
Polynomial Asymptotic Estimates of Gegenbauer, 
Laguerre, and Jacobi Polynomials 

Nico M. Temme Professor, Center for Mathematics and Computer 
Science, Amsterdam, The Netherlands 

1. INTRODUCTION 

We discuss asymptotic forms of CJ( x ), L~( x), P~0t,/3) ( x ), the Gegenbauer, Laguerre and 

Jacobi polynomials. The asymptotic behavior of these classical orthogonal polynomials 

has been the subject of several investigations. The research usually concentrates on the 

case that the degree n of the polynomial is the large parameter, and for all classical 

orthogonal polynomials the asymptotic behavior is well established now. Inside the 

domain of the zeros of the polynomial the behavior can be described in terms of ele

mentary functions, such as trigonometric functions. In the domain where the transition 

from oscillatory to monotonic behavior occurs, familiar higher transcendental functions 

can be used as estimates. For example, the "first" zeros of the Jacobi polynomial can 

be approximated in terms of the zeros of the J - Bessel function. In SzEGO ( 1958) 

several classical results can be found. For Jacobi polynomials he gives an estimate of 
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"Hilb's type", which is an approximation in terms of the J-Bessel function. In earlier 

papers, however, Szego already gave more extensive expansions for Legendre and Jacobi 

polynomials, again in terms of the J-Bessel function. See ASKEY (1982). 

More recent publications give uniform asymptotic expansions in larger domains for 

the argument, and also more terms in the expansion. ERDELYI (1960) derived leading 

terms of the expansion for Laguerre polynomials in terms of Bessel and Airy functions, 

and quite recently FRENZEN & WONG (1988) constructed complete expansions for 

this class of polynomials. ELLIOTT ( 1971) treated the Jacobi polynomials essentially 

outside the domain of orthogonallity, giving a full expansion in terms of modified Bessel 

functions; in FRENZ EN & WONG (1985) a uniform expansion for the Jacobi polynomials 

is given in terms of J -Bessel functions, complete with error bounds for the remainder. 

As mentioned earlier, the degree n of the polynomials is usually considered as the 

large parameter in the asymptotic expansions. In many existing cases, however, the 

asymptotic variable includes additional parameters as well. For instance, in ERDELYI 

( 1960) and FRENZ EN & WONG ( 1988) a natural choice for the large parameter of the 

Laguerre polynomial L~(x) is"'= n +(a+ 1)/2, although the parameter a (and hence 

the order of the comparison function lo:(z)) is kept fixed in their analysis. In TEMME 

(1986) three different cases are considered for large values of"'· Depending on the value 

of x and the size of a/n, a Bessel function, a Hermite polynomial, or an Airy function 

is used for the Laguerre polynomials. 

In the case of Jacobi polynomials P~o:,/3) ( x ), a convenient choice is "' = n + (a+ f3 + 
1)/2, see FRENZEN & WONG (1985). See also ELLIOTT (1971) and NESTOR (1984). 

In this paper we consider the same asymptotic variable K, now with the possibility that 

a and/or f3 dominate n, and with x inside the domain of orthogonallity. We use the 

Gegenbauer polynomial and the Laguerre polynomial as new estimates for the Jacobi 

polynomial. 

Some of the results on orthogonal polynomials in this paper follow from earlier, 

sometimes more general, results in the literature. The Laguerre polynomial is in fact 

a special case of the Whittaker, or confluent hypergeometric function. For this class 

of functions many recent results are available, for instance, 0LVER(1980), and very 

recently DUNSTER(l989). On the other hand, the Jacobi polynomial and the Gegen

bauer polynomial are special cases of the Gauss hypergeometric function, for which class 

rather few interesting uniform expansions have been investigated. 

Recently, other investigations on orthogonal polynomials with several large pa

rameters have been published, but the approach is quite different from ours. LI-CHEN 
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CHEN & lSMAIL(1989) investigated the asymptotics of p~<>+an,/Hbn)(x) as n-;. oo, and 

a, b, a, (3, x remain fixed. The approximants are in terms of elementary functions, and 

the approach is based on Darboux's method applied on a generating function. They also 

considered the Laguerre polynomial L~+an(b + xn) for large values of n. Asymptotics 

of Jacobi and Laguerre polynomials with similar arrangement of parameters occur in 

work on incomplete polynomials of SAFF & VARGA (1979), MOAK, SAFF & VARGA 

(1979), and MHASKAR & SAFF (1984). In the second paper the distribution of zeros 

of that type of Jacobi polynomial is considered. 

In the present approach, the estimates of the orthogonal polynomials are obtained 

by using differential equations, and Liouville Green transformations thereof. This tech

ruque is extensively developed by Frank Olver. Some of the results follow from his 

earlier work on, for instance, Whittaker functions. The proofs of the new estimates 

of Jacobi polynomials will be given elsewhere. Another interesting problem is how to 

obtain similar estimates by using integral representations of the polynomials. We intend 

to consider also this point in future publications. 

1.1. The Liouville-Green transformation 

The techniques used in this paper are based on the Liouville-Green (LG) transformation. 

Starting point is a differential equation of the form 

W" = [x:2p(x) + q(x)]W, (1.1) 

defiling the orthogonal polynomial, where x: is a large parameter, a simple function 

of the degree and other parameters, but independent of x. Formally we proceed as 

follows. A transformation of both the dependent and independent variable is introduced 

by writing 

W(x) = Vf w(fl, (1.2) 

where ~ = ~(x), and the dot indicates differentiation with respect to ~- Then (1.1) 

becomes 

(1.3) 

where 
() ·2 ( ) r:- d2 1 

7/J~ =x qx +vxde../i· (1.4) 

Depending on the nature of the function p and on the asymptotic phenomena to be in

vestigated, the function~( x) is defined by replacing x2p( x) by a simple rational function 

r( t). That is, we write 

(1.5) 
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and the new differential equation becomes 

w = [11: 2 r(~) + 1/J(~)]w. (1.6) 

The function r(O is chosen such that it mimics features of p(x) that are essential for 

the asymptotic behavior of W( x ). As a rule, when we take '!/; = 0, (1.6) reduces to 

the differential equation of a known special function that plays the part of a basic 

approximant in the asymptotic estimate. 

For example, for the orthogonal polynomials on the interval [-1, 1 ], p has two 

simple zeros x1, x 2 in this interval, and p is negative in (x1, x2 ). Then the zeros of 

the orthogonal polynomial occur in the same interval. Under the influence of some 

parameters we may have the situation that x1 __... x 2 • When no other zeros or poles 

of p are nearby the interval ( x1 , x2 ), one may consider for that particular case the 

transformation (1.5) in the form 

where p depends on X1,X2. When r(() = e - p2 and'!/; = 0, equation (1.6) reduces 

to the differential equation for the parabolic cylinder function. Under further special 

circumstances, this function reduces to a Hermite polynomial. 

In this paper we transform the differential equations defining the classical orthog

onal polynomials P~a,!3\x), L~(x), CJ(x), the Jacobi, Laguerre and Gegenbauer poly

nomials, to a form in which another orthogonal polynomial acts as a basic approximant, 

for instance a Hermite polynomial. In these cases, the x-domain is the complete do

main of orthogonallity. We also mention estimates in which other comparison functions 

occur, and which describe the transition of the oscillatory to the monotonic regions. In 

all cases we concentrate on real values of the parameters. 

2. GEGENBAUER POLYNOMIALS 

The Gegenbauer polynomials, or ultraspherical polynomials, can be defined by the gen

erating function 

00 

(1- 2xz + z2 )-'°Y = L CJ(x)zn, -1<x<1, izl < 1. (2.1) 
n=O 

An explicit representation is 

ln/2J k 
C'°Y(x)= _1_ ~ (-1) f(1+n-k)(2x)n-2k 

n f(1') ~ k!(n-2k)! ' 
(2.2) 
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where l m J is the integer number satisfying l m J ::; m < L m J + 1, with m E IR. These 
polynomials satisfy the differential equation 

(1- x2)y11 - (21 + l)xy' + n(n + 21)Y = 0. 

A simple transformation 

gives for W the equation 

(l-x2)W"+ [Cn+1)2+ 2+41-412+x2]W=O. 
4(1 - x 2 ) 

This can be written in the form 

2 2 2 3 
W" = ,,,2 x - xo W - x + W 

(1 - x2)2 4(1 - x2)2 ' 

with 

"'= n + 1, 
,..,2 _ (I_! )2 

x2 _ 2 
0 - ,..,2 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

We assume that r > If2, and n = 0, 1, 2, ... ; x 0 is the positive number defined by the 
above equation. We have x 0 E [O, 1). For the asymptotic problem we assume that K is 
large. 

Especially interesting is the behavior of the polynomials when x crosses the values 

±x0 (turning points of (2.5)) and ±1 (singular points). When r >> n the turning points 

(and all zeros of the Gegenbauer polynomial) tend to zero and coalesce. When n >> / 
the turning points coalesce with the singularities at ±1. In both cases, the asymptotic 

behavior of the polynomials cannot be described in terms of elementary functions. 

The Gegenbauer polyn01nial is a function of three variables. In the asymptotic 

problem we try to find approximating functions of at most two variables. This gives a 

proper reduction of variables, as pointed out by OLVER (1975-B). It is not possible to 

construct one approximation of two variables with which we can describe the behavior 

of the polynomials as K ___. oo, uniformly with respect to x on the entire real axis. For 

the transition near x = ± 1 we need a J - Bessel function as approximant. 
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2.1. Estimation in terms of a Hermite polynomial 

Consider as a simpler form of (2.5), especially if K is large and x is bounded away from 

±1, the equation 

(2.7) 

with solution 

u(x) = D,,(x~), 2v + 1=1'x~, 

where D,,( x) is one of the Weber parabolic cylinder functions. This function is related 

to the Herrnite polynomial. We have for integer values of n 

(2.8) 

where the Hermite polynomial is given by 

Ln/2J (-l)1c 
Hn(x) = n! L k!(n - 2k)!(2xt-21c. 

k=O 

(2.9) 

Observe that when n < < I the quantity v behaves like v = n + 0( ,-1 ). So it ap

pears that the "first approximation" (2.7) does not exactly yield a Hermite polynomial. 

In this section we construct a first approximation to (2.5) based on a LG transfor

mation, which exactly reduces to the equation for the Hermite polynomial. Then, by 

using the theorems of OLVER (1975-A), the asymptotic estimation of the Gegenbauer 

polynomials can be described in more detail. This gives an asymptotic interpretation 

of the well-known limit relation 

lim ,-n/2CJ(x/y'7) = _!_1Hn(x), 
"l_.oo n. 

(2.10) 

which can be verified by considering (2.2) and (2.9), and the limit of each coefficient of 

the Gegenbauer polynomial. 

The points ±xo are two turning points of (2.5). By hypothesis x0 is bounded away 

from the singularities ±1. In this subsection the conditions on x, x0 read 

x E (-1,1), xo E [O,b], with b fixed in (0, 1). 

The condition x0 :::; b implies 
l+nJ'f=/)2 

1' > 2 • 
- 1-~ 

Usually, n is considered as the large parameter; from the above condition and K,--+ oo 

it follows that 1'-+ oo, and that n may be large, but not larger than 0(1). 
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We now transform (2.5) into an equation with as dominant part an equation of the 

form (2.7). Considering the basic steps outlined in (1.1) - (1.6), we perceive that the 

appropriate LG transformation reads 

2 2 (dT/)2 x2 - x~ 
(TJ -p) dx = (1-x2)2' W(x) = ../f W(TJ), (2.11) 

where the dot indicates differentiation with respect to TJ, and the non-negative number 

p is defined by 

JP .j p2 - T/2 dT/ = Jzo Jx5 - x2 dx. 
-p -zo 1 - x2 

Evaluation of both integrals yields 

It is convenient to introduce parameters v, µ by writing 

xo = sinµ, v = cosµ, µ E (0, lf2ir]. (2.12) 

Then we have, using (2.6), 

[2n+T 
p= y---;- = 2sin(1/2µ). (2.13) 

The relation between T/ and x is one-to-one, with the points -xo and xo corre

sponding respectively to -p and p. On taking the positive square root in the first of 

(2.11) and integrating, we obtain 

JT/ Jz . 1532 - x2 
.jr,2 - P2 dft = v - o dx, 

-oo -1 1 - x2 
-1 < X $; -Xo 

JT/ jz ..jx2 - x2 
.jp2 - fJ2 dfi = o -2 dx, 

-p -zo 1 - X 
-Xo $; X $; Xo 

17/ J.z . tx2 _ x2 
.jr;2 - P2 dr; = v -2 o dx, 

P zo 1-x 
XO< X < 1. 

From these relations it follows that 1/ is an increasing function of x with TJ = -oo and 

+oo corresponding to x = -1 and +1, respectively. 

If xo f:- 0, the relation between x en 1J, defined in (2.11) is given by 

(i) -p $; TJ $; p, -xo $; x $; xo: 

[ TJ] X llX lf2 T/V p2 - T/2 + p2 a.resin - = arcsin - - 11 arctan .j 2 ; 
p xo x0 - x2 

(2.14) 
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(ii) T} °?_ p, Xo $ x < 1: 

[ ~ 'f/J x ~x2 - x5 1/2 'r/V T/2 - p2 - p2arccosh- = -arccosh- + v arctanh ; 
p xo vx 

(2.15) 

(iii) 'f/:::; -p, -1 < x :5 -xo: 

[ 'f/] -x Jx2 - x2 -1/2 ryJT/2 - p2 + p2arccosh -p = -arccosh- - v arcta.nh 0 . (2.16) 
Xo VX 

Alternatively, when x0 = 0, so that p = 0, we find 

with sign(17) = sign(x). Whether or not x 0 = 0, the differential equation (2.5) transforms 

into the form (1.6): 

(2.17) 

where 
·'·( ) • 2 . x 2 + 3 .ff d2 1 
r T/ = - x 4( 1 - x2 )2 + x d'f/2 ./X . 

By carrying out the differentiations by means of the first of (2.11 ), we arrive at the 

formula 

3ri2 +2p2 (ri2 -p2 )(1-x2)( 2 2 2 2 4) 
'l/;(17) = 4(172 - p2)2 + 4(x2 - x5)3 4x Xo - 3x - 2xo + Xo . 

The right-hand side is to be replaced by its limiting form when T/ = ±p. It follows 

from Olver's theory that 'lj; is a continuous function of 17 E IR, but for this special 

case we can prove that 17 is an analytic function of x E (-1, 1) and x0 E [O, 1), and 

that 'lj; is an analytic function of ry. For instance, at 'f/ = 0 and as x0 -+ 0, we have 

,,P(O) = - 1/32 x6 + O(xi). 

We need to know the asymptotic behavior of x(17) as 'f/ -+ ±oo. From (2.15) we 

derive that 

as T}-+ +oo, with a similar relation with T}-+ -oo. It follows that 
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where c(x0 ) does not depend on 77, and is given by 

( ) - p2 /2+vln(2cot2 µ)-2arccosh(l/xo)+p2 ln(2/p) 
c xo - exp . 

v 
(2.19) 

Further, 

'I/!( 77) = ('.) c : 112 ) ' 7J E IR, 

uniformly with respect to x 0 E [O,b]. 

2.2. Identification of solutions 

As remarked above, the solutions of 

(2.20) 

are parabolic cylinder functions. By considering the behavior of the Gegenbauer poly

nomial and that of the two solutions of the differential equation for parabolic cylinder 

functions, it follows that only the function Dv(z) should be used as approximant. As 

in (2.7) we have, using (2.13) 

wo(TJ) = D,,(77~), 2v + 1 = Kp2 = 2n + 1. 

It follows that the parabolic cylinder function reduces to a Hermite polynomial. Using 

(2.8), we obtain as a solution of (2.20) 

wo( 77) = rnf2 e- "'112 /2 H n( 77..fK, ). 

We obtain for the complete equation (2.17) 

Since our function '1/; of (2.17) satisfies the conditions of Theorem I of OtVER (1975-A, 

§6), we can infer that le(7J)I is small compared with Jw0 (77)J, except in the neighborhoods 

of the zeros of this function, where lc(7J)I is small compared with the envelope of Jwo(ry)J. 
This conclusion holds uniformly with respect to 77 E JR, x0 E [O,b]. It is also possible to 

construct bounds for Jc:(ry)J. In terms of the Gegenbauer polynomial we obtain 

(2.21) 

where A~ does not depend on x. Again, lei is small (in the sense described above) when 

K _,, oo, uniformly with respect to x E (-1, 1). By using 

C-Y(l) = (2/)n lim z-n Hn(z) = 2n 
n n! ' Z-+00 

(2.22) 
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and the result in (2.18), we obtain 

Evaluating this expression by using (2.19), we can write 

with K. = n +"'I· 
It is not difficult to verify that (2.21) contains (2.10) as a special case; from Olver's 

theory it follows that £tends to zero in the limit considered. 

2.3. Other asymptotic forms for large 'Y and/or n 

When in (2.5) x runs in a domain that contains both the points xo and 1, and xo 

may coalesce with the point 1, the equation resembles a particular form of the Bessel 

equation. For this case we can use an LG transformation of the form 

v2 - ( ( d() 2 x2 - x5 
4(2 dx = (1- x2)2' W(x) = R w((), (2.23) 

where v is defined in (2.12), that is 

- r:--:2 - 'Y - 1/2 
V - v 1 - Xo - K. , K.=n+1, 

and the dot indicates differentiation with respect to(. The point x = x0 is transformed 

to ( = v2 , and the point x = 1 to ( = 0. The derivative :i; is negative in the domain of 

interest. Again, K. is large, and 'Y ;;:: lf2. 
The relation between x and ( can be obtained by integrating the first of (2.23). 

With these transformations the Gegenbauer equation (2.5) is transformed to 

w = ["'2 (~ - _]:_) - - 1-]w + </>(() w 
4(2 4( 4(2 ( , 

(2.24) 

where 
</>( () . 2 x 2 + 3 R d2 1 1 
-(- = -x 4(1 - x2)2 + -x d(2 A + 4(2. 

The function </> is analytic in a domain containing both the turning point ( = v2 and 

the singular point ( = O.lt can be verified that 

</>(() = O(C2), as (-+ -oo. 
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The solution of (2.24) can be put in the form w(() = ~ l-y-l/2 (K~) +c:((). For 

the Gegenbauer polynomials we obtain 

(2.25) 

where BJ, does not depend on x. This number follows from the behavior of the J-Bessel 

function at ( = 0 and CJ,(l) = (2/)n/n!. We also need the number c1 in x = 1 + c1 ( + 
0((2 ) as (--> U, that is, c1 = -1/(1 + x5). So we obtain 

BJ, = (21/n 2-y+1/2 ( -c1 )'Y/2-1/4 K1/2--yr( I + 1;2 ). 
n. 

From BOYD & DUNSTER (1986) it follows that (2.25) provides an asymptotic estimate 

of the Gegenbauer polynomial with K--> oo, I = O(n). The estimate holds uniformly 

with respect to x E [-x0 + 8, oo) (and also in larger domains of the complex plane). 

Upper bounds for lc:(()I follow from the cited reference, also for an estimate involving 

more terms in the expansion. Since the Gegenbauer polynomial is symmetric with 

respect to x, a similar expansion hold in the x-domain containing the points -xo and 

-1. 

A third expansion is needed to describe the behavior for x ~ 1 and n = 0(7). 

As explained in OLVER( (1974), for this case an expansion can be given in terms of 

elementary functions. 

3. LAGUERRE POLYNOMIALS 

The Laguerre polynomials have the explicit representation 

We assume that the parameters are real with n ~ 0, a ~ 0, x E IR. For large values of 

K = n + 1/2( a + 1) (3.1) 

the asymptotic behavior can be described in terms of the Hermite polynomial and the 

J -Bessel function, just as in the previous section. In this section we summarize the 

recent results obtained in TEMME (1986). The results also follow from earlier results 

in the literature for Whittaker functions. The relation between Laguerre polynomials 

and Whittaker functions is 
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with K as in (3.1) and JL = a/2. The functions Mi<,µ(z), Wi<,µ(z) are solutions of 

Whittaker's equation 

d2y = [~ - ~ + µ2 - l/4]Y· 
dz2 4 z z2 

A first transformation z = 4Kx yields the differential equation 

where 

with solution 

wn- 2[4(x-x1)(x-x2) __ 1_]w 
- K x2 4x 2 ' 

1-/f=72 Q 

X1 = 2 Xz = 1 + v'f=T2 
2 T = 2K' 

(3.3) 

(3.4) 

(3.5) 

The x-zeros of the polynomial L~(4Kx) occur within the interval [x 1 , x2]. When 

a > > n the parameter T tends to unity, and the turning points x 1 , x 2 are close together. 

This case is described by a parabolic cylinder function, which reduces for this particular 

case of the Laguerre polynomials to a Hermite polynomial. When T ---+ 0 the zeros of 

L~(4Kx) are spread over the x-interval (0,1), and a ]-Bessel function is used in this 

case. 

3.1. Estimation in terms of a Hermite polynomial 

The LG transform is defined by 

( 2 _ 2 )(dTJ) 2 = 4(x - x1)(x - x2) 
T/ p dx x2 ' W(x) = J± w(TJ), (3.6) 

where the dot indicates differentiation with respect to TJ, and p is given by 

p=/2(1-r-). 

The relation between T/ and x is one-to-one, with 

TJ(O) = -oo, TJ(X1) = -p, TJ(X2) = p, TJ(+oo) = oo. 

The differential equation (3.4) transforms into 

(3. 7) 

where 
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We have 
1 

1/J( TJ) :::: 0 ( T/2 + l), 'T/ E Ill, 

uniformly with respect to TE [ro, 1], where To is a fixed number in (0, 1). 

By identifying solutions, and considering the asymptotic behavior of the Laguerre 

polynomials and the Hermite polynomials, we arrive at the estimate 

This representation has an asymptotic interpretation as K --+ oo; in that case Ill is small 

(in the same sense as in (2.21)), uniformly with respect to x E (O,oo) and t E [r0 ,1]. 
The latter gives for o the condition 

TO 
a~--(2n+l) 

1-To 

with To any fixed number in (0, 1). 

3.2. Other asymptotic forms for large o and/or n. 

In TEMME (1986) details are given for two other asymptotic forms of the Laguerre 

polynomials, one in terms of the J-Bessel function, and one in terms of an Airy function. 

The Bessel function is used to describe the asymptotics of L~ ( 4x:x) for K __. oo, uniformly 

with respect to a E [O,n1n] and x E (-oo,xo], xo = fox 1 + (l-fo)x2, where X1,2 are 

given in (3.5), n1 is a fixed positive number, and eo is a fixed number in (0, 1). The 

Airy function is used to describe the asymptotics uniformly with respect to a E [O, n2n] 

and x E [x3, oo ), x3 = 6x1 + (l -6)x2, with n2 a fixed positive number, and 6 a fixed 

number in (0, 1). 

Both forms follow from DUNSTER (1989), where the results are obtained in the 

setting of Whittaker functions. A fourth form can be given in terms of elementary 

functions; it is uniformly valid with respect to x ~ 0 and a E [n3n, oo ), where n3 is a 

fixed positive number. 

In this way we have four asymptotic estimates in overlapping domains of the three 

real parameter domains x E IR, n 2'. 0, a ~ 0. It is not difficult to verify that a may 

assume negative values, as long as K __. oo. 
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4. JACOBI POLYNOMIALS 

The Jacobi polynomials P~a,f3)(x) are solutions of the differential equation 

(1- x2)y11 + [(,8- a)- (a+ ,8 + 2)x]y1 + n(n +a+ ,8 + l)y = 0. (4.1) 

In fact this is a differential equation of hypergeometric type, the relation with hyperge

ometric functions being 

( ) ( n +a) 1- x 
Pn"',f3(x)= n F(-n,a+,B+n+l;a+l;-2-), ( 4.2) 

which gives the explicit representation 

p(a,f3)(x) = f(a + n + 1) t (n) f(a + ,8 + n + k + 1) (x - l)k. 
n n!f(a+,B+n+l)k==O k f(a+k+l) 2 (4.3) 

The following normalization and symmetry relations hold 

The Gegenbauer polynomial is a special case of the Jacobi polynomial: 

C1(x) = (2/)n ph-l/2,.y-l/2)(x). 
n (I+ 1/2)n n 

( 4.5) 

The function 

( 4.6) 

satisfies the equation 
wt/= Q(x,a,,8,n)w 

(1-x2)2 ' 
( 4.7) 

with 

,..,=n+(a+,8+1)/2. ( 4.8) 

We factorize the function Q in the following way 

( 4.9) 

where 
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where x2 has the + sign. It is not difficult to verify that this factorization yields the 

same equations for the Gegenbauer polynomials in the case that a = f3 = I - 1/2. 

We consider the case where the parameters a, (3 are positive, and the independent 

variable x is real. The parameter K of ( 4 .8) is large. 

The numbers X1,2 satisfy -1 < x1 < x2 < 1. Several limiting cases of these numbers 

are possible. To describe some of the phenomena, we introduce 

Then we can write 

a +f3 a=--
2K ' 

and we have the following cases: 

a - f3 o=--. 
2K 

- when n >>a+ (3, that is, a -t 0, then x1 -> -1, x2 ___, +l; 

- when a+ f3 >> n, that is, a..._,. 1, then x 1 and x2 coalesce at -8; 

- when a>> /3, that is, 8 ..._,. 1, then x 1 and x2 coalesce at -a; 

- when /3 >>a, that is, 8--> -1, then x1 and x2 coalesce at a. 

Note that the collisions may happen at +1 when f3 >> a >> n, and at -1 when 

a>> f3 >> n. 

In the following subsections we give the setup of two LG transformations for ob

taining asymptotic estimates of the Jacobi polynomials in terms of the Gegenbauer 

polynomials and of the Laguerre polynomials. Both forms seem to be new, but the 

proofs of the asymptotic nature of the approximations will be elaborated elsewhere. We 

demonstrate the usefulness of the estimates by comparing the zeros of the Jacobi poly

nomials with transformed zeros of the LG approximants for these cases: the Gegenbauer 

polynomials and the Laguerre polynomials. 

4.1. Estimation in terms of a Gegenbauer polynomial 

We define a Liouville-Green transformation for (4.7) by writing 

172 - p2 (d17) 2 _ (x - x2)(x - x1) W(x) = ./"!c w(ry), 
(1 - 772)2 dx - (1 - x2)2 ' 

( 4.11) 

where the dot indicates differentiation with respect to 77, and p is the non-negative 

number defined by 

j p Jp2 - 772 - ix2 J(x2 - x)(x - x1) 
-'----2~ dry - 2 dx. 

-p 1 - 77 x, 1 - x 
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Evaluation of both integrals yields 

The square roots in the right-hand side can easily be evaluated; using ( 4.10) we obtain 

It follows that 

J(l - x1)(l - x2) = ~, 
l'i, 

f3 J(l + x1)(l + x2) = -. ,.,, 

~ - a+/3 
v1-p- - ~· 

( 4.12) 

(4.13) 

The relation between 1/ and x is one-to-one, with the points x 1 and x 2 corresponding 

respectively to -p and p. For the integration of the first of ( 4.11) we introduce the 

following notations 

\Ve also use 

xo = 1/2(x2 - x1), x = l/2(x1 + x2), p =sinµ, v =cosµ, 

{ 

arccos[(x - x)/x0 ], if x1 < x < x2; 

T = arccosh[(x - x)/x0 ], if x2 < x < 1; 

arccosh[(x - x)/x0], if -1 < x < x 1 . 

R= J(x-x2)/(x-x 1), ifx2 < x < 1; ! J(x2 -x)/(x-xi), ifx1 < x < x2; 

J(x1 - x)/(x2 - x), if -1 < x < x 1 • 

Integrating the first of ( 4.11) we obtain when x 1 =f x2 , that is, x 0 ::f 0 

(i) -p5:_17S,p, x1S,xS,x2: 

a.resin'!!.. - v arctan VT/ - lf27r(l + v) = 
p Jp2 - ry2 

- T - !!_ arctan K(l + xz) - ~ arctan r;,(l - x 2 ) • 

"' /3R r;, . aR ' 

(ii) p $_ 1) < 1, Xz S, X < 1: 

1/ J112 - p2 
- arccosh- + varctanh---- = 

p v 1) 

_ T + ]__ [/3ln r;,(1 + Xz) + (3R + aln r;,(l - x2 
2K K(l+x2)-f3H. 1,(l-x2 

( 4.14) 

( 4.15) 

( 4.16) 
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(iii) -1 < Tf $ - p, -1 < X ~ X1: 

- arccosh 'J.. + 11 arctanh v 77 = 
P ../rP - P2 

-T- J_ [.Bln l'i:(l + x1) + (3R _ aln l'i:(l - x 1 ) + aR]. 
2K K(l+x1)-(3R K(l-x 1 )-aR 

( 4.17) 

Alternatively, when X1 = X2 = x, that is, x 0 = 0, so that p = 0, we find for 

IT/I < 1, lxl < 1 
2 1-x l+x 

ln(l - 'fJ) = (1- x)ln 1 _ x + (1+x)ln 1 + x 

with sign(7J) = sign(x - x). Whether or not xo = 0, the differential equation (4.7) 

transforms into 

(4.18) 

where 
• 2 x2 + 3 . d2 1 rJ2 + 3 

'lj;(71) = -x 4(1- x2)2 +.ff d712 .,ff + 4(1 - 712)2. ( 4.19) 

For identifying the solutions we need to know the asymptotic behavior of x(Tf) as 

7J --+ 1. It is straightforward to verify from ( 4.16) that 

1 - x = (1 - 71)C<>+.B)/( 2<>lc[1 + o(l)], as 7J T 1, 

where C is not depending on 7J, and is given by (t is given in (4.14) with x = 1) 

C [ 2KT (3 1 ../(l+x2)(1-xi)+../(l+x1)(1-x2) 
=exp - - +- n + 

a a J(l+x2)(1-x1)-../(l+x1)(l-x2) (4.20) 

ln{ 2(1- x1)(l - x2) (~ + v"f=X2)}]. 
X2 - X1 

When 'If;= 0 the solution of (4.18) is a Gegenbauer polynomial (see (2.5)); that is, 

where 'Y =(a+ f3 + 1)/2. We write for the complete solution of (4.18) 

with the expectation that c('T]) is a small contribution as K-+ oo. Using (2.4), (2.5) we 

obtain the asymptotic estimate 
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where A~·,6 can be derived by computing the behavior of the polynomials at x = 1, T/ = 1 

from (2.22) and ( 4.4 ). The result is 

A"'·,e = 2(,6-et)/4 ca/2 J 2a f(21)f('n +a+ 1). 
n a+ f3 f(a + l)r(n + 21) 

When a= {3, the functions 1/;,E,£ vanish identically; the mappings described in (4.15), 

( 4.16), and ( 4.17) reduce to the identity mapping x = 17, and the relation between the 

polynomials is then as in ( 4.5). 

4.2. Estimation in terms of a Laguerre polynomial 

A known limit is 

lim p~a,,e)(2x/a - 1) = (-lt L~(x). 
a-+oo 

We give a new asymptotic estimate that includes this relation. We concentrate on an 

estimate that can describe the behavior of P~a,,6)(x) for x-values in a domain that 

contains the singular point x = -1 (a double pole) of ( 4. 7) and both turning points 

x1,2 defined in ( 4.10) and located in (-1, 1 ). Recall that both turning points coalesce 

with the pole when a > > f3 > > n. Especially this situation can be described by the 

Laguerre polynomial. 

We define an LG transformation by writing W(x) = v'x w(TJ) and 

4(T/ - P1)(1J - P2) (d7]) 2 = (x - x2)(x - x1) 
7]2 dx (1-x2 ) 2 ' 

where the positive numbers p1,2 are to be determined. A first condition reads 

r 2 V(P2 - T/)(TJ- Pi) dT/ = 
J PI 1J 

1X 2 vr:-(X_z ___ X.,....,)(-X ---X_,..i) 
1 2 dx. 

XJ - X 

Evaluation of both integrals gives 

2n + 1 
PI + P2 - 2.fPliii = ~. 

( 4.22) 

( 4.23) 

It is required that the relation between T/ and x is one-to-one for x E (-oo, 1), with 

the points XI and x2 corresponding respectively to PI and p2 • We also request that the 

mapping is regular at the corresponding points x = -1, 'fJ = 0. A necessary condition 

follows from ri/(1 + ;,;) = 0(1) as x--+ -1. Assuming that 

dry 1J 
dx "' 1 + x --+ L, as x --+ -1, 
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we obtain from (4.22) the second condition 

/3 
4JP1P2 = -, 

K, 
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( 4.24) 

where we used the second of ( 4.12). From those two conditions p1,2 can be determined. 

We have 

2..;"iJ0. = ./(2n + 1 + 2/3)/2K. ± J(2n + 1 )/2K., 

where p2 has the + sign. 

The integrated form of ( 4.22) for the location of the parameters Pi :::; TJ $ p2 , x1 :::; 

x:::; x2 reads 

• (P1 + P2)TJ - 2p1p2 . P1 + P2 - 2TJ 
2S - 2J7iiji2 arcsm ( ) - (Pi + P2) arcsm = 

T}~-~ ~-~ 

/3 x:(l+x2) a x:(l-x2 ) 2n+l 
-T - - arctan - - arctan - (-- - l)7r 

x: /3R x: aR 4K. ' 

( 4.25) 

where S = J(P2 - TJ)( TJ - pi) and the parameters of the right-hand side are as in (4.15). 

The LG transformation ( 4.22) transforms ( 4. 7) into the differential equation 

.. _[ 24(ry-pi)(TJ-P2) __ l] +·'·() w - K, 2 2 w 'P ,,, w, 
TJ 4ry 

( 4.26) 

where 
·'·( ) • 2 x 2 + 3 Vi d2 1 1 
'PT/ = -x 4(1-x2)2 + x dry2 Vi+ 41/2· 

When t/; = 0 we denote the solution by w0 . This function can be written in terms 

of the Whittaker functions, just as the solution of the differential equation in (3.4 ), but 

now with parameters Pi,2 satisfying (4.23) and (4.24). To obtain the proper form of the 

solutions, we transform the above differential equation (with t/; = 0) into (3.3), with 

4K.'fl replaced with z. Then we obtain 

d2 y _ [~ _ ~ m 2 - 1/4] 
d 2 - 4 + 2 y, z z z 

with solutions the Whittaker functions Wk,m(z), Mk,m(z), with 

/3 + 1 
k = K.(Pi + P2) = n + - 2-, m = 2K.~ = i/2(3. 

It follows that when t/; = 0 a solution of ( 4.26) is 

( 4.27) 
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We write for the complete solution 

with the expectation that c(7J) is a small contribution as"'-+ oo. We obtain an asymp

totic estimate of the Jacobi polynomial in terms of the Laguerre polynomial 

where B~·f3 can be derived by computing the behavior of the polynomials at x = 
-oo, 1J = -oo. 

We expect that the above approximation holds for "' -+ oo, uniformly with respect 

to x E [-oo,1- 8], and x1 ,x2 E [-1,1-8], with 8 a small fixed positive number. 

5. NUMERICAL VERIFICATION BY COMPUTATION OF ZEROS 

For given values of n, a, f3 we have verified the asymptotic estimate ( 4.28), where the 

relation between 1J and x is given in ( 4.25). We computed the zeros Zm, m = 1 ... n of 

the Laguerre polynomial L~(z), giving 1Jm = Zm/(4"'), m = l ... n. By inverting (4.25) 

we obtained Xm = x(1Jm), and we compared these values with "exact" zeros x~) of the 

Jacobi polynomial P~a,/3)(x). In Table 5.1 we show for n = 10, f3 = 5.5 and several 

values of a the corresponding number of correct decimal digits in the approximation of 

the zeros. That is, we show 

log10 Ix~) - Xml, m = 1,2, ... 10. 

Table 5.1. Correct decimal digits in the approximations of zeros of Pii·5·5l(x) 

a 1.0 2.5 5.0 10 25 50 75 100 
m 

1 4.3 4.5 4.7 5.0 5.6 6.3 6.7 7.0 
2 4.1 4.2 4.4 4.7 5.3 6.0 6.4 6.7 
3 3.9 4.0 4.2 4.5 5.2 5.8 6.2 6.5 
4 3.8 3.9 4.1 4.4 5.0 5.6 6.1 6.4 
5 3.7 3.8 4.0 4.3 4.9 5.5 5.9 6.3 
6 3.6 3.7 3.9 4.2 4.8 5.4 5.8 6.1 
7 3.6 3.7 3.9 4.2 4.7 5.3 5.7 6.0 
8 3.6 3.7 3.9 4.1 4.7 5.3 5.6 6.0 
9 3.6 3.7 3.9 4.1 4.6 5.2 5.6 5.9 
10 3.7 3.8 4.0 4.2 4.6 5.1 5.5 5.8 
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The values of Zm and x~) are obtained from a numerical procedure that generates 

the zeros by computing the eigenvalues of a tri-diagonal matrix that corresponds with 

the recursion formulas of the polynomials. 

From the table it follows that the zeros near x = -1 are slightly better approxi

mated, but that in general the approximations are uniform with respect tom. A similar 

table for the asymptotic estimate (3.8) is given in [18], showing the same sharp results. 

We also used the numerical verification for the asymptotic estimates (2.21) and ( 4.21 ), 

again with satisfactory results. 

Acknowledgment The author wants to thank Drs. Adri Olde Daalhuis (CWI) for his 

comments on earlier versions of the paper. 
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