
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

MAS
Modelling, Analysis and Simulation

 Modelling, Analysis and Simulation

Multi-point Taylor expansions of analytic functions

José L. López, Nico M. Temme

REPORT MAS-E0402 JANUARY 8, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301652061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3703



Multi-point Taylor expansions of analytic functions

ABSTRACT
Taylor expansions of analytic functions are considered with respect to several points, allowing
confluence of any of them. Cauchy-type formulas are given for coefficients and remainders in
the expansions, and the regions of convergence are indicated. It is explained how these
expansions can be used in deriving uniform asymptotic expansions of integrals. The method is
also used for obtaining Laurent expansions in several points as well as Taylor-Laurent
expansions.

2000 Mathematics Subject Classification:  30B10, 30E20, 40A30.
Keywords and Phrases: multi-point Taylor expansions, Cauchy's theorem, analytic functions, multi-point Laurent
expansions, uniform asymptotic expansions of integralrals
Note: Work carried out under project MAS1.2 Analysis, Asymptotics and Computing. This paper has been accepted for
publication in Transactions of the American Mathematical Society.



1

Multi-point Taylor Expansions of Analytic Functions
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ABSTRACT

Taylor expansions of analytic functions are considered with respect to several points,

allowing confluence of any of them. Cauchy-type formulas are given for coefficients

and remainders in the expansions, and the regions of convergence are indicated. It is

explained how these expansions can be used in deriving uniform asymptotic expansions

of integrals. The method is also used for obtaining Laurent expansions in several points

as well as Taylor-Laurent expansions.
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1. Introduction

In deriving uniform asymptotic expansions of a certain class of integrals one encounters

the problem of expanding a function, that is analytic in some domain Ω of the complex

plane, in several points. The first mention of the use of such expansions in asymptotics is

given in [1], where Airy-type expansions are derived for integrals having two nearby (or

coalescing) saddle points. This reference does not give further details about two-point

Taylor expansions, because the coefficients in the Airy-type asymptotic expansion are

derived in a different way. Other mentions of the use of such expansions in asymptotics

is given in [7] and [5]. In [7], two-point Taylor expansions are used with applications to

Airy-type expansions of parabolic cylinder functions. In [5] we used two-point Taylor ex-

pansions to derive convergent expansions of Charlier, Laguerre and Jacobi polynomials

in terms of Gamma, Hermite and Chebyshev polynomials respectively.
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To demonstrate an application in asymptotics of multi-Taylor expansions we may

consider contour integrals of the form

I(λ;α) =

∫

C

g(z)e−λf(z,α) dz, (1)

where α is a vector of parameters, α = (α1, . . . , α2) and the phase function f(z, α)

has m saddle points z1, z2,...,zm. The asymptotic behaviour of these integrals for large

values of λ is determined by the saddle-point structure of the phase function [[9], chap.

7, sec. 6]. One method for obtaining an asymptotic expansion of this integral for large

values of λ is based on expanding g(z) at the saddle points of the phase function,

g(z) =
∞
∑

n=0

[a0 + a1z + . . . + am−1z
m−1](z − z1)

n(z − z2)
n · · · (z − zm)n

and substitute this expansion into (1). When interchanging summation and integration,

the result is a formal expansion in m series in terms of functions related with the

functions

Fn,k(λ;α) ≡

∫

C

zk(z − z1)
n(z− z2)

n · · · (z− zm)ne−λf(z,α) dz, k = 1, 2, . . . ,m− 1.

(2)

In [7], these functions Fn,k(λ;α) are the Airy functions, whereas in [5] these functions

are the Gamma function, or the Hermite or Chebyshev polynomials.

In a future paper we will use multi-point Taylor expansions in the asymptotic analysis

of integrals arising in diffraction theory, such as the Bessel function integral (see [3] and

[4])

J(x, y) =

∫ ∞

0

tJ0(yt)ei(t4+xt2) dt, (3)

which is related to the Pearcey function

∫ ∞

−∞

ei( 1

4
t4+ 1

2
xt2+yt)dt, (4)

The Taylor-Laurent expansions will be used to study integrals with two saddle points

and a pole of the integrand. Other applications in asymptotics include the study of

Hermite-Padé approximations to the exponential function; in [2] integrals are considered

with three saddle points.

In a recent paper [6] we have introduced the theory of two-point Taylor expansions,

two-point Laurent expansions and two-point Taylor-Laurent expansions. The purpose

of the present paper is to generalize that theory from 2 to m points, m ≥ 2. We give

details on the region of convergence and on representations in terms of Cauchy-type

integrals of the coefficients and the remainders of the expansions. Earlier information
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on this type of expansions is given in [8], Chapters 3 and 8. The theory of several-point

Taylor expansions was already formulated in Chapter 3 of Walsh’s book, although in a

different setting. Chapter 8 of [8] presents also a theory of rational approximation of

analytic functions, but is different from the theory of multi-point Laurent and Taylor-

Laurent expansions presented here. Whereas the multi-point polynomial approximation

of Chapter 3 may be reformulated as a multi-point Taylor approximation, the rational

approximation of Chapter 8 can not be written as a multi-point Laurent or Taylor-

Laurent approximation. For more details, see Section 5.

2. Multi-point Taylor expansions

We consider the Taylor expansion of an analytic function f(z) in several points and give

information on the coefficients and the remainder in the expansion. In what follows

empty sums and derivatives of negative order must be understood as zero and empty

products as one. We will deal with the following set of points:

Definition 1. We define the set S ≡ {z1, z1, . . . , z1; z2, z2, . . . , z2, . . . ; zp, zp, . . . , zp} of

m points consisting on p different points z1, z2,..., zp (zi 6= zj if i 6= j), each zj repeated

mj times: m1 + m2 + . . . + mp = m.

For clearity in the exposition, we first introduce the multi-point Taylor expansion

for m different points z1, z2, . . . zm (m = p, mj = 1) in Theorem 1. In Theorem

2 we assume that the points z1, z2, . . . zm may coalesce. We will need the following

elementary lemma.

Lemma 1. Given z, w, ∈ C/, take m different points z1, z2,. . ., zm in C/ and define

Hm(w, z; z1, . . . , zm) ≡

∏m
k=1(w − zk) −

∏m
k=1(z − zk)

w − z
. (5)

Then

Hm(w, z; z1, . . . , zm) =
m

∑

j=1

∏m
k=1,k 6=j(w − zk)

∏m
k=1,k 6=j(z − zk)

∏m
k=1,k 6=j(zj − zk)

. (6)

Proof. The numerator of Hm(w, z; z1, . . . , zm) is a polynomial of degree m in the

variable w that vanishes at w = z. Therefore, Hm(w, z; z1, . . . , zm) is a polynomial of

degree m − 1 in the variable w. Let Pm(w, z; z1, . . . , zm) denote the function at the

right-hand side of (6), which is also a polynomial of degree m − 1 in the variable w.

Moreover, Hm(zs, z; z1, . . . , zm) =
∏m

k=1,k 6=s(z − zk) = Pm(zs, z; z1, . . . , zm) for s = 1,

2,. . .m. Hence, Hm(w, z; z1, . . . , zm) = Pm(w, z; z1, . . . , zm). tu

Theorem 1. Let f(z) be an analytic function on an open set Ω ⊂ C/ and S ⊂ Ω with

S consisting on m different points (m = p). Then, f(z) has the multi-point Taylor

expansion

f(z) =
N−1
∑

n=0

qn,m(z)
m
∏

k=1

(z − zk)n + rN (z), (7)
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where qn,m(z) is the polynomial of degree m − 1

qn,m(z) ≡
m

∑

j=1

an,j

∏m
k=1,k 6=j(z − zk)

∏m
k=1,k 6=j(zj − zk)

(8)

and the coefficients an,j of this polynomial are given by the Cauchy integral

an,j ≡
1

2πi

∫

C

f(w) dw

(w − zj)
∏m

k=1(w − zk)n
. (9)

The remainder term rN (z) is given by the Cauchy integral

rN (z) ≡
1

2πi

∫

C

f(w) dw

(w − z) [
∏m

k=1(w − zk)]
N

[

m
∏

k=1

(z − zk)

]N

. (10)

The contour of integration C is a simple closed loop which encircles the points z1,

z2,...,zm (for an,j) and z, z1, z2,...,zm (for rN (z)) in the counterclockwise direction

and is contained in Ω (see Figure 1 (a)).

The expansion (7) is convergent for z ∈ Om, where:

Om ≡ {z ∈ Ω,

m
∏

k=1

|z − zk| < r}, r ≡ Infw∈C/ \Ω

{

m
∏

k=1

|w − zk|

}

. (11)

That is, (7) is convergent for z inside the lemniscate
∏m

k=1 |z − zk| = r (see Figure 2;

if m = 1 this domain is a disk; if m = 2 this domain is bounded by a Cassini oval).

In particular, if f(z) is an entire function (Ω = C/), then the expansion (7) converges ∀

z ∈ C/.

Proof. By Cauchy’s theorem,

f(z) =
1

2πi

∫

C

f(w) dw

w − z
, (12)

where C is the contour defined above (Figure 1 (a)). We write

1

w − z
=

Hm(w, z; z1, . . . , zm)
∏m

k=1(w − zk)

1

1 − u
, (13)

where Hm(w, z; z1, . . . , zm) is given in (5) and

u ≡

∏m
k=1(z − zk)

∏m
k=1(w − zk)

. (14)

Now we use Lemma 1 and introduce the right hand side of (6) and the expansion

1

1 − u
=

N−1
∑

n=0

un +
uN

1 − u
(15)
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in (13) and this in (12). After straightforward calculations we obtain formulas (7)-(10).

For any z ∈ Om, we can take a contour C in Ω such that

m
∏

k=1

|z − zk| <
m
∏

k=1

|w − zk|, ∀w ∈ C

(see Figure 1 (b)). On this contour |f(w)| is bounded by some constant C: |f(w)| ≤ C.

Introducing these two bounds in (10) we see that limN→∞ rN (z) = 0 and the proof

follows. tu

C
z 1

z
2

z
C

z1

z2

O3

z 3

z

z 3

(a) (b)

Figure 1. The case m = 3. (a) Contour C in the integrals (9) and (10). (b) For z ∈ Om, we can

take a contour C in Ω which contains Om inside and therefore,
∏m

k=1 |z − zk| <
∏m

k=1 |w − zk|

∀ w ∈ C.

z1

z3

z1

z2

z1

z2
z2 z3 z3

r = ra r = rb r = rc

Figure 2. Shape of the ”lemniscate domain” Om for m = 3. It depends on the size of the

parameter r defined in (11). In these pictures |z2 − z3| < |z1 − z3|, |z1 − z2| and ra > rb > rc.

We need the following lemma to consider the case of coalescing points in the set S.

Lemma 2: Given z, w ∈ C/, take m different points z1, z2, ..., zm in C/, all different

from w too. Let those m points to coalesce at zm, say. Then

lim
z1,z2,..,zm−1→zm

m
∑

j=1

∏m
k=1,k 6=j(z − zk)

(w − zj)
∏m

k=1,k 6=j(zj − zk)
=

m−1
∑

j=0

(z − zm)j

(w − zm)j+1
.

Proof. We first note that the identity

n
∑

j=1

j−1
∏

l=1

(zn − zl)
n

∏

l=j+1

(z1 − zl) = 0

holds for any set of points z1, z2,..., zn, n > 1. It may be cheked in the following

way: we take the two first terms of the sum, which gives (zn − z2)(z1 − z3)(z1 − z4) ·
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· · (z1 − zn−1)(z1 − zn). Next we add to this the third term of the sum, which gives

(zn−z2)(zn−z3)(z1−z4) · · ·(z1−zn−1)(z1−zn). We continue this process untill we add

the n−1-th term of the sum, obtaining (zn−z2)(zn−z3)(zn−z4) · · ·(zn−zn−1)(z1−zn).

But this is just the last term of the sum with opposite sign.

Using the above identity we have

k−1
∏

l=1

(zs − zl)





s
∑

j=k

j−1
∏

l=k

(zs − zl)
s

∏

l=j+1

(zk − zl)





m
∏

l=s+1

(zk − zl) = 0

for any s = 1, 2, 3, ...,m and any k = 1, 2, 3, ...,m with k 6= s. Then

s
∑

j=k

j−1
∏

l=1

(zs − zl)
m
∏

l=j+1

(zk − zl) =
m

∑

j=1

j−1
∏

l=1

(zs − zl)
m
∏

l=j+1

(zk − zl) = 0 (16)

for any s, k = 1, 2, 3, ...,m with k 6= s.

Now, for every s = 1, 2, 3, ...,m, we define the following polynomials of degree m − 1

in the variable z:

Rs(z) ≡
m
∏

l=1,l 6=s

(z − zl), Ss(z) ≡
m

∑

j=1

j−1
∏

l=1

(z − zl)
m
∏

l=j+1

(zs − zl).

The zeros of Rs(z) are zk for k = 1, 2, 3, ...,m, k 6= s and from (16), Ss(zk) = 0 for

k = 1, 2, 3, ...,m, k 6= s. Moreover, the leading coeficient of Rs(z) and of Ss(z) coincide.

Therefore, Rs(z) = Ss(z) for s = 1, 2, 3, ...,m.

Finally, define the following polynomials of degree m − 1 in the variable w:

P (w, z) ≡
m

∑

j=1

∏m
k=1,k 6=j(z − zk)

∏m
k=1,k 6=j(w − zk)

∏m
k=1,k 6=j(zj − zk)

,

Q(w, z) ≡
m

∑

j=1

j−1
∏

k=1

(z − zk)
m
∏

k=j+1

(w − zk).

For every s = 1, 2, 3, ...,m we have P (zs, z) = Rs(z) and Q(zs, z) = Ss(z). But Rs(z) =

Ss(z) and therefore P (w, z) = Q(w, z). Then,

m
∑

j=1

∏m
k=1,k 6=j(z − zk)

(w − zj)
∏m

k=1,k 6=j(zj − zk)
=

P (w, z)
∏m

k=1(w − zk)
=

Q(w, z)
∏m

k=1(w − zk)
=

m
∑

j=1

∏j−1
k=1(z − zk)

∏j
k=1(w − zk)

.

Taking the limits z1, z2,.., zm−1 → zm in the left- and right-hand sides of these equalities,

we obtain the desired result. tu
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Theorem 2. Let f(z) be an analytic function on an open set Ω ⊂ C/ and S ⊂ Ω. Then,

f(z) has the multi-point Taylor expansion

f(z) =
N−1
∑

n=0

qn,m(z)

p
∏

k=1

(z − zk)nmk + rN (z), (17)

where qn,m(z) is the polynomial of degree m − 1

qn,m(z) ≡

p
∑

j=1

∏p
k=1,k 6=j(z − zk)mk

∏p
k=1,k 6=j(zj − zk)mk

mj−1
∑

l=0

an,j,l(z − zj)
l (18)

and the coefficients an,j,l of this polynomial are given by the Cauchy integral

an,j,l ≡
1

2πi

∫

C

f(w) dw

(w − zj)l+1
∏p

k=1(w − zk)nmk
. (19)

The remainder term rN (z) is given by the Cauchy integral

rN (z) ≡
1

2πi

∫

C

f(w) dw

(w − z) [
∏p

k=1(w − zk)mk ]
N

[

p
∏

k=1

(z − zk)mk

]N

. (20)

The contour of integration C is a simple closed loop which encircles the points z1, z2,...,zp

(for an,j,l) and z, z1, z2,...,zp (for rN (z)) in the counterclockwise direction and is con-

tained in Ω (see Figure 1 (a)).

The expansion (17) is convergent for z ∈ Op:

Op ≡ {z ∈ Ω,

p
∏

k=1

|z − zk|
mk < r}, r ≡ Infw∈C/ \Ω

{

p
∏

k=1

|w − zk|
mk

}

,

that is, inside the lemniscate
∏p

k=1 |z − zk|
mk = r. In particular, if f(z) is an entire

function (Ω = C/), then the expansion (17) converges ∀ z ∈ C/.

Proof. If all the points in S are different, we have from (8) and (9)

qn,m(z) =
1

2πi

∫

C

f(w) dw
∏m

k=1(w − zk)n

m
∑

j=1

∏m
k=1,k 6=j(z − zk)

(w − zj)
∏m

k=1,k 6=j(zj − zk)
. (21)

This last sum may be also decomposed in the form

m1
∑

j=1

∏m
k=1,k 6=j(z − zk)

(w − zj)
∏m

k=1,k 6=j(zj − zk)
+

m2
∑

j=m1+1

∏m
k=1,k 6=j(z − zk)

(w − zj)
∏m

k=1,k 6=j(zj − zk)
+ . . .

m
∑

j=mp−1+1

∏m
k=1,k 6=j(z − zk)

(w − zj)
∏m

k=1,k 6=j(zj − zk)
.
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Now let the first m1 points to coalesce to z1, the second m2 points to coalesce to z2,

and so on, and apply Lemma 2 to every one of the p sums above to obtain (17), (18)

and (19). Equation (20) follows from (10). The proof of the convergence of (17) in the

region Op is a straightforward generalization of the correponding proof in Theorem 1.

tu

2.1. Explicit forms of the coefficients

Formula (19) is not appropriate for numerical computations. A more practical formula

to compute the coefficients of the above multi-point Taylor expansion is given in the

following proposition. First we have a definition:

Definition 2. Let f(w) be analytic at w; then for n = 0, 1, 2, . . . the differentential

operator Dn
wf(w) is defined by

Dn
wf(w) =

1

n!

dn

dwn
f(w).

Proposition 1. The coefficients an,j,l, for n = 1, 2, 3, . . ., j = 1, 2, . . . , p, l =

0, 1, . . . ,mj − 1 in the expansion (17) are also given by the formula:

an,j,l =Dnmj+l
w

[

f(w)
∏p

s=1,s 6=j(w − zs)nms

]∣

∣

∣

∣

∣

w=zj

+

p
∑

k=1,k 6=j

Dnmk−1
w

[

f(w)

(w − zj)l+1
∏p

s=1,s6=k(w − zs)nms

]∣

∣

∣

∣

∣

w=zk

.

(22)

Proof. We deform the contour of integration C in equation (19) to any contour of the

form C1 ∪ C2 ∪ · · · ∪ Cp, also contained in Ω, where Ck, k = 1, 2, . . . , p, is a simple closed

loop which encircles the point zk in the counterclockwise direction and does not contain

any other point zj , j = 1, 2, . . . , p, j 6= k inside (see Figure 3 (a)). Then,

an,j,l =
1

2πi

p
∑

k=1,k 6=j

∫

Ck

f(w)

(w − zj)l+1
∏p

s=1,s6=k(w − zs)nms

dw

(w − zk)nmk
+

1

2πi

∫

Cj

f(w)
∏p

s=1,s 6=j(w − zs)nms

dw

(w − zj)nmj+l+1
,

from which equation (22) follows. tu

C
z

1

z2

z

C

1

2

z
0

z1

z2

z

z1

z2
C1

C2 C1

C2

z3

C3

z3
C3

z3

C3

z2

00
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(a) (b) (c)

Figure 3. Integration contours Ck for p = 3 and q = 1. (a) The function
∏p

s=1,s 6=k(w −

zs)
−nmsf(w) is analytic inside Ck for k = 1, 2, . . . , p. (b) The functions

∏p
s=1,s6=k(w −

zs)
−nmsgk(w) and

∏p
s=1,s 6=k(w − zs)

(n+1)msgk(w) are analytic inside Ck for k = 1, 2, . . . , p.

(c) The functions
∏p

s=1,s 6=k(w − zs)
−nmsgk(w),

∏q
s=1,s6=k(w − zs)

−nms
∏p

s=q+1,s 6=k(w −

zs)
nmsgk(w) and

∏q
s=1,s 6=k(w − zs)

−(n+1)ms ×
∏p

s=q+1,s6=k(w − zs)
(n+1)msgk(w) are an-

alytic inside Ck for k = 1, 2, . . . , p.

2.2. Multi-point Taylor polynomials

In Theorem 1 we have assumed that the function f(z) is analytic in Ω. If f(z) is not

analytic in Ω but has a finite number of derivatives at z1, z2,...,zp, we can still define

the multi-point Taylor polynomial of the function f(z) at z1, z2,...,zp in the following

way:

Definition 3. Let z be a real or complex variable. If f(z) is Nmk − 1−times differen-

tiable at z1, z2,...,zp, we define the multi-point Taylor polynomial of f(z) at the points

of S and degree mN − 1 as

PN (z) ≡

N−1
∑

n=0

qn,m(z)

p
∏

k=1

(z − zk)nmk ,

where qn,m(z) is the polynomial of degree m − 1

qn,m(z) ≡

p
∑

j=1

∏p
k=1,k 6=j(z − zk)mk

∏p
k=1,k 6=j(zj − zk)mk

mj−1
∑

l=0

an,j,l(z − zj)
l

and the coefficients an,j,l are given in (22).

Proposition 2. In the conditions of the above definition, define the remainder of the

approximation of f(z) by PN (z) at the points of S as

rN (z) ≡ f(z) − PN (z).

Then, (i) rN (z) = o(z−zk)Nmk−1 as z → zk, k = 1, 2, . . . , p. (ii) If f(z) is Nmk−times

differentiable at zk for some k, then rN (z) = O(z − zk)Nmk as z → zk.

Proof. The proof is trivial if f(z) is analytic at every z1, z2,...,zp by using (20). In any

case, for real or complex variable, the proof follows by using l’Hôpital’s rule and (22).

tu

Remark 1. Observe that the Taylor polynomial of f(z) at the points of S and degree

mN−1 is the Hermite’s interpolation polynomial of f(z) at z1, z2,...,zp with data f(zk),

f ′(zk),...,f (Nmk−1)(zk), k = 1, 2, . . . , p.
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3. Multi-point Laurent expansions

In the standard theory for Taylor and Laurent expansions much analogy exists between

the two types of expansions. For multi-point expansions, we have a similar agreement

in the representations of coefficients and remainders.

Theorem 3. Let Ω0 and Ω be closed and open sets, respectively, of the complex plane,

and Ω0 ⊂ Ω ⊂ C/. Let f(z) be an analytic function on Ω\Ω0 and z1, z2,...,zp ∈ Ω0 (That

is, S ∈ Ω0). Then, for any z ∈ Ω \ Ω0, f(z) has the multi-point Laurent expansion

f(z) =
N−1
∑

n=0

qn,m(z)

p
∏

k=1

(z − zk)nmk +
N−1
∑

n=0

tn,m(z)

p
∏

k=1

(z − zk)−(n+1)mk + rN (z), (23)

where qn,m(z) is the polynomial of degree m − 1

qn,m(z) ≡

p
∑

j=1

∏p
k=1,k 6=j(z − zk)mk

∏p
k=1,k 6=j(zj − zk)mk

mj−1
∑

l=0

an,j,l(z − zj)
l (24)

and the coefficients an,j,l of this polynomial are given by the Cauchy integral

an,j,l ≡
1

2πi

∫

Γ1

f(w) dw

(w − zj)l+1
∏p

k=1(w − zk)nmk
. (25)

Also, tn,m(z) is the polynomial of degree m − 1

tn,m(z) ≡

p
∑

j=1

∏p
k=1,k 6=j(z − zk)mk

∏p
k=1,k 6=j(zj − zk)mk

mj−1
∑

l=0

bn,j,l(z − zj)
l, (26)

where the coefficients bn,j,l of this polynomial are given by the Cauchy integral

bn,j,l ≡
1

2πi

∫

Γ2

p
∏

k=1

(w − zk)mk(n+1) f(w) dw

(w − zj)l+1
. (27)

The remainder term rN (z) is given by the Cauchy integrals

rN (z) ≡
1

2πi

∫

Γ1

f(w) dw

(w − z)
∏p

k=1(w − zk)Nmk

p
∏

k=1

(z − zk)Nmk−

1

2πi

∫

Γ2

p
∏

k=1

(w − zk)Nmk
f(w) dw

w − z

1
∏p

k=1(z − zk)Nmk
.

(28)

In these integrals, the contours of integration Γ1 and Γ2 are simple closed loops con-

tained in Ω \Ω0 which encircle the points z1, z2,...,zp in the counterclockwise direction.

Moreover, z is not inside Γ2, whereas Γ1 encircles Γ2 and the point z (see Figure 4 (a)).
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The expansion (23) is convergent for z inside the ”lemniscate annulus” (see Figure 5)

Ap ≡ {z ∈ Ω \ Ω0, r2 <

p
∏

k=1

|z − zk|
mk < r1} (29)

, where

r1 ≡ Infw∈C/ \Ω

{

p
∏

k=1

|w − zk|
mk

}

, r2 ≡ Supw∈Ω0

{

p
∏

k=1

|w − zk|
mk

}

. (30)

Proof. By Cauchy’s theorem,

f(z) =
1

2πi

∫

Γ1

f(w)dw

w − z
−

1

2πi

∫

Γ2

f(w) dw

w − z
, (31)

where Γ1 and Γ2 are the contours defined above. First we assume that the m points

of the set S are all distinct and later we will let the first m1 points to coalesce to z1,

the second m2 points to coalesce to z2 and so on. We substitute (13)-(14) into the first

integral above and

1

w − z
= −

Hm(w, z; z1, . . . , zm)
∏m

k=1(z − zk)

1

1 − u
, u ≡

∏m
k=1(w − zk)

∏m
k=1(z − zk)

,

where Hm(w, z; z1, . . . , zm) is defined in (5), into the second one. Now we introduce the

expansion (15) of the factor (1 − u)−1 in both integrals in (31). Using (6) and after

straightforward calculations we obtain

f(z) =
N−1
∑

n=0

qn,m(z)
m
∏

k=1

(z − zk)n +
N−1
∑

n=0

tn,m(z)
m
∏

k=1

(z − zk)−n−1 + rN (z),

where qn,m(z) is given by formulas (8) and (9) replacing the contour C by Γ1. Also,

tn,m(z) =
m

∑

j=1

bn,j

∏m
k=1,k 6=j(z − zk)

∏m
k=1,k 6=j(zj − zk)

, bn,j ≡
1

2πi

∫

Γ2

m
∏

k=1

(w − zk)n+1 f(w) dw

w − zj
,

and

rN (z) =
1

2πi

∫

Γ1

f(w) dw

(w − z)
∏m

k=1(w − zk)N

m
∏

k=1

(z − zk)N−

1

2πi

∫

Γ2

m
∏

k=1

(w − zk)N f(w) dw

w − z

1
∏m

k=1(z − zk)N
.

Now we write

tn,m(z) =
1

2πi

∫

Γ2

m
∏

k=1

(w − zk)n+1f(w) dw

m
∑

j=1

∏m
k=1,k 6=j(z − zk)

(w − zj)
∏m

k=1,k 6=j(zj − zk)
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and repeat the steps following (21) in the proof of Theorem 2 for qn,m(z) and tn,m(z).

For any z ∈ Ap we can take simple closed loops Γ1 and Γ2 in Ω \ Ω0 such that
∏p

k=1 |z − zk|
mk <

∏p
k=1 |w − zk|

mk ∀ w ∈ Γ1 and
∏p

k=1 |z − zk|
mk >

∏p
k=1 |w − zk|

mk

∀ w ∈ Γ2 (see Figure 4 (b)). On these contours |f(w)| is bounded by some constant C:

|f(w)| ≤ C. Introducing these bounds in (28) we see that limN→∞ rN (z) = 0 and the

proof follows. tu

z

1
0

z1

z2
2

z3

1 z 3

z 1

A3

z2

z1
z3

0

2

(a) (b)

Figure 4. The case p = 3. (a) Contours Γ1 and Γ2 in the integrals (25), (27) and (28). (b)

For z ∈ Ap, we can take a contour Γ2 in Ω located between Ω0 and Ap and a contour Γ1 in Ω

such that Ap is inside this contour. Therefore,
∏p

k=1 |z − zk|
mk <

∏p
k=1 |w − zk|

mk ∀ w ∈ Γ1

and
∏p

k=1 |w − zk|
mk <

∏p
k=1 |z − zk|

mk ∀ w ∈ Γ2.

z1

z2 z3 z2 z3

z1 z1

z 3z 2

(ra
1 , ra

2) (ra
1 , rb

2) (ra
1 , rc

2)

z1 z1 z
1

z2 z3
z2 z3 z

2
z

3

(rb
1, r

b
2) (rb

1, r
c
2) (rc

1, r
c
2)

Figure 5. Shape of the ”lemniscate annulus” Ap for p = 3. It depends on the relative size of

the parameters r1 and r2 defined in (30). The different forms are labeled by (r1, r2) with r1 > r2.

In these pictures |z2 − z3| < |z1 − z3|, |z1 − z2| and ra
2 > rb

2 > rc
2.

If the only singularities of f(z) inside Ω0 are just poles at z1, z2,...,zp, then alternative

formulas of (25) and (27) for computing the coefficients of the above multi-point Laurent

expansion is given in the following proposition.

Proposition 3. Suppose that gk(z) ≡ (z − zk)ρkf(z), k = 1, 2, . . . , p are analytic

functions in Ω for certain ρ1, ρ2,...,ρk ∈ N| . Then, for n = 0, 1, 2, . . ., coefficients an,j,l
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and bn,j,l in expansion (23) are also given by the formulas:

an,j,l =

p
∑

k=1,k 6=j

Dnmk+ρk−1
w

[

gk(w)

(w − zj)l+1
∏p

s=1,s6=k(w − zs)nms

]

∣

∣

∣

∣

∣

∣

w=zk

+

Dnmj+ρj+l
w

[

gj(w)
∏p

s=1,s6=j(w − zs)nms

]∣

∣

∣

∣

∣

w=zj

(32)

and

bn,j,l =

p
∑

k=1,k 6=j

Dρk−(n+1)mk−1
w





gk(w)

(w − zj)l+1

p
∏

s=1,s6=k

(w − zs)
(n+1)ms





∣

∣

∣

∣

∣

∣

w=zk

+

Dρj−(n+1)mj+l
w



gj(w)

p
∏

s=1,s6=j

(w − zs)
(n+1)ms





∣

∣

∣

∣

∣

∣

w=zj

.

(33)

Proof. We deform both contours Γ1 and Γ2 of equations (25) and (27), respectively,

to any contour of the form C1 ∪ C2 ∪ · · · ∪ Cp contained in Ω, where Ck, k = 1, 2, . . . , p is

a simple closed loop which encircles the point zk in the counterclockwise direction and

does not contain the point zj j = 1, 2, . . . , p, j 6= k inside (see Figure 3 (b)). Then,

an,j,l =
1

2πi

p
∑

k=1,k 6=j

∫

Ck

gk(w)

(w − zj)l+1
∏p

s=1,s6=k(w − zs)nms

dw

(w − zk)nmk+ρk
+

1

2πi

∫

Cj

gj(w)
∏p

s=1,s 6=j(w − zs)nms

dw

(w − zj)nmj+ρj+l+1

and

bn,j,l =
1

2πi

p
∑

k=1,k 6=j

∫

Ck

∏p
s=1,s6=k(w − zs)

(n+1)ms

(w − zj)l+1

gk(w)dw

(w − zk)ρk−(n+1)mk
+

1

2πi

∫

Cj

p
∏

s=1,s 6=j

(w − zs)
(n+1)ms

gj(w)dw

(w − zj)ρj−(n+1)mj+l+1
.

From here, equations (32) and (33) follow. tu

Remark 2. Let z be a real or complex variable. Suppose that gk(z) ≡ (z − zk)ρkf(z)

is ρk − 1−times differentiable at every zk in S for some ρk ∈ N| , k = 1, 2, . . . , p. Define

g(z) ≡ f(z) −
M
∑

n=0

tn,m(z)

p
∏

k=1

(z − zk)−(n+1)mk ,
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where M ≡ bMax{(ρ1−1)/m1, (ρ2−1)/m2, . . . , (ρp−1)/mp}c and tn,m(z) is the polyno-

mial defined in (26) and (33). Then, the thesis of Proposition 2 holds for f(z) replaced

by g(z). Moreover, if
∏p

k=1(z − zk)ρkf(z) is an analytic function in Ω, then the thesis

of Theorem 2 applies to g(z).

4. Multi-point Taylor-Laurent expansions

For multi-point expansions we have the possibility (that we do not have in the standard

theory) of expanding in Taylor series in some points and in Laurent series in other

points.

Theorem 4. Let Ω0 and Ω be closed and open sets, respectively, of the complex plane,

and Ω0 ⊂ Ω ⊂ C/. Let f(z) be an analytic function on Ω \ Ω0, z1, z2, . . . , zq ∈ Ω \ Ω0

and zq+1, zq+2, . . . , zp ∈ Ω0 (q points are in Ω \ Ω0 and p − q points are in Ω0). Write

s ≡ m1 + m2 + · · · + mq. Then, for z ∈ Ω \ Ω0, f(z) has the Taylor-Laurent expansion

f(z) =
N−1
∑

n=0

qn,m(z)

p
∏

k=1

(z − zk)nmk +
N−1
∑

n=0

t(1)n,m(z)

∏q
k=1(z − zk)nmk

∏p
k=q+1(z − zk)nmk

+

N−1
∑

n=0

t(2)n,m(z)

∏q
k=1(z − zk)(n+1)mk

∏p
k=q+1(z − zk)(n+1)mk

+ rN (z),

(34)

where qn,m(z) is the polynomial of degree m − 1

qn,m(z) ≡

p
∑

j=1

∏p
k=1,k 6=j(z − zk)mk

∏p
k=1,k 6=j(zj − zk)mk

mj−1
∑

l=0

an,j,l(z − zj)
l (35)

and the coefficients an,j,l of this polynomial are given by the Cauchy integral

an,j,l ≡
1

2πi

∫

Γ1

f(w) dw

(w − zj)l+1
∏p

k=1(w − zk)nmk
. (36)

Also, t
(1)
n,m(z) and t

(2)
n,m(z) are the following polynomials of degrees s − 1 and m − s − 1

respectivelly,

t(1)n,m(z) ≡ −

q
∑

j=1

∏q
k=1,k 6=j(z − zk)mk

∏q
k=1,k 6=j(zj − zk)mk

mj−1
∑

l=0

bn,j,l(z − zj)
l, (37)

where the coefficients bn,j,l of this polynomial are given by the Cauchy integral

bn,j,l ≡
1

2πi

∫

Γ2

∏p
k=q+1(w − zk)nmk

∏q
k=1(w − zk)nmk

f(w) dw

(w − zj)l+1
. (38)

t(2)n,m(z) ≡

p
∑

j=q+1

∏p
k=q+1,k 6=j(z − zk)mk

∏p
k=q+1,k 6=j(zj − zk)mk

mj−1
∑

l=0

cn,j,l(z − zj)
l, (39)
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where the coefficients cn,j,l of this polynomial are given by the Cauchy integral

cn,j,l ≡
1

2πi

∫

Γ2

∏p
k=q+1(w − zk)(n+1)mk

∏q
k=1(w − zk)(n+1)mk

f(w) dw

(w − zj)l+1
. (40)

The remainder term rN (z) is given by the Cauchy integrals

rN (z) ≡
1

2πi

∫

Γ1

f(w) dw

(w − z)
∏p

k=1(w − zk)Nmk

p
∏

k=1

(z − zk)Nmk−

1

2πi

∫

Γ2

∏p
k=q+1(w − zk)Nmk

∏q
k=1(w − zk)Nmk

f(w)dw

w − z

∏q
k=1(z − zk)Nmk

∏p
k=q+1(z − zk)Nmk

.

(41)

In these integrals, the contours of integration Γ1 and Γ2 are simple closed loops contained

in Ω \ Ω0 which encircle Ω0 in the counterclockwise direction. Moreover, the points z

and z1, z2,...,zq are not inside Γ2, whereas Γ1 encircles Γ2 and the points z and z1,

z2,...,zq (see Figure 6 (a)).

The expansion (34) is convergent in the region (Figure 7)

Dq,p ≡ {z ∈ Ω\Ω0,

p
∏

k=1

|(z−zk)|mk < r1 and

q
∏

k=1

|(z−zk)|mk < r2

p
∏

k=q+1

|(z−zk)|mk}

(42)

where r1 ≡ Infw∈C/ \Ω {
∏p

k=1 |(w − zk)|mk} and

r2 ≡ Infw∈Ω0

{

∏q
k=1 |(w − zk)|mk

∏p
k=q+1 |(w − zk)−1|mk

}

.

Proof. By Cauchy’s theorem,

f(z) =
1

2πi

∫

Γ1

f(w) dw

w − z
−

1

2πi

∫

Γ2

f(w) dw

w − z
, (43)

where Γ1 and Γ2 are the contours defined above.

First we assume that the m points of the set S are all distinct. Later we will let the

first m1 points coalesce to z1, the second m2 points to z2, and so on. We substitute

(13)-(14) into the first integral above and

1

w − z
=

Fm(w, z; z1, . . . , zm)
∏s

k=1(w − zk)
∏m

k=s+1(z − zk)

1

1 − u
, u ≡

∏s
k=1(z − zk)

∏m
k=s+1(w − zk)

∏s
k=1(w − zk)

∏m
k=s+1(z − zk)

where

Fm(w, z; z1, . . . , zm) ≡

∏s
k=1(w − zk)

∏m
k=s+1(z − zk) −

∏s
k=1(z − zk)

∏m
k=s+1(w − zk)

w − z
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into the second one. Next we introduce the expansion (15) of the factor (1 − u)−1 in

both integrals in (43). We observe that Fm(w, z; z1, . . . , zm) may be written as

Fm(w, z; z1, . . . , zm) =Hs(w, z; z1, . . . , zp)
m
∏

k=s+1

(z − zk)−

Hm−s(w, z; zp+1, . . . , zm)
s

∏

k=1

(z − zk),

where Hm(w, z; z1, . . . , zm) is defined in (5). Using this decomposition, equation (6),

and after straightforward calculations we obtain

f(z) =
N−1
∑

n=0

qn,m(z)
m
∏

k=1

(z − zk)n +
N−1
∑

n=0

t(1)n,m(z)

∏s
k=1(z − zk)n

∏m
k=s+1(z − zk)n

+

N−1
∑

n=0

t(2)n,m(z)

∏s
k=1(z − zk)n+1

∏m
k=s+1(z − zk)n+1

+ rN (z),

where qn,m(z) is given by formulas (8) and (9) replacing the contour C by Γ1. Also,

t(1)n,m(z) = −

s
∑

j=1

bn,j

∏s
k=1,k 6=j(z − zk)

∏s
k=1,k 6=j(zj − zk)

, bn,j ≡
1

2πi

∫

Γ2

∏m
k=s+1(w − zk)n

∏s
k=1(w − zk)n

f(w) dw

w − zj
,

t(2)n,m(z) =

m
∑

j=s+1

cn,j

∏m
k=s+1,k 6=j(z − zk)

∏m
k=s+1,k 6=j(zj − zk)

, cn,j ≡
1

2πi

∫

Γ2

∏m
k=s+1(w − zk)n+1

∏s
k=1(w − zk)n+1

f(w) dw

w − zj

and

rN (z) =
1

2πi

∫

Γ1

f(w) dw

(w − z)
∏m

k=1(w − zk)N

m
∏

k=1

(z − zk)N−

1

2πi

∫

Γ2

∏m
k=s+1(w − zk)N

∏s
k=1(w − zk)N

f(w) dw

w − z

∏s
k=1(z − zk)N

∏m
k=s+1(z − zk)N

.

Now we write

t(1)n,m(z) = −
1

2πi

∫

Γ2

∏m
k=s+1(w − zk)n

∏s
k=1(w − zk)n

f(w) dw

s
∑

j=1

∏s
k=1,k 6=j(z − zk)

(w − zj)
∏s

k=1,k 6=j(zj − zk)
,

t(2)n,m(z) =
1

2πi

∫

Γ2

∏m
k=s+1(w − zk)n+1

∏s
k=1(w − zk)n+1

f(w) dw
m

∑

j=s+1

∏m
k=s+1,k 6=j(z − zk)

(w − zj)
∏m

k=s+1,k 6=j(zj − zk)
,

and repeat the steps following (21) in Theorem 2 for qn,m(z), t
(1)
n,m(z) and t

(2)
n,m(z).

For any z verifying (42), we can take simple closed loops Γ1 and Γ2 in Ω\Ω0 such that
∏p

k=1 |z−zk|
mk <

∏p
k=1 |w−zk|

mk ∀ w ∈ Γ1 and
∏q

k=1 |w−zk|
mk

∏p
k=q+1 |z−zk|

mk >
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∏q
k=1 |z − zk|

mk
∏p

k=q+1 |w − zk|
mk ∀ w ∈ Γ2 (see Figure 6 (b)). On these contours

|f(w)| is bounded by some constant C: |f(w)| ≤ C. Introducing these bounds in (41)

we see that limN→∞ rN (z) = 0 and the proof follows. tu

z
1

z2

2

z3
0

z1

z
1

D2,3

z3
0

2z1

z2

(a) (b)

Figure 6. The case q = 2, p = 3. (a) Contours Γ1 and Γ2 in the integrals (36), (38), (40) and

(41). (b) For z ∈ Dq,p, we can take a contour Γ2 located between Ω0 and Dq,p and a contour Γ1

in Ω with Dq,p inside this contour. Therefore,
∏p

k=1 |z − zk|
mk <

∏p
k=1 |w − zk|

mk ∀ w ∈ Γ1

and
∏q

k=1 |z− zk|
mk

∏p
k=q+1 |w− zk|

mk <
∏q

k=1 |w− zk|
mk

∏p
k=q+1 |z− zk|

mk ∀ w ∈ Γ2.
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Figure 7. The region Dq,p defined in Theorem 4 is given by Dq,p = Op

⋂

Bq,p, where Op is

the ”lemniscate domain” of foci z1, . . ., zp and parameter r1. Also, Bq,p ≡ {z ∈ C/,
∏q

k=1 |(z −

zk)|mk < r2

∏p
k=q+1 |(z− zk)|mk}. This pictures show the topologically different forms of Dq,p

depending on the relative value of r1 and r2 when q = 2 and p = 3. The pictures are labeled with

(r1, r2). In these pictures z1 |z1 − z2| < |z1 − z3|, |z2 − z3| and ra
2 > rb

2 > rc
2 > rd

2 .
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If the only singularities of f(z) inside Ω0 are just poles at zq+1, zq+2,...,zp, then

alternative formulas of (36), (38) and (40) for computing the coefficients of the above

two-point Taylor-Laurent expansion is given in the following proposition.

Proposition 4. Suppose that gk(z) ≡ (z − zk)ρkf(z) is an analytic function in Ω for

certain ρk ∈ N| and k = q + 1, q + 2, . . . , p. Define gk(w) = f(w) for k = 1, 2, 3, . . . q.

Then the coefficients an,j,l, bn,j,l and cn,j,l in the expansion (34) are also given by the

formulas:

an,j,l =

q
∑

k=1,k 6=j

Dnmk−1
w

[

f(w)

(w − zj)l+1
∏p

s=1,s6=k(w − zs)nms

]

∣

∣

∣

∣

∣

∣

w=zk

+

p
∑

k=q+1,k 6=j

Dnmk+ρk−1
w

[

gk(w)

(w − zj)l+1
∏p

s=1,s6=k(w − zs)nms

]

∣

∣

∣

∣

∣

∣

w=zk

+

Dnmj+ρj+l
w

[

gj(w)
∏p

s=1,s 6=j(w − zs)nms

]∣

∣

∣

∣

∣

w=zj

,

(44)

bn,j,l =

p
∑

k=q+1

Dρk−nmk−1
w

[

gk(w)
∏p

s=q+1,s6=k(w − zs)
nms

(w − zj)l+1
∏q

s=1(w − zs)nms

]

∣

∣

∣

∣

∣

∣

w=zk

. (45)

cn,j,l =

p
∑

k=q+1,k 6=j

Dρk−(n+1)mk−1
w

[

gk(w)
∏p

s=q+1,s6=k(w − zs)
(n+1)ms

(w − zj)l+1
∏q

s=1(w − zs)(n+1)ms

]

∣

∣

∣

∣

∣

∣

w=zk

+

Dρj−(n+1)mj+l
w

[

gj(w)
∏p

s=q+1,s6=j(w − zs)
(n+1)ms

∏q
s=1(w − zs)(n+1)ms

]∣

∣

∣

∣

∣

w=zj

.

(46)

Proof. We deform both, the contour Γ1 in equation (36) and the contour Γ2 in equations

(38) and (40) to any contour of the form C1 ∪ C2 ∪ · · · ∪ Cp contained in Ω, where Ck,

k = 1, 2, ..., p is a simple closed loop which encircles the point zk in the counterclockwise

direction with zj not inside Ck, j = 1, 2, . . . , p, j 6= k (see Figure 3 (c)). Then,

an,j,l =
1

2πi

p
∑

k=1,k 6=j

∫

Ck

gk(w)

(w − zj)l+1
∏p

s=1,s6=k(w − zs)nms

dw

(w − zk)nmk+ρk
+

∫

Cj

gj(w)
∏p

s=1,s 6=j(w − zs)nms

dw

(w − zj)nmj+ρj+l+1
,

bn,j,l =
1

2πi

p
∑

k=q+1

∫

Ck

∏p
s=q+1,s6=k(w − zs)

nms

(w − zj)l+1
∏q

s=1(w − zs)nms

gk(w)dw

(w − zk)ρk−nmk
,
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cn,j,l =

p
∑

k=q+1,k 6=j

1

2πi

∫

Ck

∏p
s=q+1,s6=k(w − zs)

(n+1)ms

(w − zj)l+1
∏q

s=1(w − zs)(n+1)ms

gk(w)dw

(w − zk)ρk−(n+1)mk
+

1

2πi

∫

Cj

∏p
s=q+1,s 6=j(w − zs)

(n+1)ms

∏q
s=1(w − zs)(n+1)ms

gj(w)dw

(w − zj)ρj−(n+1)mj+l+1
.

From here, equations (44), (45) and (46) follow. tu

Remark 3. Let z be a real or complex variable and suppose that (z − zk)ρkf(z) is

ρk − 1−times differentiable at zk for certain ρk ∈ N| . Define

g(z) ≡ f(z) −

M
∑

n=0

t(1)n,m(z)

∏q
k=1(z − zk)nmk

∏p
k=q+1(z − zk)nmk

−

M
∑

n=0

t(2)n,m(z)

∏q
k=1(z − zk)(n+1)mk

∏p
k=q+1(z − zk)(n+1)mk

,

where M ≡ bMax{(ρq+1 − 1)/mq+1, (ρq+2 − 1)/mq+2, . . . , (ρp − 1)/mp}c and t
(1)
n,m(z)

and t
(2)
n,m(z) are the polynomials defined in (37), (39), (45) and (46). Then, the thesis

of Proposition 2 holds for f(z) replaced by g(z). Moreover, if
∏p

k=q+1(z − zk)ρkf(z) is

an analytic function in Ω, then the thesis of Theorem 2 applies to g(z).

5. Discussion and concluding remarks

In an earlier paper [6] we have discussed the theory of two-point Taylor expansions,

two-point Laurent expansions and two-point Taylor-Laurent expansions. In the present

paper we have generalized these two-point cases to multi-point cases. We have given

details on the regions of convergence and on representations of the coefficients and the

remainders of the expansions in terms of Cauchy-type integrals.

Multi-point Taylor expansions are related with topics from interpolation theory, in

particular with the Newton interpolation theory with applications in numerical analy-

sis. For example, applications can be found in initial and boundary value problems in

connection with ordinary differential equations and in numerical quadrature of integrals.

From the point of view of interpolation theory detailed information on multi-point

expansions can be found in [8], Chapters 3 and 8. The theory of several-point Taylor

expansions is discussed in Chapter 3 of [8], although in a setting that is different from

our approach. Our approach gives explicit Cauchy-type integrals of coefficients and

remainders which cannot be found in Walsh’s approach. In particular, we cannot find

explicit formulas for the polynomials qn,m(z) of formula (15) as we have in (16)-(17).

Knowledge of these explicit formulas is necessary to construct asymptotic expansions of

integrals with several saddle points.

In addition to this, our Laurent and Taylor-Laurent expansions are new. They have

a formal similarity with the rational approximations of Chapter 8 of [8]: they involve

negative powers of z. But they are completely different. The rational approximations, in

particular the Padé-type approximations Pn(z)/Qm(z) are of interpolatory type. These

are generalizations of the Taylor polynomial at several points: a quotient of polynomials



20

instead of a polynomial. However, our expansions (21) or (32) have a different form

and a different approximation property: they approach not only at regular points like

Padé-type approximations but also at singular points of f(z). And of course, the regions

and convergence properties in [8] are different from ours.

Apart from applying the present results in problems from interpolation theory, in

particular in problems from numerical analysis, we expect to find applications in asymp-

totic analysis of integrals, which application area is our main motivation; see [5]. In

that paper certain orthogonal polynomials have been considered and we have given

new convergent expansions that also have an asymptotic property for large values of

a parameter (the degree n of the polynomials). Orthogonal polynomials and special

functions can be studied when the variable and several parameters are large. In that

case more than one or two so-called critical points occur that may give the main contri-

butions to the integral, and expansions of analytic functions at these points gives again

the possibility of constructing new convergent expansions with an asymptotic property.

This method avoids the complicated conformal mapping of the phase function of the

integral into a standard form (say a cubic or higher polynomial). In addition, when the

critical points are multiple poles, Laurent-type expansions may be considered. A few

application areas are mentioned in the Introduction, see the integral in (3), which we

expect to approximate in terms of Airy functions and the Pearcey integral (4) and its

derivative with respect to x and y.
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[6] José L. Lopez and Nico M. Temme, Two-point Taylor expansions of analytic

functions. Stud. Appl. Math, 109 (2002) 297-311.

[7] Raimundas Vidunas and Nico M. Temme, Symbolic evaluation of coefficients

in Airy-type asymptotic expansions. J. Math. Anal. Appl. 269 (2002) 317-331.

[8] J. L. Walsh, Interpolation and Approximation by rational functions in the complex

domain, American Mathematical Society, Providence, 1969.

[9] R. Wong, Asymptotic Approximations of Integrals, Academic Press, New York,

1989.


