) in Bhattacharya et al. [2016]
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and Bhattacharya et al. [2018] though formalization of the first three steps in the context of large

deviation is a technically more challenging and needs more effort. For the sake of completeness

and to keep the article self-contained, we shall describe the algorithms to prune the subtrees and

regularize the pruned subtrees though these are used to derive the weak limit. The justification

for the first three steps are given below without detailed proofs. The detailed proofs are given in

Appendix.

Let I(v) denote the the unique path from the root to vertex v for every v ∈ T. Define

m̃n(·) = rnP
∗

( ∑

|v|=n

∑

u∈I(v)

δγ−1
n X(u) ∈ ·

)
. (3.2)

Note that displacements on the path I(v) are independently and identically distributed with reg-

ularly varying tails of index α. As the first step, we shall use principle of a single big jump to

conclude that at most one of the displacements on the path can be large enough to survive scaling

by γn for every fixed path I(v).

Lemma 3.1. Under the assumptions stated in Theorem 2.4

lim
n→∞

∣∣∣∣mn

(
Fg1,g2,ǫ1,ǫ2

)
− m̃n

(
Fg1,g2,ǫ1,ǫ2

)∣∣∣∣ = 0. (3.3)

Using this lemma, we can see that it is enough to compute the limit of

m̃n

(
Fg1,g2,ǫ1,ǫ2

)
= rnE

∗

[ 2∏

i=1

(
1− exp

{
−
( ∑

|v|=n

∑

u∈I(v)

gi(γ
−1
n X(u))− ǫi

)
+

})]
. (3.4)

For this computation, we shall need more information about location of the large displacement. To

be more specific, we shall show that large jump does not occur at the first (n − K) generations

with high probability for large enough K < n. This follows from the fact that total population size

upto the (n −K)th generation is negligible with respect to the total population size upto the nth

generation as K → ∞. The next lemma formalizes this fact.

Lemma 3.2. Under the assumptions sated in Theorem 2.4

lim
K→∞

lim
n→∞

rnP

[ ∑

|u|≤n−K

δγ−1
n X(u)(θ,∞) ≥ 1

]
= 0 (3.5)

for every θ > 0.
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Let δ = δ1 ∧ δ2. Then expression in (3.4) can be written as

rnE
∗

[ 2∏

i=1

(
1− exp

{
−
( ∑

|v|=n

∑

u∈I(v)

gi(γ
−1
n X(u))− ǫi

)
+

})

1

( ∑

|u|≤n−K

δγ
−1
n |X(u)|(δ,∞) = 0

)]
+ rnE

∗

[ 2∏

i=1

(
1− exp

{
−
( ∑

|v|=n

∑

u∈I(v)

gi(γ
−1
n X(u))− ǫi

)
+

})
1

( ∑

|u|≤n−K

δγ−1
n |X(u)|(δ,∞) ≥ 1

)]
. (3.6)

Let IK(v) denotes the subset of I(v) containing the last K ancestors of v i.e. IK(v) = {u ∈ I(v) :

|u → v| ≤ K}. The the first term in (3.6) can be given following upper bound

rnE
∗

[ 2∏

i=1

(
1− exp

{
−
( ∑

|v|=n

∑

u∈IK(v)

gi(γ
−1
n X(u))− ǫi

)
+

})]
. (3.7)

It is easy to see that the term in (3.4) is larger than the expression in (3.7) and difference between

these two terms is bounded by the second term in (3.6). Note that the product inside the expectation

is bounded by 1 and so we get following upper bound for the second term in (3.6)

rnP
∗
( ∑

|v|≤n−K

δγ
−1
n |X(v)|(δ,∞) ≥ 1

)

which converges to 0 as n → ∞ and then K → ∞.

So it is enough to compute limit of the expression in (3.7) as n → ∞ and K → ∞. Note that

the expression does not involve any knowledge about the first (n−K) generations of T. So we cut

the tree T in the (n−K)th generation and obtain a forest containing subtrees with K generations.

The subtrees will be denoted by (Ti : i ≥ 1). If u ∈ ∪iTi, then A(u) denotes number of descendants

of the particle u in the Kth generation of the subtree containing u. With this notation, expression

in (3.7) can be written as

rnE
∗

[ 2∏

i=1

(
1− exp

{
−
(Zn−K∑

j=1

∑

u∈Tj

A(u)gi(γ
−1
n X(u))− ǫi

)
+

})]
. (3.8)

In the next step, we shall prune each of the subtrees obtained due to cutting. Fix an integer

B > 1 large enough so that µB = E(Z1(B)) > 1 where Z1(B) := Z11(Z1 ≤ B)+B1(Z1 > B). The

algorithm is given below:

P1. Start with the subtree T1 and consider its root.

11



P2. If the root has less than or equal to B children in the first generation, then do nothing.

Otherwise, we keep the first B of them according to the Ulam-Harris labelling and delete

extra children with their descendants.

P3. So we can have at most B children in the first generation. Repeat the step P2 for the children

of the particles in the first generation. Follow the same algorithm until we reach to the

children of particles in the (K − 1)-th generation of the subtree T1.

P4. Repeat steps P2 and P3 for other subtrees.

Note that after pruning the subtrees in the forest, we delete some vertices with their lines of

descendants without changing their genealogical structure. After pruning the j-th subtree will be

denoted by Tj(B). Note that each of these subtrees has same distribution as that of a Galton-

Watson tree with K generations and progeny distribution Z1(B). Let u ∈ T1(B), then number of

descendants of a vertex u at the K-th generation of the subtree T1(B) has been modified and will

be denoted by A(B)(u). Following lemma formalizes that pruned subtrees contain large jump with

high probability.

Lemma 3.3. Under the assumptions given in Theorem 2.4, for every K ≥ 1,

lim
B→∞

lim
n→∞

rn

∣∣∣∣E
∗

[ 2∏

i=1

(
1− exp

{
−
(Zn−K∑

j=1

∑

u∈Tj

A(u)gi(γ
−1
n X(u))− ǫi

)
+

})]

−E∗

[ 2∏

i=1

(
1− exp

{
−
( Zn−K∑

j=1

∑

u∈Tj(B)

A(B)(u)gi(γ
−1
n X(u))− ǫi

)
+

})]∣∣∣∣ = 0. (3.9)

So, it is enough to compute the limit of the expression

rnE
∗

[ 2∏

i=1

(
1− exp

{
−
(Zn−K∑

j=1

∑

u∈Tj(B)

A(B)(u)gi(γ
−1
n X(u))− ǫi

)
+

})]
. (3.10)

From this expression onwards, we shall give detailed proof of every step. Define

N
(B)
t,n =

∑

u∈Tt(B)

A(B)(u)δγ
−1
n X(u)

for every t ≥ 1. So we need to compute the limit of following expression

rnE
∗

[ 2∏

i=1

(
1− exp

{
−
(Zn−K∑

t=1

N
(B)
t,n (gi)− ǫi

)
+

})]
(3.11)
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as n → ∞, B → ∞ and K → ∞. Our first aim will be to get rid of the conditional expectation

using an argument based on change of measure. We shall define Sn−K to be the set that at least

one of Zn−K subtrees does not extinct if Zn−K > 0 otherwise Sn−K is empty. It is clear that

S = Sn−K ∩ {Zn−K > 0} and so we get

dP∗ =
(
P(S)

)−1
1(S)dP =

(
P(S)

)−1
1(Zn−K > 0)1(Sn−K)dP. (3.12)

Using Radon-Nikodym derivative dP∗

dP
in (3.12), we can write down the expression in (3.11) as

rn
(
P(S)

)−1
E

[
1(Zn−K > 0)

2∏

i=1

(
1− exp

{
−
( Zn−K∑

t=1

N
(B)
n,t (gi)− ǫi

)
+

})]

− rn
(
P(S)

)−1
E

[
1(Zn−K > 0)1(Sc

n−K)

2∏

i=1

(
1− exp

{
−
( Zn−K∑

t=1

N
(B)
(n,t)(gi)− ǫi

)
+

})]
. (3.13)

We shall now show that the second term in right hand side of (3.13) converges to 0 as n → ∞.

Note that expression inside the expectation in the second term of (3.13) is positive and bounded

by 1. Recall δ = δ1 ∧ δ2 where δi = sup{|x| : gi(x) > 0} for i = 1, 2. It is clear that there must

be at least one displacement X(u) larger than γnδ/2 in absolute value for u ∈ ∪
Zn−K

t=1 Tt(B) to get

a non-zero contribution from the product inside expectation. So we get following upper bound for

the product inside expectation

Zn−K∑

t=1

∑

u∈Tt(B)

δγ−1
n |X(u)|(δ/2,∞).

Using this upper bound and conditioning on Fn−K , we get following upper bound for the second

term in (3.13)

rnE

[
1(Zn−K > 0)1(Sc

n−K)

Zn−K∑

t=1

∑

u∈Tt(B)

δγ−1
n |X(u)|(δ/2,∞)

]

= rnE

[
1(Zn−K > 0)

Zn−K∑

t=1

E

(
1(Sc

n−K)
∑

u∈Tt(B)

δγ−1
n |X(u)|(δ/2,∞)

∣∣∣∣Fn−K

)]
. (3.14)

Note that there can be at most B +B2 + . . .+BK = BK+1−B
B−1 displacements associated to each of

the subtrees due to pruning step. Using the fact that branching mechanism and displacements are

independently distributed and the fact sated above, we obtain following upper bound

µ−K P(|X1| > γnδ/2)

P(|X1| > γn)

BK+1 −B

B − 1
E

[
1(Zn−K > 0)

Zn−K

µn−K
pZn−K
e

]
. (3.15)
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It is clear that the first and the third term does not involve n and finite in (3.15). The second term

converges to a finite constant (δ/2)−α as n → ∞. Now if we look at the expectation then the term

inside expectation can be bounded by µK−nZn−K which converges to W in L1 (as a consequence

of Kesten-Stigum condition given in (2.2)). Note that the term inside expectation converges to 0

almost surely as n → ∞ (Zn−K → ∞ as n → ∞ conditioned on {Zn−K > 0}). So dominated

convergence theorem applies and the expectation converges to 0 as n → ∞ in (3.15).

In order to compute limit of the first term in (3.13), we shall regularize pruned subtrees according

to following regularization algorithm.

1. Consider root of T1(B).

2. The root can have at most B children in the next generation. If it has exactly B children,

then keep it as it is. If it has l (< B) children in the next generation, then we add (B − l)

children to it.

3. If u is a newly added children, then define A(B)(u) = 0, otherwise keep it as it is. Now,

replace displacements of the children of the root by an independent copy of the random

vector (X1, X2, . . . , XB). The new displacement attached to u will be denoted by X ′(u).

4. Consider each particle in Generation 1 of T1(B) and repeat the steps 2 and 3 until displace-

ments attached to the children of particles in the (K − 1)the generation are modified.

5. Repeat the steps 1,2,3 and 4 for the remaining subtrees.

After regularization, we obtain Zn−K many B-ary subtrees which will be denoted by (T̃t(B) :

1 ≤ t ≤ Zn−K). Now we shall develop notations which will help to compute limit of the first term

in (3.13). Each vertex u ∈ T̃t(B) will be encoded by the triplet (t, l, s) where u is the sth vertex

in the lth generation of the tth subtree. The collection of all displacements associated to the tree

T̃t(B) is denoted by

X̃t =
(
X ′(t, 1, 1), . . . , X ′(t, 1, B), . . . , X ′(t, l, 1), . . . , X ′(t, l, Bl), . . . , X ′(t,K, 1), . . . , X ′(t,K,BK)

)

where X ′(t, l, s) denotes displacement attached to the (t, l, s)th vertex for every 1 ≤ s ≤ Bl,

1 ≤ l ≤ K and 1 ≤ t ≤ Zn−K conditioned on Fn−K . It is clear that X̃t is an R̃B-valued random

element where R̃B = RB+B2+...+BK

. We also define

Ã
(B)
t =

(
A(B)(t, 1, 1), . . . , A(B)(t, 1, B), . . . , A(B)(t, l, 1), . . . , A(B)(t, l, Bl),

. . . , A(B)(t,K, 1), . . . , A(B)(t,K,BK)
)

for every t ≥ 1. Note that Ã
(B)
t is an S̃(B)-valued random element where S̃(B) =

∏K
l=1

∏Bl

s=1{0, 1, 2,

. . . , BK−l} =
∏K

l=1

∏Bl

s=1[B
K−l]0 where [BK−l]0 = {0, 1, 2, . . . , BK−l}. Also note that, the random

14



elements (Ã
(B)
t : 1 ≤ t ≤ Zn−K) are independently and identically distributed and also independent

of (X̃t : 1 ≤ t ≤ Zn−K) as branching mechanism and displacements are independent. Using Fact 2.1

and statement (iii) of Assumption 1.3, we obtain

P
(
γ−1
n (X1, X2, . . . , XB) ∈ ·

)

P(|X1| > γn)

HL
−−→ λ(B)(·) (3.16)

on the space RB\{0} where 0 ∈ R denotes the origin of Euclidean space RB and λ(B) = λ◦PROJ−1
B .

Recall that PROJB is an operator on RN such that PROJB

(
(ui : i ≥ 1)

)
= (u1, u2, . . . uB).

Now, using the fact that displacements attached to the children coming from different parent are

independent and (3.16), we obtain following convergence for joint distribution of the displacements

associated to all vertices in the subtree T̃t(B)

P
(
γ−1
n X̃t ∈ ·

)

P
(
|X1| > γn

) HL
−−→ τ

(B)
t (·) =

K∑

l=1

∑

s∈Jl

τ
(B)
t,l,s(·) (3.17)

on the space R̃B \ {0} where 0 ∈ R̃B is the origin and

τ
(B)
t,l,s =

B+B2+...+Bl−1+s−1⊗

j=1

δ0 ⊗ λ(B)
B+B2+...+BK⊗

j′=B+B2+...+Bl−1+s+B

δ0 (3.18)

for every 1 ≤ l ≤ K and s ∈ Jl =
{
p ∈ {1, 2, . . . , Bl} : p ≡ 1 mod B

}
(p ≡ 1 mod B means p

leaves remainder 1 when divided by B). Using (3.17) and the fact that (X̃t : t ≥ 1) are independently

and identically distributed, we get that

P
(
γ−1
n (X̃1, X̃2, . . . , X̃L) ∈ ·

)

P(|X1| > γn)

HL
−−→

L∑

j=1

ζ
(B)
j (·) (3.19)

on R̃L
B \ {0} where 0 ∈ R̃L

B is the origin and

ζ
(B)
j =

(j−1)(B+B2+...+BK)⊗

j′=1

δ0 ⊗ τ
(B)
j

L(B+B2+...+BK)⊗

j′′=j(B+B2+...+BK)

δ0 (3.20)

for every finite L ≥ 1. Also note that for every finite L, using the fact that conditioned on Fn−K ,
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(X̃t : 1 ≤ t ≤ L) and (Ãt : 1 ≤ t ≤ L) are independent we get that

P
(
(Ã

(B)
1 , Ã

(B)
2 , . . . , Ã

(B)
L ) ∈ ·, γ−1

n (X̃1, X̃2, . . . , X̃L) ∈ ·
)

P(|X1| > γn)

=
L∏

j=1

P
(
Ã

(B)
j ∈ ·

)P
(
γ−1
n (X̃1, X̃2, . . . , X̃L) ∈ ·

)

P(|X1| > γn)

HL
−−→

L∏

j=1

P
(
Ã

(B)
j ∈ ·

) L∑

j′=1

ζ
(B)
j (·) (3.21)

on the space
(
S̃B

)L
×
(
R̃t

B \ {0}
)
where

(
S̃(B)

)L

=
∏L

i=1 S̃
(B).

Fix a large enough integer L ∈ N. Then the first term in (3.13) can be written as

rn
(
P(S)

)−1
E

[
1(0 < Zn−K ≤ L)

2∏

i=1

(
1− exp

{
−
( Zn−K∑

t=1

Ñ
(B)
n,t (gi)− ǫi

)
+

})

+ 1(Zn−K > L)

2∏

i=1

(
1− exp

{
−
( Zn−K∑

t=1

Ñ
(B)
n,t (gi)− ǫ

)
+

})]
. (3.22)

We shall show that the second expectation in (3.22) converges to 0 as n → ∞ that is

lim
L→∞

lim
n→∞

rnE

[
1(Zn−K > L)

2∏

i=1

(
1− exp

{
−
( Zn−K∑

t=1

Ñ
(B)
n,t (gi)− ǫi

)
+

})]
= 0. (3.23)

We shall first prove the claim in (3.23) and then compute the limit of the first term in (3.22).

Note that contribution of the product is non-zero if there is at least one displacement which is

larger than γnδ/2 in absolute value. So we can see that product inside the expectation in (3.23) is

bounded by

Zn−K∑

t=1

∑

u∈T̃
(B)
t

δγ
−1
n |X(u)|(δ/2,∞).

So we obtain following upper bound for the term in left hand side of (3.23)

rnE

[
1(Zn−K > L)

Zn−K∑

t=1

∑

u∈T̃t(B)

δγ−1
n |X(u)|(δ/2,∞)

]

= µ−K BK+1 −B

B − 1
E

[
Zn−K

µn−K
1(Zn−K > L)

]
P(|X1| > γnδ/2)

P(|X1| > γn)
. (3.24)

16



We used a conditioning on Fn−K and then unconditioning argument to derive the equality. We can

see that the first two terms in (3.24) does not involve n and L. The last term converges to a finite

positive constant
(
δ/2

)−α
. So it is enough to show that

lim
L→∞

lim
n→∞

E

[
Zn−K

µn−K
1(Zn−K > L)

]
= 0. (3.25)

Under Kesten-Stigum condition, we have µ−n+KZn−K converges to W in L1 and so we can see

that the limit is finite. It is clear that µ−n+KZn−K1(Zn−K > L) converges to 0 almost surely as

n → ∞ and L → ∞. Using dominated convergence theorem, we can see that (3.25) holds.

It is easy to see that the first term in (3.22) can be written as

µ−n
(
P(S)

)−1
L∑

i′=1

P(Zn−K = i′)
∑

ã∈
(
S̃B

)i′

Gi′(ã)

∫

R̃i′

B

2∏

i=1

(
1− exp

{

−
( i′∑

t=1

∑

u∈T̃
(B)
t

a(u)gi
(
x(u)

)
− ǫi

)
+

})P
(
γ−1
n (X̃1, X̃2, . . . , X̃j) ∈ dx̃

)

P(|X1| > γn)
(3.26)

where Gi′(ã) = P
(
(Ã

(B)
1 , Ã

(B)
2 , . . . , Ã

(B)
i′ ) = ã

)
for every i′ ∈ {1, 2, . . . , L}. It is easy to see that

2∏

i=1

(
1− exp

{
−
( i′∑

t=1

K∑

l=1

Bl∑

s=1

a(t, l, s)gi
(
x(t, l, s)

)
− ǫi

)
+

})

is a bounded continuous function which vanishes in the neighbourhood of 0 ∈ R̃i′

B for every i′ ∈

{1, 2, . . . , L}. So using the HL convergence stated in (3.21), we get that

lim
n→∞

∑

ã∈
(
S̃(B)

)i′

Gi′(ã)

∫

R̃i′

B

2∏

i=1

(
1− exp

{
−
( i′∑

t=1

K∑

l=1

Bl∑

s=1

a(t, l, s)gi(x(t, l, s))− ǫi

)
+

})

P
(
γ−1
n (X̃1, X̃2, . . . , X̃i) ∈ dx̃

)

P(|X1| > γn)
=

∑

ã∈
(
S̃(B)

)i′

Gi′ (ã)

∫

R̃i′

B

2∏

i=1

(
1− exp

{
−
( i′∑

t=1

K∑

l=1

Bl∑

s=1

a(t, l, s)gi
(
x(t, l, s)

)
− ǫi

)
+

}) i′∑

j=1

ζ
(B)
j (dx̃) (3.27)

for every i′ ∈ {1, 2, . . . , L}. Fix η > 0. Then for large enough n (depending on η) we obtain
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following upper bound for the expression in (3.26)

µ−n
(
P(S)

)−1 L∑

i′=1

P(Zn−K = i′)
∑

ã∈
(
S̃(B)

)i′

Gi′(ã)

∫

R̃i′

B

2∏

i=1

(
1− exp

{
−
( i′∑

t=1

K∑

l=1

Bl∑

s=1

exp

{
−
( i′∑

t=1

K∑

l=1

Bl∑

s=1

a(t, l, s)gi
(
x(t, l, s)

)
− ǫi

)
+

} i′∑

j=1

ζ
(B)
j (dx̃)

+ ηµ−n

L∑

i′=1

P(Zn−K = i′). (3.28)

Note that the last term in right hand side of (3.28) is bounded by ηµ−n which converges to 0 as

n → ∞ uniformly in L. So it is enough to compute limit of the first term in (3.28) as L → ∞ and

n → ∞. Using the fact that gi’s vanish in a neighbourhood of 0, we get following expression for

right hand side of (3.28) can be written as

µ−n
(
P(S)

)−1 L∑

i′=1

P(Zn−K = i′)
∑

ã∈
(
S̃(B)

)i′

Gi′ (ã)

i′∑

j=1

∫

R̃B

2∏

i=1

(
1

− exp

{
−
( K∑

l=1

Bl∑

s=1

a(j, l, s)gi
(
x(j, l, s)

)
− ǫi

)
+

})
τ
(B)
j (dx̃) (3.29)

using Fubini’s theorem. Note that the product term inside integral depends only on Ãj and X̃j and

independent of Ãt for t ∈ [i′] \ {j}. Combining above observation and the fact that (Ãt : t ≥ 1) are

identically distributed, we get

∑

ã∈(S̃(B))i′

Gi′ (ã)

∫

R̃B

2∏

i=1

(
1− exp{−

( B∑

l=1

Bl∑

s=1

a(j, l, s)gi(x(j, l, s))− ǫi

)
+
}

)
τ
(B)
j (dx̃)

=
∑

ã∈S̃(B)

G(ã)

∫

R̃(B)

2∏

i=1

(
1− exp

{
−
( B∑

l=1

Bl∑

s=1

a(1, l, s)gi(x(1, l, s))− ǫi

)
+

})
τ
(B)
j (dX̃) (3.30)

for every j ∈ [i′]. Now using the fact that τ
(B)
j are same for every j ≥ 1 and plugging in (3.30), we

get following expression for (3.29)

µ−n
(
P(S)

)−1
[ ∑

ã∈S̃(B)

G(ã)

∫

R̃B

2∏

i=1

(
1− exp

{
−
( K∑

l=1

Bl∑

s=1

a(1, l, s)gi
(
x(1, l, s)

)
− ǫi

)
+

})
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τ
(B)
1 (dx̃)

] L∑

i′=1

i′P(Zn−K = i′). (3.31)

Hence we get that

lim
n→∞

lim sup
L→∞

µ−n
(
P(S)

)−1

E

[
1(0 < Zn−K ≤ L)

2∏

i=1

(
1− exp

{
−
(Zn−K∑

t=1

∑

u∈T̃t(B)

A(B)(u)gi(γ
−1
n X(u))− ǫi

)
+

})]

≤ µ−K
(
P(S)

)−1 ∑

ã∈S̃(B)

P
(
Ã

(B)
1 = ã

) ∫

R̃B\0

2∏

i=1

(
1

− exp

{
−

( K∑

l=1

Bl∑

s=1

a(1, l, s)gi(x(1, l, s))− ǫi

)
+

})
τ
(B)
1 (dx̃) (3.32)

letting L → ∞ in (3.31).

It is clear that for large enough n and fixed η > 0, we get following lower bound using (3.27)

∑

ã∈
(
S̃(B)

)i′

Gi′ (ã)

∫

R̃i′

B

2∏

i=1

(
1− exp

{
−
( i′∑

t=1

K∑

l=1

Bl∑

s=1

a(1, l, s)gi
(
x(1, l, s)

)
− ǫi

)
+

})

P
(
γ−1
n (X̃1, X̃2, . . . , X̃i′) ∈ dx̃

)

P(|X |1 > γn)

≥
∑

ã∈
(
S̃(B)

)i′

Gi′ (ã)

∫

R̃i′

B

2∏

i=1

(
1− exp

{
−
( i′∑

t=1

K∑

l=1

Bl∑

s=1

a(t, l, s)gi(x(t, l, s))− ǫi

)
+

}) i′∑

j=1

ζ
(B)
j (dx̃)− η.

Using this lower bound and same arguments as above, it can be easily obtained

lim
n→∞

lim inf
L→∞

rn

(
P(S)

)−1

E

[
1(0 < Zn−K ≤ L)

2∏

i=1

(
1− exp

{
−
(
Ñ

(B)
t,n (gi)− ǫi

)
+

})]

≥ µ−K
(
P(S)

)−1 ∑

ã∈S̃(B)

G(ã)

∫

R̃B\0

2∏

i=1

(
1

− exp

{
−
( K∑

l=1

Bl∑

s=1

a(1, l, s)gi(x(1, , l, s))− ǫ
)
+

})
τ
(B)
1 (dx̃). (3.33)
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Combining (3.32) and (3.33), we obtain

lim
n→∞

rn

(
P(S)

)−1

E

[
1(Zn−K > 0)

2∏

i=1

(
1− exp

{
−
(Zn−K∑

t=1

Ñ
(B)
n,t (gi)− ǫi

)
+

})]

= µ−K
(
P(S)

)−1 ∑

ã∈S̃(B)

G(ã)

∫

R̃B\0

2∏

i=1

(
1− exp

{

−
( K∑

l=1

Bl∑

s=1

a(1, l, s)gi(x(1, , l, s))− ǫ
)
+

})
τ
(B)
1 (dx̃). (3.34)

Note that the expression derived in (3.34) is same as the expression obtained in (4.21) in

Bhattacharya et al. [2018] except the first two terms. Also note that we can use arguments given in

aforementioned reference (based on the properties of GW process) to simplify the expression and

write down the sum in terms of expectation of underlying GW process (see (4.23) in aforementioned

reference). To write down the simplified expression, we need the following notation.

• Suppose that U (B) is an independent copy of Z
(B)
1 . Let Ũ (B) denotes the random variable

U (B) conditioned to stay positive i.e. P
(
Ũ (B) ∈ A

)
= P

(
Z

(B)
1 ∈ A|Z

(B)
1 > 0

)
for every

A ⊂ N.

• Let (Z
(B)
l : l ≥ 1) denotes the GW process with progeny distribution Z

(B)
1 . Let (Z

(s,B)
l : s ≥ 1)

be a collection of independent copies of Z
(B)
l for every l ≥ 1. (Z̃

(s,B)
l : s ≥ 1) denotes

the collection of independent copies of Z̃
(B)
l where Z̃

(B)
l denotes the random variable Z

(B)
l

conditioned to stay positive i.e. P(Z̃
(B)
l ∈ A) = P(Z

(B)
l ∈ A|Z

(B)
l > 0) for every A ⊂ N.

• Pow
(
G
)
denotes the power set of G i.e. the collection of all possible subsets of G.

It is clear from equation (4.23) in Bhattacharya et al. [2018], the expression in (3.34) can be written

as

µ−K
(
P(S)

)−1 K∑

l=1

µl−1
B

∫

RB\{0}

E

[ ∑

G∈Pow([Ũ(B)])\{∅}

2∏

i=1

(
1− exp

{
−
(∑

s∈G

Z̃
(s,B)
K−l gi(xs)− ǫi

)
+

})

(
P(Z

(B)
K−l > 0)

)|G|(
P(Z

(B)
K−l = 0)

)Ũ(B)−|G|
]
λ(B)(dx̃)

=

∫

M0

2∏

i=1

(
1− exp

{
−
(
ν(gi)− ǫi

)
+

})
m∗

K,B(dν) (3.35)
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where P(S) = 1− pe and m∗
K,B is a measure on M0 defined as

m∗
K,B(·) = (1− pe)

−1P
(
U (B) > 0

)
(µBµ

−1)K
K∑

l=1

µl−K−1
B E

[ ∑

G∈Pow([Ũ(B)])\{∅}

λ(B)
(
x ∈ R

B :
∑

s∈G

Z̃
(s,B)
K−l δx ∈ ·

)(
P(Z

(B)
K−l > 0)

)|G|(
P(Z

(B)
K−l = 0)

)Ũ(B)−|G|
]
. (3.36)

Again using the same argument given in the last paragraph in Page 18 of Bhattacharya et al. [2018],

we get that m∗
K,B(Br) < ∞ where Br = {ν ∈ M0 : dvague(ν, ∅) > r} is the subset of M0 which is

bounded away from ∅. It is easy to see that µB converges to µ, U (B) converges almost surely to U

which is an independent copy of Z1 and Z
(s,B)
l converges to Z

(s)
l almost surely as B → ∞ (recall

the notations introduced before Theorem 2.4). As the integrand in (3.35) is bounded by 1, we get

that expression derived in (3.35) converges to

(1− pe)
−1P(U > 0)

K∑

l=1

µl−K−1

∫

RN\{0}

E

[ ∑

G∈Pow([Ũ ])\{∅}

2∏

i=1

(
1− exp

{

−
(∑

s∈G

Z̃
(s)
K−lgi(xs)− ǫi

)
+

})(
P(ZK−l > 0)

)|G|(
P(ZK−l = 0)

)Ũ−|G|
]

=

∫

M0

2∏

i=1

(
1− exp

{
−
(
ν(gi)− ǫi

)
+

})
m∗

K(dν) (3.37)

where

m∗
K(·) = (1− pe)

−1P(U > 0)

K∑

l=1

µl−K−1E

[ ∑

G∈Pow([Ũ ])\{0}

λ
(
x ∈ R

N :
∑

s∈G

Z̃
(s)
K−lδx ∈ ·

)

(
P(ZK−l > 0)

)|G|(
P(ZK−l = 0)

)Ũ−|G|
]

= (1− pe)
−1P(U > 0)

K−1∑

l=0

µ−l−1E

[ ∑

G∈Pow([Ũ ])\{0}

λ
(
x ∈ R

N :
∑

s∈G

Z̃
(s)
l δx ∈ ·

)

(
P(Zl > 0)

)|G|(
P(Zl = 0)

)Ũ−|G|
]

(3.38)

as B → ∞ using dominated convergence theorem and Theorem 4.1 in Lindskog et al. [2014]. It can

be shown that m∗
K ∈ M0. Now letting K → ∞, we get that the expression converges to

∫

M0

2∏

i=1

(
1− exp

{
−
(
ν(gi)− ǫi

)
+

})
m∗(dν) (3.39)
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using the form of m∗
K derived in (3.38) and dominated convergence theorem where m∗ is given in

Theorem 2.4.

4 Proof of corollaries

In this section, we shall give detailed proof of the corollaries 2.6 and 2.7.

4.1 Proof of Corollary 2.6

Note that

lim
n→∞

rnP
∗
(
max
|v|=n

S(v) > γnx
)

= lim
n→∞

rnP
∗
(
Nn(x,∞) ≥ 1

)

= lim
n→∞

rnP
∗
(
Nn ∈ {ξ : ξ(x,∞) ≥ 1}

)

= m∗
(
{ξ : ξ(x,∞) ≥ 1}

)
(4.1)

= (1− pe)
−1P(U > 0)

∞∑

l=0

µ−(l+1)E

[ ∑

G∈Pow([Ũ ])\{∅}

λ
(
y ∈ R

N :
∑

s∈G

Z̃
(s)
l δys

(x,∞) ≥ 1
)

(
P(Zl > 0)

)|G|(
P(Zl = 0)

)Ũ−|G|
]

= x−α(1 − pe)
−1P(U > 0)

∞∑

l=0

µ−(l+1)E

[ ∑

G∈Pow([Ũ ])\{∅}

λ
(
y ∈ R

N :
∑

s∈G

δys
(1,∞) ≥ 1

)

(
P(Zl > 0)

)|G|(
P(Zl = 0)

)Ũ−|G|
]

(4.2)

using the scaling relation obeyed by the measure λ on RN. Note that
{∑

s∈G δys
∈ (1,∞) ≥ 1

}
=

{
y ∈ ∪s∈GVs

}
and using this in (4.2), we obtain (2.9). Here we applied Theorem 2.4 to obtain

the expression in right hand side of (4.1). In order to apply the theorem, we need to show that

A = {ξ ∈ M0 : ξ(x,∞) ≥ 1} is bounded away from the null measure and m∗(∂A ) = 0 which we

skipped. Following the same arguments given in Corollary 5.1 of Hult and Samorodnitsky [2010],

we can see that A c = {ξ : ξ(x,∞) = 0} is a closed set containing the null measure. So the A is

bounded away from null measure. Now we need to show that m∗(∂A ) = 0. Note that in the same

corollary of the aforementioned reference, it has been show that Ã = {ξ : ξ[x,∞) ≥ 1} is a closed

set containing A . So we get that

m∗(∂A ) ≤ m∗
(
Ã

)
−m∗

(
A

)

22



= x−α(1− pe)
−1P(U > 0)

∞∑

l=0

µ−(l+1)E

[ ∑

G∈Pow([Ũ ])\{0}

(
λ
(
∪s∈G V̄s

)

− λ
(
∪s∈G Vs

))(
P(Zl > 0)

)|G|(
P(Zl = 0)

)Ũ−|G|
]

(4.3)

where πs

(
V̄s

)
= [1,∞) and πi

(
V̄s

)
= R for every i ∈ N \ {s} for every s ∈ N. Our aim is to show

that for every G, the difference inside the sum is 0. Recall that λ◦π−1
s1,s2,...,sk

also satisfies the scaling

relation as λ satisfies where πs1,s2,...,sk(u) = (us1 , us2 , . . . , usk) for every (u) = (ui : i ≥ 1) ∈ RN for

every k ∈ N. Note that

λ
(
∪s∈G V̄s

)
− λ

(
∪s∈G Vs

)

=
∑

s∈G

λ ◦ π−1
s ({1})−

∑

s1,s2

λ ◦ π−1
s1,s2

(
{1} × {1}

)
+ . . .

+ (−1)|G|λ ◦ π−1
s1,s2,...,s|G|

(
{1} × {1} × . . .× {1}

)
. (4.4)

Now we can see that for every (s1, s2, . . . , sk) ∈ Nk,

λ ◦ π−1
s1,s2,...,sk

(
{1} × {1} × . . .× {1}

)

= lim
n→∞

(
λ ◦ π−1

s1,...,sk

(
(1 − n−1,∞)× (1 − n−1,∞)× . . .× (1− n−1,∞)

)

− λ ◦ π−1
s1,s2,...,sk

(
(1,∞)× (1,∞)× . . .× (1,∞)

))

= lim
n→∞

(
(1− n−1)−α − 1

)
λ ◦ π−1

s1,s2,...,sk

(
(1,∞)× (1,∞)× . . .× (1,∞)

)

= 0 (4.5)

as λ ◦ π−1
s1,s2,...,sk

(
(1,∞)× (1,∞)× . . .× (1,∞)

)
< ∞ (bounded away from 0 = (0, 0, . . . , 0) ∈ Rk).

Using (4.5), we can see that right hand side of (4.4) is 0 for every finite set G. As Ũ1 is finite almost

surely, so we get that right hand side of (4.3) is 0.

4.2 Proof of Corollary 2.7

Recall that

λiid(·) =
∞∑

t=1

⊗t−1
i=1δ0 ⊗ να(·) ⊗

∞
i=t+1 δ0.
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Then we obtain following expression for the m∗
(
Fg1,g2,ǫ1,ǫ2

)

(1− pe)
−1P(U > 0)

∞∑

l=1

µ−(l+1)E

[ ∑

G∈Pow([Ũ ])\{∅}

(
P(Zl > 0)

)|G|(
P(Zl = 0)

)Ũ−|G|

E

(∑

s∈G

∫ 2∏

i=1

(
1− exp

{
−
(
Z̃

(s)
l gi(x)− ǫi

)
+

})
να(dx)

)]
. (4.6)

To obtain this expression, we used the fact that
(
Z̃

(s)
l : s ≥ 1

)
are independent of U and so of Ũ .

Now we shall use that fact that (Z̃
(s)
l : s ≥ 1) are independent copies of random variables Z̃l for

every l ≥ 1 to obtain following expression for right hand side of (4.6) as

(1− pe)
−1P(U > 0)

∞∑

l=1

µ−(l+1)

[
E

[ ∫ 2∏

i=1

(
1− exp

{
−
(
Z̃lgi(x) − ǫi

)
+

})
να(dx)

]]

E

[ Ũ∑

|G|=1

|G|

(
Ũ

|G|

)(
P(Zl > 0)

)|G|(
P(Zl = 0)

)Ũ−|G|
]

= (1− pe)
−1P(U > 0)E[Ũ ]

∞∑

l=1

µ−(l+1)P(Zl > 0)E

[ ∫ 2∏

i=1(
1− exp

{
−
(
Z̃lgi(x)− ǫi

)
+

})
να(dx)

]
. (4.7)

Note that E
(
Ũ
)
= µ

(
P(U1 > 0)

)−1
. So we get following expression for right hand side of (4.7)

(1− pe)
−1

∞∑

l=1

µ−lP(Zl > 0)

∫
E

[ 2∏

i=1

(
1− exp

{
−
(
Z̃lgi(s)− ǫi

)
+

})]
να(dx). (4.8)

It is easy to see that right hand side of (4.8) is same as m∗
iid(Fg1,g2,ǫ1,ǫ2) where m∗

iid is given in

Corollary 2.7. Hence we conclude the proof.
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Appendix

Here we shall present the proofs of Lemma 3.1, 3.2 and 3.3. Following inequality will turn out to

be very useful for the proofs given later. It is clear that

∣∣∣E∗(R)−E∗(R′)
∣∣∣ =

∣∣∣E
(
1(S)(P(S))−1R

)
−E

(
1(S)(P(S))−1R′

)∣∣∣

=
(
P(S)

)−1∣∣∣E
(
1(S)R

)
E
(
1(SR′)

)∣∣∣

≤
(
P(S)

)−1

E
(
1(S)|R −R′|

)

≤
(
P(S)

)−1

E
(
|R−R′|

)
(4.9)

for any pair of random variables R and R′.
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4.3 Proof of Lemma 3.1

The key idea behind the proof of the lemma is that at most one of the displacement can survive the

scaling among displacements on a typical path from the root to the vertex v in the n-th generation.

To formalize this idea, we need following notations. Define

AMOn =

( ⋃

|v|=n

(∑

u∈v

δγ
−1
n |X(u)|(n

−3,∞) ≥ 2
))c

.

Our aim is to show that

lim
n→∞

rnP(AMOc
n) = 0. (4.10)

It is easy to see that

rnP(AMOc
n) = rnE

[
P

( ⋃

|v|=n

( ∑

u∈I(v)

δγ
−1
n |X(u)|(n

−3,∞) ≥ 2
)∣∣∣∣Fn

)]

≤ rnE

[ ∑

|v|=n

P
( ∑

u∈I(v)

δγ−1
n |X(u)|(n

−3,∞) ≥ 2
)]

. (4.11)

Note that for every vertex v in the n-th generation, the number of displacements on the path from

the root to the vertex v is n and these n displacements are independently (as coming from different

parents) and identically distributed. Let (X
(i)
1 : i ≥ 1) denote the collection of independent copies

of X1. Then for every n,

P
( ∑

u∈I(v)

δγ−1
n |X(u)|(n

−3,∞) ≥ 2
)
= P

( n∑

i=1

δ
γ
−1
n |X

(i)
1 |

(n−3,∞) ≥ 2
)

∼ n2

[
P
(
|X1| > γnn

−3
)]2

. (4.12)

for large enough n. Using the upper bound obtained in (4.12), we obtain following upper bound

for right hand side of (4.11) as

rnn
2

[
P
(
|X1| > γnn

−3
)]2

E(Zn) = rnµ
nn2

[
P
(
|X1| > γnn

−3
)]2

= n2P(|X1| > γn)

[
P(|X1| > γnn

−3)

P(|X1| > γn)

]2
. (4.13)

28



Using Potter’s bound (Lemma in Resnick [1987]), we obtain following upper bound for the ratio in

(4.13) as

P
(
|X − 1| > γnn

−3n3
)

P(|X1| > γnn−3)
≥ (1− η)n−α−η

for some 0 < η < 1 and large enough n depending on the choice of η. So we obtain following upper

bound for the expression in (4.13) as

n2P
(
|X1| > γn

)(
(1− η)−1n3α+3η

)2

=
n2+6α+6η

µn

(
µnP(|X1| > γn)

)
(1 − η)−2. (4.14)

Note that the first and second terms in the upper bound derived in (4.14) converges to 0 as n → ∞

where the third term is bounded. Hence, we see that (4.10) holds.

Now we shall prove (3.3). Define

Ñn =
∑

u∈I(v)

∑

|v|=n

δγ−1
n |X(u)|.

It is clear that

rn|mn(Fg1,g2,ǫ1,ǫ2)− m̃n(Fg1,g2,ǫ1,ǫ2)|

= rn

∣∣∣∣E
∗

[ 2∏

i=1

(
1− exp

{
−
(
Nn(gi)− ǫi

)
+

})]
−E∗

[ 2∏

i=1

(
1− exp

{
−
(
Ñn(gi)− ǫi

)
+

})]∣∣∣∣

≤ rnE

[∣∣∣∣
2∏

i=1

(
1− exp

{
−
(
Nn(gi)− ǫi

)
+

})
−

2∏

i=1

(
1− exp

{
−
(
Ñn(gi)− ǫi

)
+

})∣∣∣∣
]

≤ rnE

[∣∣∣∣
2∏

i=1

(
1− exp

{
−
(
Nn(gi)− ǫi

)
+

})
−

2∏

i=1

(
1− exp

{
−
(
Ñn(gi)− ǫi

)
+

})∣∣∣∣1(AMOn)

]

+ 2rnP(AMOn) (4.15)

where the first inequality is due to (4.9) and the second inequality is derived using the fact that

each products inside the modulus is bounded by 1 and |x+ y| = |x|+ |y|. Note that the last term

is o(n) using (4.10). So it is enough to show that the first term in the display (4.15) converges to

0 as n → ∞ to prove (3.3). In following display, we derive an upper bound for the term inside the

expectation in (4.15). Note that

∣∣∣∣
2∑

i=1

(
exp

{
−
(
Ñn(gi)− ǫi

)
+

}
− exp

{
−
(
Nn(gi)− ǫi

)
+

})
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+

(
exp

{
−

2∑

i=1

(
Nn(gi)− ǫi

)
+

}
− exp

{
−

2∑

i=1

(
Ñn(gi)− ǫi

)
+

})∣∣∣∣

≤
2∑

i=1

∣∣∣∣ exp
{
−
(
Nn(gi)− ǫi

)
+

}
− exp

{
−
(
Ñn(gi)− ǫi

)
+

}∣∣∣∣

+

∣∣∣∣ exp
{
−

2∑

i=1

(
Nn(gi)− ǫi

)
+

}
− exp

{
−

2∑

i=1

(
g̃i − ǫi

)
+

}∣∣∣∣

≤ 2

2∑

i=1

∣∣∣
(
Ñn(gi)− ǫi

)
+
−
(
Nn(gi)− ǫi

)
+

∣∣∣ (4.16)

using the facts that |x + y| ≤ |x| + |y| and |ex − ey| ≤ |x − y| for all x, y ∈ R. Note that for all

x, y, a > 0,

|(x − a)+ − (y − a)+| =





|x− y| if x, y > a

|x− a| if x > a > y

|y − a| if y > a > x

0 if x, y < a.

So we can see that |(x − a)+ − (y − a)+| ≤ |x − y| for all x, y, a > 0. Using this fact, we obtain

following upper bound for right hand side of (4.16) as

2

2∑

i=1

∣∣∣Ñn(gi)−Nn(gi)
∣∣∣. (4.17)

Hence, combining (4.15) with the upper bound obtained in (4.17), it is enough to show that

lim
n→∞

rnE

[
1(AMOn)

2∑

i=1

∣∣∣Ñn(gi)−Nn(gi)
∣∣∣
]
= 0. (4.18)

Using the fact that g1 and g2 is any pair of functions in C+
c (R̄0), to prove (4.18) it is enough to

show that

lim
n→∞

E
(
1(AMOn)

∣∣∣Nn(g)− Ñn(g)
∣∣∣
)
= 0 (4.19)

for any g ∈ C+
c (R̄0). Fix a function g ∈ C+

c (R̄0) and let δg = inf{|x| : g(x) > 0}. Let T (v) denotes

the displacement X(u) on the path I(v) such that |X(u)| = maxu′∈I(v) |X(u′)| i.e. the maximum

term in modulus among all the displacements on the path I(v) for every vertex v in the n-th

generation. Note that on the event max|v|=n |T (v)| < γnδ/2, no displacement contributes to the sum
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Ñn(g) =
∑

|v|=n

∑
u∈I(v) g

(
γ−1
n X(u)

)
. Similarly, conditioned on AMOn and max|v|=n |T (v)| <

γnδ/2, it is clear that |S(v)| ≤ γnδ/2 + γnn
−2 < γnδ for large enough n and every vertex v in the

n-th generation. So conditioned on the events AMOn and max|v|=n |T (v)| < γnδ/2, it is clear that

Nn(g) = 0 and so we get that the difference inside the expectation is 0. To show that (4.19), it is

enough to show that

lim
n→∞

rnE

[∣∣∣Nn(g)− Ñn(g)
∣∣∣1(AMOn)1

(
max
|v|=n

|T (v)| > γnδ/2
)]

= 0. (4.20)

Note that the term inside the expectation can be given following upper bound

∑

|v|=n

∣∣∣g
(
γ−1
n S(v)

)
−

∑

u∈I(v)

g
(
γ−1
n X(u)

)∣∣∣1(AMOn)1
(
max
|v|=n

|T (v)| > γnδ/2
)
. (4.21)

Conditioned on the events AMOn and max|v|=n T (v) > γnδ/2, we get that
∑

u∈I(v) g
(
γ−1
n X(u)

)
=

g
(
γ−1
n T (v)

)
if |T (v)| > γnδ/2 for large enough n. So the upper bound derived in (4.21) equals

∑

|v|=n

∣∣∣g
(
γ−1
n S(v)

)
− g

(
γ−1
n T (v)

)∣∣∣1
(
|T (v)| > γnδ/2

)
1(AMOn) (4.22)

when n−3 < δg. We have assumed that g is a Lipschitz continuous function i.e. there exists a

constant ‖g‖ such that |g(x)− g(y)| ≤ ‖g‖|x− y| for all x, y ∈ R. Hence we obtain following upper

bound for the expression in (4.22) as

‖g‖γ−1
n

∑

|v|=n

|S(v) − T (v)|1
(
|T (v)| > γnδ/2

)
1(AMOn). (4.23)

Note that |S(v)− T (v)| ≤ (n− 1)γn/n
3 < n−2γn conditioned on the event AMOn. Using this fact

with (4.23), we obtain following upper bound for the expectation in the left hand side of (4.20) as

rn‖g‖γ
−1
n γnn

−2E

[ ∑

|v|=n

1

(
|T (v)| > γnδ/2

)]

= rn‖g‖n
−2E

[ ∑

|v|=n

E
(
1(|T (v)| > γnδ/2)

∣∣∣Fn

)]

= rn‖g‖n
−2E

[ ∑

|v|=n

P
(
|T (v)| > γnδ/2

)]

= rn‖g‖n
−2P

(
max
1≤i≤n

|X
(i)
1 | > γnδ/2

)
E(Zn) (4.24)

using the fact that the displacements and branching mechanism are independent and the displace-
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ments on a typical path are independently and identically distributed. It is easy to see that that

the expression in (4.24) can be given following upper bound

rn‖g‖n
−2µnP

( ⋃

1≤i≤n

(|X
(i)
1 | > γnδ/2)

)

≤ ‖g‖
(
P(|X1| > γn)

)−1

n2
n∑

i=1

P(|X1| > γnδ/2)

= ‖g‖n−1P(|X1| > γnδ/2)

P(|X1| > γnδ)
. (4.25)

Note that the ratio in right hand side of (4.25) converges to
(
δ/2

)−α

as n → ∞. So we see that

the expression in right hand side of (4.25) converges to 0 as n → ∞ and hence we conclude (4.20).

4.4 Proof of Lemma 3.2

Here, we shall formalize the fact that the probability of contribution coming from the displacements

in the first (n−K) generations are negligible. Let

Υ(n,K) =
∑

|u|≤n−K

δγ
−1
n X(u).

Note that P∗(A) = E∗(1(A)) =
(
P(S)

)
E(1(A)1(S)) ≤

(
P(S)

)−1

E(1(A)) =
(
P(S)

)−1

P(A). So

it is enough to show that

lim
K→∞

lim
n→∞

P
(
Υ(n,K)(θ,∞) ≥ 1

)
= 0. (4.26)

to prove Lemma 3.2. Note that the displacements in the first (n − K) generations are not inde-

pendent and identically distributed. It is clear that the point process coming from same particle

are independent and identically distributed and so if we group the displacements according to their

parents then we can use this fact. Let Di denotes the collection of all vertices in the i-th generation.

Then we can see that

Υ(n,K) =

n−K−1∑

i=0

∑

u∈Di

ch(u)∑

j=1

δγ
−1
n |X(uj)|

where ch(u) denotes the number of children of the vertex u. Note that

{
Υ(n,K)(θ,∞) ≥ 1

}
=

n−K−1⋃

i=0

⋃

u∈Di

{ ch(u)∑

j=1

δγ−1
n |X(uj)|(θ,∞) ≥ 1

}
.
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So we get following following upper bound for P(Υ(n,K)(θ,∞) ≥ 1) as follows

n−K−1∑

i=0

E

[ ∑

u∈Di

P

( ch(u)∑

j=1

δγ
−1
n |X(u)|(θ,∞) ≥ 1

)]

=

n−K−1∑

i=0

E

[
E

( ∑

u∈Di

P

( ch(u)∑

j=1

δγ
−1
n |X(u)|(θ,∞) ≥ 1

)∣∣∣∣Fi

)]

=

n−K−1∑

i=0

E(Zi)P

( Z1,i∑

j=1

δγ
−1
n |Xj |

(θ,∞) ≥ 1

)
(4.27)

where (Z1,i : i ≥ 1) be a collection of independent copies of Z1, using the facts that conditioned

on Fi, each particle produces a random number of offspring according to the distribution of Z1

and independent of what happened upto i-th generation for every 1 ≤ i ≤ K. So we get following

expression for right hand side of (4.27)

n−K−1∑

i=0

µiP
( Z1∑

i=1

δγ
−1
n |Xi|

(θ,∞) ≥ 1
)
≤ µn−KP

( Z1⋃

i=1

(|Xi| > γnθ)

)

= µn−K

∞∑

j=1

P
( j⋃

i=1

(|Xj | > γnθ)
)
P(Z1 = j)

≤ µn−KP
(
|X1| > γnθ

) ∞∑

j=1

jP(Z1 = j) (4.28)

using the fact that the displacements are marginally identically distributed. So we obtain following

expression

µn−K+1P(|X1| > γnθ). (4.29)

Hence we can see that

rnP(Υ(n,K)(θ,∞)) ≤ µ−K+1P(|X1| > γn)

P(|X1| > γn)
. (4.30)

Now, letting n → ∞, we can see the ratio in (4.30) converges to θ−α. Hence letting K → ∞, we

conclude the proof of (4.26).

4.5 Proof of Lemma 3.3

Note that, after cutting the tree at the (n − K)-th generation, we obtain Zn−K GW trees each

with K generations and progeny distribution Z1. Recall that the subtrees obtained after cutting
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are denoted by (Ti : 1 ≤ i ≤ Zn−K) conditioned on Fn−K . In the pruning step, each subtree T1 is

modified in such a way that each particle can have at most B descendants in the next generation.

The modified subtrees are denoted by (Ti(B) : 1 ≤ i ≤ Zn−K). Let u ∈ Ti for some i, then A(u)

denotes the number of descendants of the particle u in the K-th generation of the subtree T1. If

u ∈ T1(B), then A(B)(u) denotes the number of descendants of u in the K-th generation of the

pruned subtree T1(B). Using the inequality derived in (4.9), we get that it is enough to show that

lim
B→∞

lim
n→∞

rnE

[∣∣∣∣
2∏

i=1

(
1− exp

{
−
(
Ñ (K)

n (gi)− ǫi

)
+

})

−
2∏

i=1

(
1− exp

{
−
(
ÑK,B(gi)− ǫi

)
+

})∣∣∣∣
]
= 0 (4.31)

to establish (3.9) where

Ñ (K,B)
n =

Zn−K∑

i=1

∑

u∈Ti(B)

A(B)(u)δγ
−1
n X(u) and Ñ (K)

n =

Zn−K∑

i=1

∑

u∈Ti

A(u)δγ
−1
n X(u).

using the same steps used in Subsection 4.3 to prove Lemma 3.1, we can see that it is enough to

show that

lim
B→∞

lim
n→∞

rnE

[∣∣∣∣Ñ
(K)
n (g)− Ñ (K,B)(g)

∣∣∣∣
]
= 0. (4.32)

for any g ∈ C+
c (R̄0). We need more notations to prove (4.32) which are introduced below.

Let D
(i)
j denote the collection of all vertices in the j-th generation of the i-th subtree Ti for

1 ≤ j ≤ K and 1 ≤ i ≤ Zn−K . Similarly D
(i)
j (B) denotes the collection of all vertices in the j-th

generation of the i pruned subtree Ti(B) for every 1 ≤ j ≤ K and 1 ≤ i ≤ Zn−K . Then we can see

that

Ñ (K,B)
n =

Zn−K∑

i=1

K∑

j=1

∑

u∈D
(i)
j

(B)

A(B)(u)δγ
−1
n X(u) and Ñ (K)

n =

Zn−K∑

i=1

K∑

j=1

∑

u∈D
(i)
j

A(u)δγ
−1
n X(u).

In order to show that (4.32), we need assistance of another intermediate point process N
(∗,K,B)
n .

This trick also has been used in Bhattacharya et al. [2016] and Bhattacharya et al. [2018]. For the

sake of completeness we give the proof below with a construction of the point process N
(∗,K,B)
n .

Consider the subtree T1. Leave out the root of T1. We reward (mark) the particles of T1

according to following scheme. If the number of particles in the first generation is less than or

equal to B, then we reward each particle with a ∗. If there are more than B particles in the first
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generation then we reward a ∗ to the first B of them (according to the Harris-Ulam) labelling

and keep the others without any reward. Now we consider the particles in the second generation.

We pick a particle and check whether it is one of the first B children (according to Ulam-Harris

labelling) of its parent in the previous generation or not. If is so then we add a more ∗ to it than

its parent. Otherwise, it will have the same reward as its parent. We follow the reward scheme

until we are done with all particles at the K-th generation of T1. We shall do the same for the

other subtrees. Employing this reward scheme, we obtain marked subtrees which will be denoted

by (T∗
j : 1 ≤ j ≤ Zn−K).

Note that the collection of all vertices in j-th generation of i-th marked subtree T∗
i is same as

that of Ti for every 1 ≤ j ≤ K and 1 ≤ i ≤ Zn−K . Let u ∈ D
(i)
j , then u can have at most j many

∗s as award. Then for every u ∈ D
(i)
j , we define A(B)(u) as the number of descendants of u in the

K-th generation with (K − j + l) many ∗s if u is awarded l many ∗s for 0 ≤ l ≤ j. With these

notations, we define

N (∗,K,B)
n =

Zn−K∑

i=1

K∑

j=1

∑

u∈D
(i)
j

A(B)(u)δγ
−1
n X(u). (4.33)

This construction is lacking in Bhattacharya et al. [2016]. In that work, it was not clear that how

one can keep the generations same as that of T1 with number of descendants of a particle same as

that in the pruned subtree. Here with the help of the construction of the marked tree, we can see

how one can obtain the point process N
(∗,K,B)
n from the marked subtrees. Note that it is enough

to show that

lim
B→∞

lim
n→∞

rnE
(
Ñ (K)

n (g)−N (∗,K,B)
n (g)

)
= 0 (4.34)

and

lim
B→∞

lim
n→∞

rnE
(
N (∗,K,B)

n (g)− Ñ (K,B)
n (g)

)
= 0. (4.35)

Recall that Z
(B)
1 = Z11(Z1 ≤ B) + B1(Z1 > B). Note that the Galton-Watson process with

progeny distribution Z
(B)
1 is denoted by (Z

(B)
n : n ≥ 1). Using the fact that A(B)(u) ≤ A(u) for all

u ∈ Ti for 1 ≤ i ≤ Zn−K , we get that the left hand side in (4.34) equals

rnE

[Zn−K∑

i=1

K∑

j=1

∑

u∈D
(i)
j

(
A(u)−A(B)(u)

)
g
(
γ−1
n X(u)

)]
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≤ ‖g‖rnE

[Zn−K∑

i=1

K∑

j=1

∑

u∈D
(i)
j

(
A(u)−A(B)(u)

)
1

(
|X(u)| > γnδg

)]

= ‖g‖E

[
E

(Zn−K∑

i=1

K∑

j=1

∑

u∈D
(i)
j

(
A(u) −A(B)(u)

)
1

(
|X(u)| > γnδg

)∣∣∣∣Fn−K

)]

= ‖g‖E

[Zn−K∑

i=1

K∑

j=1

E(Zj)E
(
ZK−j − Z

(B)
K−j

)
P
(
|X(u)| > γnδg

)]
(4.36)

(recall δg = inf{|x| : g(x) > 0}) using the fact that whatever happened after (n −K) generations

are independent of Fn−K and displacements are independent of the branching mechanism. Using

the fact that the displacements are marginally identically distributed, we get following expression

for right hand side of (4.36) becomes

rn‖g‖P
(
|X1| > γnδg

)
E

[Zn−K∑

i=1

K∑

j=1

µj(µK−j − µK−j
B )

]

= ‖g‖
P(|X1| > γnδg)

P(|X1| > γn)

K−1∑

j=0

(
1− (µ−1µB)

j
)
. (4.37)

We see that the first term converges to δ−α
g as n → ∞ and the second term converges to 0 as

B → ∞. So we are done with (4.34).

Similarly, the term in the left hand side of (4.35) can be given following upper bound

rn‖g‖E

[Zn−K∑

i=1

K∑

j=1

∑

u∈D
(i)
j

\D
(i)
j

A(B)(u)1
(
|X(u)| > γnδg

)]

= rn‖g‖P
(
|X1| > γnδg

)
µn−K

K∑

j=1

(µj − µj
B)µ

K−j
B

]

= ‖g‖
P(|X1| > γnδg)

P(|X1| > γn)
µn

K∑

j=1

(
1− (µ−1µB)

j
)
(µ−1µB)

K−j (4.38)

using the same facts. Now, it is easy to see that the first term converges to δ−α
g and and the second

term converges to 0 as B → ∞. So we are done with (4.35).
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