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ABSTRACT

Asymptotic approximations are developed for zeros of the solutions Gi(z) and Hi(z) of the inhomogeneous

Airy differential equation w′′ − zw = ± 1
π

. The solutions are also called Scorer functions. Tables are given

with numerical values of the zeros.

2000 Mathematics Subject Classification: 33C10, 41A60, 30E10, 30C15.

Keywords and Phrases: Scorer functions, inhomogeneous Airy functions, asymptotic expansion of zeros.

Note: Work carried out under project MAS1.2 Analysis, Asymptotics and Computing. This report has been

accepted for publication in Journal of Approximation Theory.

1. Introduction

Scorer functions are particular solutions of the non-homogeneous Airy differential equation. Detailed
information on these functions can be found in [1] and in references given in [2]. We summarize the
properties that are needed in this paper.

We have for z ∈ IR

w′′ − z w = −1/π, with solution Gi(z) =
1
π

∫ ∞

0

sin
(

zt +
1
3
t3
)

dt, (1.1)

and for z ∈ C

w′′ − z w = 1/π, with solution Hi(z) =
1
π

∫ ∞

0

ezt− 1
3 t3 dt. (1.2)

The solutions of the homogeneous Airy equation w′′ − zw = 0 are denoted by Ai(z) and Bi(z). They
have the integral representations

Ai(z) = 1
π

∫∞
0

cos
(
zt + 1

3 t3
)

dt,

Bi(z) = 1
π

∫∞
0

sin
(
zt + 1

3 t3
)

dt + 1
π

∫∞
0

ezt− 1
3 t3 dt,

(1.3)

where we assume that z is real.



2

Initial values are

Gi(0) = 1
2Hi(0) = 1

3Bi(0) = 1√
3
Ai(0) =

1
37/6Γ( 2

3
)
,

Gi′(0) = 1
2Hi′(0) = 1

3Bi′(0) = − 1√
3
Ai′(0) =

1
35/6Γ( 1

3
).

(1.4)

From (1.1), (1.2) and (1.3) it follows that

Gi(z) + Hi(z) = Bi(z). (1.5)

Other relations that we need are (see [2] and [3])

Hi(z) = e±2πi/3Hi
(
ze±2πi/3

)
+ 2e∓πi/6Ai

(
ze∓2πi/3

)
. (1.6)

and

Gi(z) = −e±2πi/3Hi
(
ze±2πi/3

)
± iAi(z). (1.7)

Proofs follow easily by verifying that the right-hand sides satisfy the differential equations, and from
the initial values.

We use the asymptotic expansions

Gi(z) ∼ 1
πz

[
1 +

1
z3

∞∑
s=0

(3s + 2)!
s!(3z3)s

]
, z → ∞, |ph z| ≤ 1

3
π − δ, (1.8)

Hi(z) ∼ − 1
πz

[
1 +

1
z3

∞∑
s=0

(3s + 2)!
s!(3z3)s

]
, z → ∞, |ph(−z)| ≤ 2

3
π − δ, (1.9)

δ being an arbitrary positive constant. These expansions follow from (1.1) and (1.2) and by using
standard methods from asymptotics (Watson’s lemma; see [4], page 112 and page 431).

2. Qualitative properties of the real zeros of Gi(z) and Gi′(z)
From (1.2) we see that Hi(z) > 0 and Hi′(z) > 0 for real finite z. However, Gi(z) and Gi′(z) have
real zeros. First we show that Gi(z) does not have positive zeros. Later, we study properties of the
negative real zeros and we discuss the properties of the zeros of the derivative.

For studying qualitative properties of the zeros, the relation 10.4.51 in [1].

W [Gi, Bi](x) ≡ Gi(z)Bi′(z) − Gi′(z)Bi(z) =
1
π

∫ z

0

Bi(t) dt (2.1)

will be useful, together with well-known properties on the interlacing of zeros of functions:

Lemma 1 Let f(x) and g(x) be two continuously differentiable functions in an interval I. Let
W [f, g](x) = f(x)g′(x) − f ′(x)g(x) be such that W [f, g](x) �= 0 ∀x ∈ I.

Then, the zeros of f(x) and g(x) in I are simple. Furthermore, between two consecutive zeros of
f(x) there is exactly one zero of g(x) (and vice-versa).

As a consequence, if g(x) has no zeros in I then f(x) has at most one (simple) zero in I (and
vice-versa).
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From Lemma 1 we can check that

Lemma 2 Gi(x) is positive for x ≥ 0.

Proof. Bi(x) > 0 for x ≥ 0 (see [1], for example the series expansion in 10.4.3) and then (Eq. (2.1))
W [Gi, Bi](x) > 0 for x ≥ 0. From Lemma 1, Gi(x) can have at most one (simple) positive real zero,
but Gi(0) > 0 and Gi(x) > 0 for large positive x (Eq. (1.9)); therefore Gi(x) > 0 for x ≥ 0.

To consider negative values of z, we first remark that Bi(z) has an infinite number of negative zeros
which we denote by {bn}.
Lemma 3 Gi(bn) < 0 ∀n.

Proof. From (1.5), and the fact that Hi(x) > 0 we have Bi(x) > Gi(x) for all real x.

Lemma 4 Gi(x) has exactly one simple zero in (b1, 0).

Proof.
Gi(b1) < 0 whereas Gi(0) > 0 (see (1.4)); then Gi(x) has at least one zero in (b1, 0). Furthermore

Bi(x) > 0 and then W [Gi, Bi](x) < 0 in (b1, 0). Then, Lemma 1 implies that there is only one zero in
this interval and that it is simple.

Between b1 = −1.17371 and b2 = −3.27109, the function Bi(x) is negative, and so Gi(x) is negative
in that interval (Bi(x) > Gi(x)). More generally, we have that:

Lemma 5 Gi(x) has no zeros in the intervals [b2n+2, b2n+1], n = 0, 1, ...

We are only left with the possibility of having zeros in intervals (b2n+1, b2n), n = 1, 2, .., where
Bi(x) > 0. Numerical experiments show that these zeros are simple.

The proof that all real or complex zeros of Gi(z) and Hi(z) are simple does not follow from the
inhomogeneous differential equations (1.1) and (1.2). Recall that for functions defined by homogeneous
linear differential equations of second order, as the Airy functions, such a proof is trivial. The essential
difference between these two cases is that the existence and uniqueness theorem for solutions of a linear
second order homogeneous ODE guarantees that the only solution having a double zero at a point
x = x0 is the trivial solution; contrary, for (1.1) and (1.2), there is always one solution with a double
zero at x = x0 and it is not a trivial solution.

We can see this explicitly:

Lemma 6 The function
y(z) = α(z0)Ai(z) + β(z0)Bi(z) + Gi(z) ,

with α(z0) = − ∫ z0

0
Bi(t)dt, and β(z0) =

∫ z0

0
Ai(t)dt − 1

3 is the solution of ω′′ − zω = −1/π with a
double zero at z0

Proof. Solve the system y(z0) = 0, y′(z0) = 0 for α and β and use the Wronskian relations 10.4.10,
10.4.47 and 10.4.51 of [1].

In fact,
∫ x

0
Ai(t)dt is numerically seen to be negative for negative x, which indicates that the negative

real zeros of Gi(x) are simple because β(z0) < 0 ∀z0 < 0.
If there were any real double zero (which is not the case), it necessarily would be an extremum:

Lemma 7 The double real zeros of a real solution of ω′′ − zω = ±1/π are necessarily local extrema
of the function.

Proof. Let x0 be a (double) zero of a solution ω(x). Then, using the differential equation, ω′′(x0) =
±1/π.
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Lemma 8 The number of simple zeros of Gi(x) in each interval (b2n+1, b2n), n = 1, 2, ..., is, at most,
two.

Proof. Given that Gi(x) is negative at the zeros of Bi(x) and that the double zeros, if any, are
extrema of the function, we see that the number of simple zeros (if any) must be even. Let us show
there can be no more than two simple zeros.

The fact that Bi(x) > 0 in (b2n+2, b2n+1) implies that
d

dx
W [Gi, Bi](x) > 0, which means that

W [Gi, Bi](x) has at most one zero in (b2n+2, b2n+1). Then, if Gi(x) had 2n zeros, n > 1, at least
two of these zeros would lie in an interval where W [Gi, Bi](x) does not change sign; this would imply
(Lemma 1) that there would be a zero of Bi(x) between these two zeros of Gi(x), but Bi(x) > 0 in
(b2n+2, b2n+1).

In fact, numerical calculations show that in the intervals (b2n+1, b2n), n = 1, 2, . . . , exactly two zeros
of Gi(x) occur, which means that there are no double zeros of Gi(x) and that W [Gi, Bi](x) =

∫ x

0
Bi(t)dt

has exactly one zero in the intervals (b2n+1, b2n). This, together with the monotony of
∫ x

0
Bi(t)dt in

the intervals (bn+1, bn), indicates that:

Conjecture 1 The real zeros of Bi(x) and
∫ x

0
Bi(t)dt are interlaced.

and we also propose that

Conjecture 2 There are exactly two zeros of Gi(x) in the intervals (b2n+1, b2n).

We can prove that this holds for large negative zeros:

Lemma 9 For large n each interval (b2n+1, b2n) has two zeros of Gi(x).

Proof. This follows from known asymptotic estimates. Bi′(x) has negative zeros, denoted by b′n.
Then (see [1], page 450),

Bi(b′n) = (−1)nO
(
n−1/6

)
, n → ∞, (2.2)

From (1.9) we see that Hi(b′n) = O(1/b′n) as n → ∞. Hence, Gi(b′2n) = Bi(b′2n)−Hi(b′2n) is positive
for large values of n, and Gi(x) has at least two zeros in the interval (b2n+1, b2n).

The fact that the real zeros of Gi(x) are simple is also supported by the fact that the zeros of Gi(x)
and Gi′ seem to be interlaced, which can be easily proved for large x using the forthcoming asymptotic
expansions.

Conjecture 3 The negative zeros of Gi(x) and Gi′(x) are interlaced.

Assuming this conjecture to be true, together with the fact that, numerically, we observe that
g1 > g′1 where g1 and g′1 are, respectively, the first negative zeros of Gi(x) and Gi′(x), we see that:

Lemma 10 The negative zeros of Gi′(x) are simple

Proof. Differentiating the differential equation it is easy to see that the double zeros of Gi′(x) can
not be extrema of Gi(x): if x0 is such that Gi′(x0) = Gi′′(x0) = 0 then Gi′′(x0) = x0Gi′(x0)+Gi(x0) =
Gi(x0) �= 0 (because we assume that the zeros of Gi(x) and Gi′(x) are interlaced). However, by this
same assumption, between two zeros of Gi(x) there must be only one zero of Gi′(x) which, clearly,
must be a local extrema and therefore can not be a double zero of Gi′(x).

We use an additional numerical fact to prove Lemma 12; also, the following result is used:

Lemma 11 W [Hi′, Gi′](x) has, at most, one positive real zero.
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Proof. We use the differential equations and (1.5); with this:

W (x) ≡ W [Hi′, Gi′](x) =
1

π
Bi′(x) −

x

π

∫ x

0

Bi(t)dt

Then, given that W (0) > 0 and W ′(x) = − ∫ x

0
Bi(t)dt < 0 for x > 0, W (x) has at most one positive

zero.

Indeed, we observe that such zero exists x0 
 1.0653592469.

Lemma 12 Gi′(x) has exactly one positive real zero.

Proof. Indeed, Gi′(0) > 0 (1.4) while (1.9) shows that Gi′(x) < 0 for large positive x, which implies
that there must be at least one positive zero of Gi′(x). This, together with the fact that the double
zeros of Gi′ are not extrema, implies that there must be an odd number of positive zeros. Let us
assume for the moment that all the positive zeros of Gi′(x) are simple; in this case, we show that
there is only one positive zero.

Gi′(x) can not have three or more simple positive zeros because, W [Hi′, Gi′] has at most one positive
zero (Lemma 11) and Hi′(x) > 0. The possible zero of W [Hi′, Gi′](x) can not coincide with any zero
of Gi′(x), because we are assuming by now that the zeros of Gi′(x) are simple; thus, if Gi′(x) had at
least three zeros, at least two of them would lie in an interval where W [Hi′, Gi′](x) does not change
sign. This is in contradiction with the fact that Hi′(x) > 0 (see Lemma 1).

On the other hand, the only possible double zero of Gi′(x) should coincide with the positive zero
of W [Hi′, Gi′](x). However, it is numerically observed that

Gi′(x0) < 0 being x0 the positive zero of W [Hi′, Gi′](x).

The numerical value of this isolated zero of Gi′(x), is g′ = 0.60907541707....

3. Asymptotics of the negative zeros of Gi(z)
We write Gi(−z) = Bi(−z) − Hi(−z), and use the asymptotic expansion of Bi(−z) as given in [[1],
page 449] and of Hi(−z) that follows from (1.9). We write

Hi(−z) = 1
πz

Ha(z), Ha(z) ∼ 1 −
∞∑

s=0

hs

z3(s+1)
, hs = (−1)s (3s + 2)!

s! 3s
, (3.1)

Bi(−z) = 1√
π z1/4

[
cos(ζ + 1

4
π)P (ζ) + 1

ζ
sin(ζ + 1

4
π) Q(ζ)

]
, (3.2)

P (ζ) ∼
∞∑

s=0

(−1)sc2s

ζ2s
, Q(ζ) ∼

∞∑
s=0

(−1)sc2s+1

ζ2s
, (3.3)

ζ = 2
3
z

3
2 , c0 = 1, cs =

Γ(3s + 1
2 )

54s s! Γ(s + 1
2 )

. (3.4)

We explain the method by taking Ha(ζ) = P (ζ) = 1 and Q(ζ) = 0. This gives for the equation
Gi(−z) = Bi(−z) − Hi(−z) = 0 a first equation

cos(ζ + 1
4
π) =

1√
π z3/4

. (3.5)
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Using z3/4 =
√

3ζ/2, we obtain

cos(ζ + 1
4
π) =

√
2

3πζ
. (3.6)

For large ζ solutions occur when the cosine function is small. We put

ζ = ζn + ε, ζn = (n − 3
4
)π, n = 1, 2, 3, . . . . (3.7)

The equation for ε reads

sin ε =
c√

ζn + ε
=

c t√
1 + εt2

, t = 1/
√

ζn, c = (−1)n
√

2/(3π). (3.8)

For small values of t this equation can be solved by substituting a power series ε = ε1t + ε2t
2 + . . . ,

and the coefficients can be obtained by standard methods. For example, ε1 = c. By using the
asymptotic expansions for Ha(z), P (ζ) and Q(ζ) a few extra technicalities are introduced. With the
help of a computer algebra package the general coefficients εs are easy to calculate. Finally we find
for z = (3ζ/2)2/3, and for gn, the zeros of Gi(z), the expansion

gn ∼ −
(

3
2
ζn

) 2
3 [

1 + ε1t
3 + ε2t

4 + . . .
]2/3

, n = 1, 2, 3, . . . , (3.9)

or

gn ∼ − [(3π(4n − 3)/8]
2
3
[
1 + γ3t

3 + γ4t
4 + . . .

]
, t =

1√
(n − 3/4)π

, (3.10)

where

γ3 =
2c

3 , γ4 =
5

108 , γ5 =
c3

9 , γ6 = −4c2

9 ,

γ7 =
c(81c4 − 1060)

1620 , γ8 = −189c4 + 20
729 .

(3.11)

The expansion in (3.10) reduces to the expansion of the zeros bn of Bi(z) if we take c = 0.

3.1 The real zeros of Gi′(z)
For the real zeros of Gi′(z) we can use the same procedure. For this case we need

Hi′(−z) = 1

πz2 H̃a(z), H̃a(z) ∼ 1 −
∞∑

s=0

h̃s

z3(s+1)
, h̃s = (3s + 4)hs (3.12)

Bi′(−z) = z1/4
√

π

[
sin(ζ + 1

4
π)R(ζ) − 1

ζ
cos(ζ + 1

4
π) S(ζ)

]
, (3.13)

R(ζ) ∼
∞∑

s=0

(−1)sd2s

ζ2s
, S(ζ) ∼

∞∑
s=0

(−1)sd2s+1

ζ2s
, ds = −6s + 1

6s − 1
cs (3.14)

where ζ and cs are defined in (3.4). Using Gi′(−z) = Bi′(−z) − Hi′(−z) we obtain the equation for
determining the zeros:

sin(ζ + 1
4
π) =

1
ζ

S(ζ)
R(ζ)

cos(ζ + 1
4
π) +

1√
π z9/4

H̃a(z)
R(ζ)

. (3.15)
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Using z9/4 = (3ζ/2)3/2, we see that the main part of this equation is obtained by neglecting the term
with the function H̃a(z), but we can proceed in the same manner as before.

We put

ζ = ζ ′n + ε′, ζ ′n = (n − 1
4
)π, n = 1, 2, 3, . . . , (3.16)

and we can obtain for ε′ an expansion. Finally we obtain for g′n, the zeros of Gi′(z), the expansion

g′n ∼ −
(

3
2
ζ ′n
) 2

3 [
1 + ε3τ

5 + ε4τ
6 + . . .

]2/3
, n = 1, 2, 3, . . . , (3.17)

or

g′n ∼ − [(3π(4n − 1)/8]
2
3
[
1 + γ′

4t
4 + γ′

5t
5 + . . .

]
, t =

1√
(n − 1/4)π

, (3.18)

where

γ′
4 = − 7

108 , γ′
5 =

2c

3 , γ′
6 = γ′

7 = 0,

γ′
8 =

35
1458 , γ′

9 = −719c

324 , γ′
10 = −10c2

9 .

(3.19)

This expansion reduces to that of b′n, the zeros of Bi′(z) if we take c = 0.

4. The complex zeros of Gi(z)
Gi(z) and Gi′(z) have infinite many complex zeros {χn} just below the half line ph z = 1

3π, and at the
conjugate values. Asymptotic estimates can be obtained by using the connection formula (1.7) with
z replaced with zeπi/3. That is,

Gi
(
zeπi/3

)
= −e±2πi/3Hi(−z) + iAi

(
zeπi/3

)
. (4.1)

We write Hi(−z) as in (3.1) and for Ai(z) we obtain from the standard asymptotic expansion of this
Airy function

Ai
(
zeπi/3

)
=

1
2
√

π z1/4
e−πi/12−iηAa(η), (4.2)

where (for cs see (3.4))

η = 2
3
z

3
2 , Aa(η) ∼

∞∑
s=0

(−1)scs

(iη)s
. (4.3)

The equation for deriving the asymptotic expansion of χn for large n then reads

eiη = 1
2

√
πz3/4e−πi/4 Aa(η)

Ha(z)
. (4.4)

We write

η = ηn − 1
2
i ln(cηn) + ε, ηn = (2n − 1

4
)π, c = 3

8
π, (4.5)

and obtain for ε the equation

eiε =
√

1 − iδt + εt
Aa(η)
Ha(z)

, t =
1
ηn

, δ = 1
2

ln(cηn). (4.6)
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The next step is substituting a power series ε = ε1t + ε2t
2 + . . . , considering δ as a fixed parameter.

A few straightforward manipulations give the expansion

χn ∼ [3π(8n − 1)/8]2/3
eπi/3

(
1 +

γ1

ηn
+

γ2

η2
n

+
γ3

η3
n

+ . . .

)
(4.7)

and the first few coefficients are

γ1 = −2
3 iδ, γ2 =

1
108(5 − 36δ + 12δ2),

γ3 =
1

162 i(−96 + 37δ − 45δ2 + 8δ3),

γ4 =
1

2916(−944 + 4365δ − 1182δ2 + 702δ3 − 84δ4).

(4.8)

4.1 The complex zeros of Gi′(z)
For the complex zeros χ′

n of Gi′(z) we use (cf. (1.7))

Gi′
(
zeπi/3

)
= eπi/3Hi′(−z) + ieπi/3Ai′

(
zeπi/3

)
. (4.9)

We need the expansion of Hi′(−z) given in (3.12) and

Ai′
(
zeπi/3

)
= − z1/4

2
√

π
eπi/12−iηÃa(η), Ãa(η) ∼

∞∑
s=0

(−1)s ds

(iη)s
. (4.10)

where ds is given in (3.14). We put

η = η′
n − iδ′ + ε′, η′

n = (2n + 1
4
)π, c = 3

2
(π

4
)

1
3 , (4.11)

and the equation for ε′ reads

eiε′
= (1 − iδ′t + ε′t)3/2 Ãa(η)

H̃a(η)
, δ′ = 3

2
ln(cη′

n). (4.12)

The expansion for the zeros reads

χ′
n ∼ [3π(8n + 1)/8]2/3 eπi/3

(
1 +

γ′
1

η′
n

+
γ′
2

η′
n

2 +
γ′
3

η′
n

3 + . . .

)
, n = 1, 2, 3, ... (4.13)

and the first few coefficients are

γ′
1 = −2

3 iδ′, γ′
2 =

1
108(−7 − 108δ′ + 12δ′2),

γ′
3 =

1
324 i(−747 + 458δ′ − 270δ′2 + 16δ′3),

γ′
4 =

1
5832(−20029 + 43740δ′ − 16908δ′2 + 4212δ′3 − 168δ′4).

(4.14)
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5. The complex zeros of Hi(z)
Hi(z) and Hi′(z) have infinite many complex zeros {κn} just above the half line ph z = 1

3π, and at the
conjugate values. For Hi(z) we use (1.6) in the form

Hi
(
zeπi/3

)
= e2πi/3Hi(−z) + 2e−πi/6Ai

(
ze−πi/3

)
. (5.1)

The analysis is analogous to the case for Gi(z) and gives (4.6) with i replaced by −i, also in Aa(η),
and c by c = 3

2π. This gives for κn, the zeros of Hi(z),

κn ∼ [3π(8n − 1)/8]2/3 eπi/3

(
1 +

γ1

ηn
+

γ2

η2
n

+
γ3

η3
n

+ . . .

)
(5.2)

where ηn is given in (4.5), δ = 1
2 ln(c ηn), with c = 3

2π, and the first few γk are given in (4.8).
For Hi′(z) we find equation (4.12) with i replaced by −i, also in Ãa(η), and c = 3

2π
1
3 . For κ′

n, the
zeros of Hi′(z), we obtain

κ′
n ∼ [3π(8n + 1)/8]2/3 eπi/3

(
1 +

γ′
1

η′
n

+
γ′
2

η′
n

2 +
γ′
3

η′
n

3 + . . .

)
, n = 1, 2, 3, ... (5.3)

where η′
n is given in (4.11), δ = 3

2 ln(c η′
n), with c = 3

2π
1
3 , and the first few γ′

k are given (4.14).

6. Numerical verifications and tables

Now we will illustrate the accuracy of the asymptotic approximations for the real and complex zeros
of Gi(x), Gi′(x) (except the positive zero of Gi′(x)) and the complex zeros of Hi(x) and Hi′(x). For
the complex zeros, by complex conjugation, we only need to consider �z > 0.

We use the asymptotic approximations as starting values for a Newton method, obtaining conver-
gence in all cases. The code [3] has been used for the calculations. The accuracy of the code is better
than 10−12 and we expect that the zeros can be computed with at least 12 exact digits.

Table 1 shows the relative error of the asymptotic estimates.

n Error|gn| Error|g′
n| Error|χn| Error|χ′

n| Error|κn| Error|κ′
n|

1 4. 10−2 5. 10−3 4. 10−4 2. 10−3 8. 10−4 3. 10−3

5 7. 10−7 1. 10−4 6. 10−8 2. 10−6 1. 10−7 3. 10−6

10 5. 10−8 2. 10−5 1. 10−9 6. 10−8 2. 10−9 9. 10−8

25 3. 10−11 2. 10−6 8. 10−12 6. 10−10 1. 10−11 9. 10−10

50 1. 10−11 3. 10−7 2. 10−13 2. 10−11 3. 10−13 2. 10−11

75 2. 10−13 1. 10−7 2. 10−14 2. 10−12 3. 10−14 3. 10−12

100 4. 10−13 6. 10−8 3. 10−15 4. 10−13 5. 10−14 6. 10−13

150 5. 10−14 2. 10−8 1. 10−16 5. 10−14 6. 10−16 7. 10−14

200 1. 10−14 1. 10−8 < 10−16 1. 10−14 2. 10−16 1. 10−14

Table 1. Relative error of the modulus of the zeros from the asymptotic estimations, compared with numerical

computations. The notation is as in the text. The number of non-zero coefficients of the asymptotic expansions

considered is as follows: for |gn| we take 2 coefficients for n = 1 and 6 coefficients for the rest of values of n; for |g′n|,
|χn|, |χ′

n|, |κn| and |κ′
n| we take the first 4 non zero coefficients.

We now compare the approximate values of the first 10 zeros with the numerical values.
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n gn(asymp.) gn(numer.) g′
n(asymp.) g′

n(numer.)

1 −0.70701728791 (2) −0.73764033232 −2.26148803837 (4) −2.24995421864
2 −3.40013324843 (2) −3.39083150945 −4.08890415841 (4) −4.08395408849
3 −4.75152465295 (3) −4.75160079064 −5.50501788785 (4) −5.50743021111
4 −6.22702978591 (5) −6.22707083456 −6.78556344666 (4) −6.78414405732
5 −7.33018484228 (5) −7.33017070326 −7.93738558753 (4) −7.93831371630
6 −8.53064462827 (5) −8.53064781862 −9.02156063733 (4) −9.02090166816
7 −9.50443871324 (5) −9.50443547307 −10.0362185151 (4) −10.0367106297
8 −10.5595675877 (5) −10.5595678851 −11.0076119069 (4) −11.0072288049
9 −11.4501841971 (5) −11.4501830272 −11.9333405428 (4) −11.9336474410
10 −12.4106527814 (5) −12.4106527199 −12.8280143111 (4) −12.8277622904

Table 2. Asymptotic estimations of the first 10 negative real zeros of Gi(x) and Gi′(x) versus their numerical value

(12 digits). Between brackets, the number of the first non zero coefficients taken in the calculation of the asymptotic

expansion is given.

Additionally, G′(x) has a positive zero: g′ = 0.60907541707.

n χn(asymptotic) χn(numerical)

1 2.44433318205 + i3.28043340740 2.44134455893 + i3.28073610375
2 3.82724470205 + i5.61364024656 3.82706907612 + i5.61368067243
3 4.94973090968 + i7.55292445144 4.94969805256 + i7.55293472024
4 5.94054868777 + i9.27655846564 5.94053866799 + i9.27656211688
5 6.84659373818 + i10.8567528445 6.84658973653 + i10.8567544432
6 7.69146765566 + i12.3317696540 7.69146576022 + i12.3317704591
7 8.48916873952 + i13.7249535559 8.48916772985 + i13.7249540039
8 9.24886878556 + i15.0518649809 9.24886819962 + i15.0518652495
9 9.97699441862 + i16.3235290835 9.97699405568 + i16.3235292542
10 10.6782722198 + i17.5481160856 10.6782719832 + i17.5481161992

Table 3. Asymptotic estimations of the first 10 complex zeros of Gi(z) versus their numerical value (12 digits).

The expansion is calculated using the first 4 coefficients.

n χ′
n(asymptotic) χ′

n(numerical)

1 3.73104015614 + i3.20468169034 3.71910633591 + i3.20254922301
2 5.05878908159 + i5.49094064093 5.05721412684 + i5.49107967331
3 6.14094636445 + i7.40393823622 6.14051474537 + i7.40403247457
4 7.09863883359 + i9.11033272563 7.09847245342 + i9.11038169520
5 7.97658092867 + i10.6784124602 7.97650267337 + i10.6784393595
6 8.79711673037 + i12.1445154227 8.79707480551 + i12.1445312817
7 9.57340329298 + i13.5309191990 9.57337867420 + i13.5309291376
8 10.3140187866 + i14.8525432972 10.3140033118 + i14.8525498458
9 11.0249563206 + i16.1200042911 11.0249460691 + i16.1200087871
10 11.7106171211 + i17.3411995000 11.7106100405 + i17.3412026935

Table 4. Asymptotic estimations of the first 10 complex zeros of Gi′(z) versus their numerical value (12 digits). The

expansion is calculated using the first 4 coefficients.
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n κn(asymptotic) κn(numerical)

1 1.31810666758 + i3.93044374287 1.32022985770 + i3.92618518472
2 2.71758115521 + i6.25616826873 2.71776478546 + i6.25594658531
3 3.86688975856 + i8.18006876521 3.86692943374 + i8.18002987309
4 4.88317281362 + i9.88881442645 4.88318584624 + i9.88880304438
5 5.81193606777 + i11.4556905719 5.81194151066 + i11.4556861557
6 6.67695905797 + i12.9188986002 6.67696171311 + i12.9188965531
7 7.49263240875 + i14.3015594043 7.49263385258 + i14.3015583321
8 8.26849226103 + i15.6190187624 8.26849311165 + i15.6190181486
9 9.01126446313 + i16.8821242633 9.01126499607 + i16.8821238875
10 9.7259145503 + i18.0989041312 9.72591490090 + i18.0989038885

Table 5. Asymptotic estimations of the first 10 complex zeros of Hi(z) versus their numerical value (12 digits). The

expansion is calculated using the first 4 coefficients.

n κ′
n(asymptotic) κ′

n(numerical)

1 0.61539789841 + i5.00682180461 0.62172976845 + i4.99069463707
2 2.00101984737 + i7.26100462042 2.00240099109 + i7.25911069430
3 3.14666657916 + i9.13725837677 3.14711339788 + i9.13677671663
4 4.16377885499 + i10.8089522433 4.16396557831 + i10.8087759627
5 5.09551443130 + i12.3455631789 5.09560639947 + i12.3454833919
6 5.96454826183 + i13.7832989849 5.96459897682 + i13.7832574947
7 6.78472063073 + i15.1440500844 6.78475098876 + i15.1440262976
8 7.56527902355 + i16.4423442321 7.56529836198 + i16.4423295732
9 8.31279229101 + i17.6884581451 8.31280522481 + i17.6884485950
10 9.03213892761 + i18.8900067299 9.03214792350 + i18.8900002276

Table 6. Asymptotic estimations of the first 10 complex zeros of Hi′(z) versus their numerical value (12 digits). The

expansion is calculated using the first 4 coefficients.

In all cases, as could be expected, the asymptotic estimations are closer to the true value as larger
zeros (in modulus) are considered. Furthermore, as commented, the asymptotic estimations can be
used as starting values to compute accurately the zeros of Scorer functions. The only exception is the
positive real zero of Gi′(x), which can not be estimated via the asymptotic expansions for the zeros.
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