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ABSTRACT

Bandwidth-sharing networks as considered by Massoulie & Roberts provide a natural modeling
framework for describing the dynamic flow-level interaction among elastic data transfers.
Although valuable stability results have been obtained, crucial performance metrics such as
flow-level delays and throughputs in these models have remained intractable in all but a few
special cases. In particular, it is not well understood to what extent flow-level delays and
throughputs achieved by standard bandwidth-sharing mechanisms such as alpha-fair strategies
leave potential room for improvement. In order to gain a better understanding of the latter issue,
we set out to determine the scheduling policies that minimize the mean delay in some simple
linear bandwidth-sharing networks. We compare the performance of the optimal policy with that
of various alpha-fair strategies so as to assess the efficacy of the latter and gauge the potential
room for improvement. The results indicate that the optimal policy achieves only modest
improvements, even when the value of alpha is simply fixed, provided it is not too small.
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Abstract

Bandwidth-sharing networks as considered by Massoulié & Roberts provide a natural mod-

eling framework for describing the dynamic flow-level interaction among elastic data transfers.
Although valuable stability results have been obtained, crucial performance metrics such as
flow-level delays and throughputs in these models have remained intractable in all but a few
special cases. In particular, it is not well understood to what extent flow-level delays and
throughputs achieved by standard bandwidth-sharing mechanisms such as a-fair strategies
leave potential room for improvement.
In order to gain a better understanding of the latter issue, we set out to determine the schedul-
ing policies that minimize the mean delay in some simple linear bandwidth-sharing networks.
We compare the performance of the optimal policy with that of various a-fair strategies so
as to assess the efficacy of the latter and gauge the potential room for improvement. The
results indicate that the optimal policy achieves only modest improvements, even when the
value of « is simply fixed, provided it is not too small.

1 Introduction

Over the past several years, the processor-sharing discipline has emerged as a useful paradigm for
evaluating the flow-level performance of elastic data transfers competing for bandwidth on a single
bottle-neck link. Bandwidth-sharing networks as considered by Massoulié & Roberts [7] provide a
natural extension for modeling the dynamic interaction among competing elastic flows that traverse
several links along their source-destination paths. Bonald & Massoulié [1] showed that a wide class
of a-fair bandwidth-sharing policies as introduced by Mo & Walrand [8] achieve stability in such
networks under the simple (and necessary) condition that no individual link is overloaded, see
also [11] for instance. While stability is arguably the most fundamental performance criterion, flow-
level delays and throughputs are obviously crucial metrics too. Although useful approximations,
bounds [2] and heavy-traffic limits [6] have been obtained, the latter performance metrics have
largely remained intractable in all but a few special cases. In particular, it is not well understood
to what extent the flow-level delays and throughputs achieved by common bandwidth-sharing
mechanisms leave potential room for improvement.

The scope for improving flow-level delays and throughputs has been the focus of intense efforts
in a somewhat distinct strand of research on size-based scheduling strategies. Several studies
have demonstrated that the Shortest Remaining Processing Time first (SRPT) discipline can
achieve significant performance improvements for heavy-tailed service requirements compared to
First-Come First-Served or Processor Sharing. The SRPT discipline has therefore been adopted
as an effective mechanism for improving the performance of web servers [3, 5]. A critical issue
associated with size-based scheduling in general and SRPT in particular, is that it relies on (partial)
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knowledge of (remaining) service requirements. While such information is usually available in web
servers, it is impractical to obtain in Internet routers. An alternative strategy which has hence
been advocated for scheduling data flows is the Least Attained Service first (LAS) discipline also
known as Foreground-Background Processor Sharing.

Nearly all studies on the performance gains from size-based scheduling strategies such as SRPT
and LAS have considered single-server settings. Single-server systems provide reasonable mod-
els for web servers, but they do not accurately capture scenarios where users require service
from several resources simultaneously. Such concurrent resource possession arises in the above-
mentioned bandwidth-sharing networks, where data flows traverse several links between their
source-destination pairs and consume bandwidth on each of them for the duration of the transfer.
(Even though individual packets travel across the network on a hop-by-hop basis, on a somewhat
longer time scale a data flow claims roughly equal bandwidth on each of the links along its path
since the amount of buffering at intermediate nodes is typically quite limited.)

While single-server systems provide tractable results and useful insights, they do not exhibit
the potential non-work-conserving behavior that may occur in scenarios with concurrent resource
possession. There are various indications that priority mechanisms in such scenarios may cause
starvation effects with possibly severe consequences. For example, Yang & de Veciana [14, 15]
demonstrated that SRPT scheduling in network scenarios may yield considerable performance
improvements in terms of mean delays and throughputs, but also observed that flows on long
routes with large sizes may sustain a marked performance degradation. Recently, it was shown
that size-based scheduling strategies such as SRPT and LAS may in fact unnecessarily fail to
achieve stability in network settings, even at arbitrarily low loads [13].

In conclusion, the results for size-based scheduling in single-server models do not provide a
good indication for the scope for improvement over common bandwidth-sharing mechanisms in
network scenarios. In order to gain better insight into the latter issue, we will set out to determine
scheduling policies that minimize the mean delay in bandwidth-sharing networks with a linear
topology. While admittedly simple, linear networks provide a useful model for flows that traverse
several links and experience bandwidth contention from independent cross-traffic. Armed with the
knowledge of the optimal policy, we then compare its performance with various a-fair strategies
so as to assess the efficacy of the latter and gauge the potential room for improvement. Our
results indicate that the optimal policy achieves only modest improvements over an a-fair strategy
when the value of « is optimized. In its turn, an optimized a-fair strategy yields only marginal
improvements compared to virtually any fixed value of «, as long as this value is not too small.
This is particularly so for the important special cases a = 1 (proportional fair strategy) and a = 2
(which is a modeling abstraction of TCP).

The remainder of the paper is organized as follows. In Section 2 we provide a detailed model
description and discuss some preliminaries. In Section 3 we derive some sample-path comparisons
for the workload processes under various scheduling policies. We use these sample-path inequalities
in Section 4 to show that in certain cases with exponential service requirements relatively simple
priority-type policies minimize the mean number of users in the system. In Section 5 we examine
cases where the optimal policy does not have a simple priority-type structure, and use dynamic
programming techniques to prove that in these cases the optimal policy is characterized by a
switching curve. Section 6 presents the numerical experiments that we conducted. We summarize
our results in Section 7.

2 Model description and preliminary results

‘We consider a linear network with L nodes. For convenience, we assume each of the nodes to have
a unit service rate. In order to present the results in the simplest possible setting, we focus on a
traffic scenario with L + 1 classes, where class ¢ requires service at node ¢ only, i = 1,..., L, while
class 0 requires service at all L nodes simultaneously. The above ‘toy’ scenario appears already
sufficiently rich to exhibit many of the qualitative phenomena that may occur for general network
topologies and route structures. Class-i users arrive according to independent Poisson processes



of rate \;, and have generally distributed service requirements B; with mean 3;,7=0,..., L.

Define the traffic load of class i as p; :== A;8;. Thus the load at node 7 is pg + p;, 1 =1,..., L.
The obviously necessary conditions for stability po + p; < 1, for i = 1,..., L, are known [1] to be
sufficient as well for a-fair bandwidth-sharing policies. (For conciseness, these conditions will be
referred to as the ‘standard’ conditions.) In order to examine the effectiveness of a-fair policies we
seek policies that in some appropriate sense minimize the total number of active users in the above-
described system. We only allow (possibly preemptive) policies that have no knowledge available
of the remaining service requirements and denote this class of policies by II. The following policies
will play a central role.

e Policy 7* gives preemptive priority to class 0 whenever it is non-empty and, otherwise, serves
any other class with at least one user.

e Policy 7** simultaneously serves all classes ¢ = 1,..., L whenever at least one user of each

class is present. Otherwise class 0 is served. When class 0 is empty, any other class with at
least one user present is served.

For both these policies the system is stable under the standard conditions, since policies 7* and 7**
ensure that each node operates at full rate when it is non-empty.

For a given policy m, denote by N/ (t) the number of class-i users at time ¢ and by W/ (t)
their total residual work. N7(t) is defined as Zle NT(t). We further define N, W and N™
as random variables with the corresponding time-average distributions (when they exist). For
brevity, we use the superscripts * and ** for random variables corresponding to 7* and 7**.

Note that class 0 does not notice the presence of other classes under policy 7*. The mean
amount of class-0 work is therefore given by the Pollaczek-Khintchine formula:

~ ME(Bo?)
~2(1-po)

With policy 7*, any class 7 # 0 sees its service being interrupted by busy periods of class 0 so
that [10]:

E(Wy)

oy ME(Bo?) + NE(Bi?)  ME(Bo?)
BW?) = 2(1 — po — ps) 21— po)

Note that these formulas hold for any service requirement distribution and scheduling discipline
within classes.

In the special case of exponentially distributed service requirements, scheduling within a class
(without knowledge of the actual size of jobs) does not affect the distribution of the number of
users. Letting p; = 1/8; (and thus E(B;?) = 2/u?)), the mean number of users can then simply
be obtained from E(N;) = u;E(W}) for all classes ¢. In particular

* Po
E(N*) = ,
) = 122
and
Pi i Po Po
S Y S S
(NF) I—po—pi po\l—po—pi 1—po
so that . \ \
* Po u_:)po—i_pl Pi
E(N*) = + ( + ) 1
(V%) 1—po ;(I—Po)(l—Po—Pz’) 1—po @

For policy 7** there is no closed-form expression available for the mean workloads. For L = 2,
determining these is equivalent to solving a boundary-value problem [4]: the service rate allocated
to any class 7 depends on the workloads of all other classes.



3 Workload

In this section we allow for general service requirement distributions and compare (sample-path
wise) the workloads of the various classes under different policies.

Let 7 be a policy that is work-conserving in node i, i.e., the capacity of node i is fully used
whenever that node is non-empty. Obviously, such a policy minimizes the total workload in node i
at all times. More specifically, if W (0)+ W/ (0) <, W (0)+W7(0) for some arbitrary policy 7,
then

WG (8) + Wi (8) <o WG (8) + W] (2), VE>0. (2)

Here <, denotes the usual stochastic ordering. Note that both policies 7* and 7** are work-

conserving in each node, so inequality (2) holds for all 4 = 1,..., L, if #* € {7*,7**}. We call

0k (8) == WE(t) + W[ (t) + W[ (t) the aggregate workload in nodes j and k. Besides minimizing
the workload in one node, at any point in time, policy 7** also minimizes the aggregate workload
in at least one pair of nodes (these need not always be the same) as is formalized in the following
lemma. This result will be useful for the analysis in the next sections.

Lemma 3.1 If for t =0 there ezist nodes j and k with j # k, such that
W55 () <st W55 (2), (3)

then, for any t > 0, there exist j and k (not necessarily the same as at time t = 0) with j # k
such that (8) holds.

Hence, if L = 2, the lemma states that policy 7** stochastically minimizes the total workload in
the system. We note that there is no policy that achieves the same for L > 2.

Proof of Lemma 3.1 By assuming the same sequence of arrivals and service requests, we can
compare the two policies, 7** and m, in the same sample space. Let

We show by contradiction that u cannot be finite. Let us suppose u < co. Inequality (3) can only
be violated for all pairs j and k immediately after time w, if it holds with equality at time w for
some j and k, which we fix for the remainder of the proof. In addition, for the equality to cease
to be valid, policy 7** should not be serving both nodes j and k at full rate, so that Wj*(u) =0
and W;}*(u) = 0 for either ¢ = j or 4 = k. From (2) we have W;**(u) < W§(u) + W[ (u) for all
1 # 0,1 # i; we fix such an [ and observe that this inequality is preserved until the next arrival
from either class 0 or class ¢ (in the mean time, 7** works at full rate in node [ and 7 can not do
better than that). Note that W§*(t) = 0 and W;*(¢) = 0 until such an arrival occurs and, hence,

0.1.1(t) < W, (t), which contradicts the definition of u. O

4 Small class-0 users

In the remainder of the paper we focus on exponentially distributed service requirements and
write p; = 1/B;. For relatively ‘large’ values of g, i.e., when class-0 users are relatively small, we
show that either «#* or ©** stochastically minimizes the number of users at every point in time.
More precisely: this is so when po > Eizl,i#j wi for all j # 0. In Section 4.1 we first show that
the results of the previous section allow us to readily prove that 7* and 7** minimize the mean
number of users in the above-mentioned cases. Because of Little’s law, such a policy automatically
minimizes the mean overall sojourn time as well. We briefly comment on the stochastic optimality
in Section 4.2.

To put our results in context, we recall that the p-rule is known to stochastically minimize the
number of users [9] in a single-server system. The rationale behind this rule is that it maximizes
the output rate at all times. In the network we discuss, this can only be accomplished for certain
parameter values. Besides trying to maximize the total output rate of the system, we must take



into account that when serving class ¢ # 0 while another class j # 0 is empty may leave node j
underutilized if there are users of class 0. For example, if p; > po for all ¢ =1,..., L, then giving
priority to classes 1,..., L, myopically maximizes the total output rate of the system but such a
discipline unnecessarily causes instability [13] when IT}_, (1 — p;) < po. In general, there can be a
trade-off between maximizing the output rate and using the full capacity in each node whenever
that node is non-empty. It is precisely in those cases where these two objectives are compatible,
that we can identify the policies that minimize the total number of users.

4.1 Minimizing the mean number of users

The next lemma, together with the results for the workload obtained in Section 3, can be used to
prove that, in certain cases, policy 7* or 7** minimizes the mean total number of users at every
point in time.

Lemma 4.1 Let m, @ € Il and assume the service requirements of class © are exponentially dis-
tributed with mean B; = 1/p;. If for some I C {0,...,L}, >, c; Wi (t) <o D;er Wi (), V¥t >0,

then
Z CENT(t Z

zeI ’LEI

Proof Because of the memoryless property of the exponential distribution and the fact that
policies 7 and 7 have no knowledge of the remaining service requirements, the workload, W;(t),
is distributed as " r'(") Ei. Here Ej are i.i.d. random variables from an exponential distribution
with mean 1/p;. Hence

N7 (t) N ()
SN B <a > Y EL, vixo, (4)
iel k=1 iel k=1
and the lemma is proved after taking expectations. O

This lemma paves the way for the following two propositions, which state that, in certain cases,
7 or m** is optimal.

Proposition 4.2 Assume W;*(0) <, W[T(0), for all i. If Z it < po, then E(N*(t)) <
E(N7™(t)), Vr € II and Vt > 0.

Proof By (2), policy 7* minimizes the workload in each node, which implies by Lemma 4.1 that
Vi=1,...,L,
R(Ng* (1)) + - B(N (1)) < - B(NG (1)) + - B(NF (1), (5)
Ho Hi Ho Hi
Combining Lemma 4.1 with the fact that giving preemptive priority to class i minimizes the
workload of class i, we have:

E(No*(t)) < E(Ng (t))- (6)

Multiplying (5) by p; > 0, for all ¢ = 1,..., L, multiplying (6) by w > 0 and summing
these L + 1 inequalities gives Zl ~o E(V; ( ) < Z, o E(NT (2))- O

Proposition 4.3 Assume W;**(0) < W[ (0), for all i. If Ele Wi > to > Ele’#j wi for all
)

j #0, then E(N**(t)) <E(N™(t)), Vr € II and Vt > 0.

Proof As in the previous proof we have by (2) and Lemma 4.1 that

Lo o Loy < Lrove o 4 Leove
%E(No (t))+M1E(Nz (t) < MOE(N ())+ME(NZ (t))- (M)



Similarly, we can conclude from Lemmas 3.1 and 4.1 that at time ¢ there are classes j and k,
j#ke{l,..., L}, such that

1 *% 1 *% 1 *k
—E(No™ (1)) + —E(; ™ (1) + —E(N: ™ (8))
Ho Hj Hi

L ooy L mvr 1 oy
< LBV () +  E(NT (0) + B(NE (1) (®)

Now multiply (7) by wo — E{;Ll# w >0, for i = j,k and by u; for all ¢ # 0,7, k; multiply

inequality (8) by ZiL=1 Wi — to > 0 and sum these L + 1 inequalities to obtain Zf:o E(N;**(t)) <
L ™

220 B(NT (2))- O

4.2 Stochastic optimality

It is worth noting that despite the stochastic inequality (4) the above arguments can not be
strengthened to prove that 7* and 7** in fact stochastically minimize the number of users for the
given parameter values. This can, however, be accomplished using a dynamic programming (DP)
approach similar to that in Section 5 below. For the case L = 2 the following two results are
proved in [12]:

Proposition 4.4 If py + pe < po, then policy m* stochastically minimizes the total number of
users.

Proposition 4.5 If py, pue < po and py + po > po, then policy n** stochastically minimizes the
total number of users.

5 Large class-0 users

Again assuming exponential service requirements, we now explore the uncovered case when there
exists an j = 1,..., L, such that Zleﬂ. 25 Hi = Ho- Since a stochastically optimal policy may in
general not exist, we focus instead on the average-optimal policy, i.e., the policy that minimizes
E(N™) over all policies 7 € II.

We again focus on the case of two nodes and hence consider service rates such that pg < p; for
at least one 7 = 1, 2. Intuitively it is clear that when there are users of both classes 1 and 2 present,
serving them will be optimal. When there are only users of classes 0 and 1 present and p; < po,
serving class 0 seems appropriate, since it is work-conserving in both nodes and it maximizes the
total output rate. However, when py < p1, there is no obvious rule which class to serve. The next
proposition states that in such situations, there exists a switching curve that determines which
class is optimal to serve, i.e. there exists a function h(-) such that it is optimal to serve class 0 at
full rate if Ny(t) < h(No(t)) and to serve class 1 at full rate otherwise.

Proposition 5.1 Assume that py > po. If both classes 1 and 2 are non-empty, then the expected
average-optimal stationary policy serves these simultaneously. While class 2 is empty, the optimal
policy is characterized by a switching curve (class 1 is only served if there are sufficient class-1
users). If, in addition, po > pa, then class 0 is served while class 1 is empty.

In the remainder of this section we outline the proof of this proposition. We denote by 1,
7 and k the numbers of class-0, class-1 and class-2 users, respectively. It will be convenient to
focus on the uniformized Markov chain. That is, transition epochs (possibly ‘dummy’ transitions
that do not alter the system state) are generated by a Poisson process of uniform rate v =
Ao + A1+ Ao + po + p1 + p2. We assume v = 1 without loss of generality. Using DP, we minimize
the mean number of users for the embedded uniformized process, which is equivalent to minimizing
that of the original process.



The direct costs that are incurred each time state (3, j, k) is visited, are i + j + k, which implies
that the objective is to find a policy 7 that minimizes E(N™). The DP equation can be written
as:

Vor1(i,5,k)=i+j+k

F V(@ +1,5,k) + MVp (5,5 + 1,k) + AV (3,4, k + 1)

+min{peVa((i — 1)7, 4, k) + (k1 + p2)Va(i, 4, k),

poVa (3, J, k) + 1V (3, (5 — 1)+’ k) + 2 Vi (4, 4, (k — 1)+)}7
with Vo(i,7,k) =i+ 7 + k.

The existence of an optimal switching curve when there are no class-2 users present is equiv-
alent to the value function, V (3, j, k), satisfying Properties 1 and 2 below. By symmetry, similar
properties need to hold for the existence of a switching curve when there are no class-1 users.
Property 1: If it is optimal to serve class 1 in state (4, j, 0), then this is optimal in state (¢, j+1,0)
as well, or equivalently, if

poV (4,5,0) + pa V(3,5 — 1,0) + p2V (3,5, 0)
<oV (i —1,5,0) +p1V(,5,0) + p2V (4, 5,0),
then
woV (3,5 +1,0) + p1V(3,4,0) + p2V (i, 5+ 1,0)
S uoV(i—1,7+1,0) + (p1 + p2)V (i, 5 + 1,0).
Note that this property is implied by the following inequality:
poV (i, j +1,0) + poV (i — 1,5,0) + 2u1 V (3, §,0)
< poV(4,5,0) + poV(i—1,j +1,0)
+u1V(i,5—1,0) + p1 V(3,5 + 1,0).
Property 2: If it is optimal to serve class 0 in state (¢, 7, 0), then this is optimal in state (i+1, 7, 0)
as well, or equivalently, if
moV (i = 1,5,0) + p1V (3, 4,0) + p2V (3, 4, 0)
< poV(i,5,0) + pV (i, 5 — 1,0) + p2V (3, 5,0),
then
1oV (4,7,0) + p1 V(i +1,5,0) + u2V(i + 1, 5,0)
< (ko + p2)V(i+1,5,0) + mV(i+1,j —1,0).
This property is implied by
2u0V (2,7,0) + 1 V(i +1,7,0) + 1 V(¢,5 — 1,0)
<oV (i+1,5,0)+ poV(i-1,5,0)
+uV(i+1,7-1,0)+ p1V(4,4,0).

These properties can be established for V (4, j, k) by proving them for all V,, (%, j, k) using in-
duction on the time index n, see [12] for details.

6 Numerical experiments

We now compare the performance of the optimal policy with that of a-fair bandwidth-sharing
policies. We denote by Ni(a) the mean number of class-i users as function of a. In the linear
network, the a-fair allocation is

No
Sp =
o (Zl_—l ll )1/

and s; =1 — sq,
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Figure 1: Total mean number of users in case A.
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Figure 2: Total mean number of users in case A.

where s; is the rate allocated to class j, see [1].
For the proportional fair allocation (o = 1), the mean number of users is given by

L
E N(l) _ _Po 14+ I
(No™) 1—Po( ;1—/00—[%’)
and ]E(Ni(l)) = lf%pi, i=1,...,L, see [7]. For general a-fair allocations (a # 1) we conducted

simulations in order to estimate the mean number of users. In our experiments we chose o €
A=1{0,1,2,4,6,8,10,00}. Besides oo = 1, the case o = 2 will receive particular attention as well,
because it is a common abstraction for TCP’s bandwidth allocation.

Comparing the mean number of users for the proportional fair allocation and policy 7n* already
provides important insight. For L = 2 we have that E(N*) — E(N(")) equals

Po ( p1 (&_1)+ P2 (@_1))
1—po\1—po—p1\po 1—po — p2 \ o

Note that for ug < fig := 218:2 z:z 312;8:52:511)) (relatively large class-0 users), the proportional

fair allocation does better than 7*, and that the difference is unbounded as py — 0. For pp > g
(relatively small class-0 users), it is better to prioritize class 0. In fact, 7* achieves the minimum
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Figure 3: Total mean number of users in case B.
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Figure 4: Total mean number of users in case B.

mean number of users among all strategies in II, if pug > @1 and pg > po. Still, the difference is

limited by —5 £ ‘;’0 (1_ ;f:) l_pl + l_p‘:) 2—,;2 ) Thus, the proportional fair allocation performs well over
a wide range of parameter values.

‘We now proceed to numerically investigate whether the latter finding holds in greater generality.
The optimal policy is computed by DP after truncating the state space. In cases where the optimal
policy is known explicitly, we verified that the results from DP are accurate. We examined a wide
range of scenarios in terms of the values of the parameters A\; and p;, i = 0,1, 2. Since the results
were qualitatively similar in the various scenarios, we only present the results for the cases with
po = 0.3, p2 = 0.3, 1 = 0.5, pp = 1, with either (A) p; = 0.2 or (B) p; = 0.5, and varying po.

In Figures 1 and 3 we plot the total mean number of users under different policies as a function
of uo for cases A and B, respectively. The smallest mean number of users among all a-fair policies
(minge 4 (E(N(®))) is labeled with “opt « fair”, the mean number of users for the optimal policy
in each point is indicated by “dp”, and the curve “7*”, corresponds to the function in (1). The
other curves correspond to proportional fairness (a = 1) and an abstraction of TCP (a = 2).

From Figures 1 and 3 we see that the performance of a-fair policies compares well with that
of the optimal policy. The gap does not exceed 20%. Apparently, a-fair policies succeed in
dynamically adjusting the rate allocation in an efficient manner, without any knowledge of the
service rate parameters. It is also striking that the differences within the class of a-fair policies



are small, and that the mean total number of users is fairly insensitive to the value of pg (for
fixed pg). In all cases, the optimal value of « is either 0 (for small values of ) or co (for large
values of pp). The transition point occurs approximately at po = fo-

In Figures 2 and 4 we plot the total mean number of users as a function of a for two values
of pg, for cases A and B, respectively. Again, the results agree with what could be expected:
for large po it is optimal to prioritize class 0, while for small small pg it is better to achieve a
large degree of parallelization. The difference between the best and the worst a-fair allocations is
roughly 5% and 10% in cases A and B, respectively.

7 Summary and conclusions

In order to investigate the efficiency of standard allocation mechanisms such as a-fair policies, we
have determined the delay-optimal allocation policies in a simple linear network with exponen-
tial service requirements. The optimal scheduling policies require a high degree of coordination
within the network as well as knowledge of the service requirement distributions, which may pro-
hibit actual implementation. As a benchmark, though, they are extremely useful to assess the
effectiveness of other bandwidth-sharing strategies. In all our experiments we observed that (i)
the differences within the class of a-fair allocations are not significant, and (ii) these allocations
compare well with the optimal strategies.

The above-mentioned results concern rate allocation across flow classes (corresponding to flows
sharing a common route), and do not account for scheduling within classes. As mentioned in the
introduction, it was shown in [13] that standard size-based scheduling strategies such as SRPT
and LAS applied across all flows can cause instability effects. However, size-based scheduling
within flow classes may still produce substantial performance benefits, provided the rate allocation
across flow classes is carefully arbitrated to avoid the above instability phenomena. Exactly how
to combine size-based scheduling within classes with a stable rate arbitration across classes, and
what the potential gains might be, is non-trivial and remains as a challenging topic for further
research.

References

[1] Bonald, T., Massoulié, L. (2001). Impact of fairness on Internet performance. In: Proc. ACM
SIGMETRICS & Performance 2001 Conf., Boston MA, USA, 82-91.

[2] Bonald, T., Proutiére, A. (2004). On stochastic bounds for monotonic processor sharing
networks. Queueing Systems 47, 81-106.

[3] Chen, X., Heidemann, J. (2003). Preferential treatment for short flows to reduce Web latency.
Comp. Netw. 41, 779-794.

[4] Cohen, J.W., Boxma, O.J. (1983). Boundary Value Problems in Queueing System Analysis.
North-Holland, Amsterdam.

[5] Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M. (2003). Size-based scheduling to
improve Web performance. ACM Trans. Comp. Syst. 21, 207-233.

[6] Kelly, F.P., Williams, R.J. (2004). Fluid model for a network operating under a fair
bandwidth-sharing policy. Ann. Appl. Prob. 14, 1055-1083.

[7] Massoulié, L. Roberts, J.W. (2000). Bandwidth sharing and admission control for elastic
traffic. Telecommunication Systems 15 185-201.

[8] Mo, J., Walrand, J. (2000). Fair end-to-end based congestion control. IEEE/ACM Trans.
Netw. 8, 556-H67.

10



[9] Righter, R., Shanthikumar, J.G. (1989). Scheduling multiclass single-server queueing systems
to stochastically maximize the number of successful departures. Prob. Eng. Inf. Sc. 3, 323—
333.

[10] Takagi, H. (1991). Queueing Analysis, Vol. I: Vacation and Priority Systems. North-Holland,
Amsterdam.

[11] de Veciana, G., Lee, T.-L., Konstantopoulos, T. (2001). Stability and performance analysis
of networks supporting elastic services. IEEE/ACM Trans. Netw. 9, 2-14.

[12] Verloop, I.M. (2005). Efficient flow scheduling in resource-sharing networks. Master thesis,
Utrecht University.

[13] Verloop, I.M., Borst, S.C., Nidfiez Queija, R. (2005). Stability of size-based scheduling disci-
plines in resource-sharing networks. In Proc. Performance 2005.

[14] Yang, S., de Veciana, G. (2002). Size-based adaptive bandwidth allocation: optimizing the
average QoS for elastic flows. In: Proc. IEEE Infocom 2002, New York NY, USA, 657-666.

[15] Yang, S., de Veciana, G. (2004). Enhancing both network and user performance for networks
supporting best-effort traffic. IEEE/ACM Trans. Netw. 12, 349-360.

11



