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It is pointed out that relativistic effects lead to an increase in whistler-mode refractive index 
and to a decrease in the range of.frequencies for which instability of these waves occurs. The 
latter effect is particularly important in a rarefied plasma. in a strong magnetic field where the 
electron plasma frequency (II) is of the order of or smaller than the electron gyrofrequency (fl). 
The condition IT ;S fl is satisfied in some regions of the Earth's magnetosphere (e.g. outside the 
plasmasphere near the magnetospheric equator) and in these regions the analysis of whistler-mode 
waves requires the weakly relativistic rather than the nonrelativistic approach even if the thermal 
velocities of ma.gnetospheric particles are well below the velocity of light. 

1. INTRODUCTION 

Since the pioneering paper by Storey (1953) there have 
been different developments in the theory of whistler-mode 
waves. In particular, attempts have been made to take into 
account both non-zero electron temperature and anisotropy 
of the electron distribution function and their effects on 
whistler-mode propagation, growth or damping [e.g. Sazhin, 
1993a). In most cases the theory of whistler-mode propaga­
tion in a hot anisotropic plasma has been based on the non­
relativistic approximation, i.e. on a self-consistent solution 
of the linearized Maxwell equations and the nonrelativistic 
Vlasov equation. This approximation was believed to be 
appli"'a.Llc: with coufic.ience to magnetospheric conditions, 
which satisfy 

w<:c, (1) 

where w is the thermal velocity of electrons, and c is the 
velocity of light. At the same time, most of those who 
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developed this theory seem to have ignored the fact that 
the nonrelativistic approach to the analysis of waves in a hot 
plasma is not self-consistent, as it neglects relativistic effects 
in the Vlasov equation, but takes them into account in the 
Maxwell equations, which are relativistic by their nature. 

An alternative approach to the theory of whistler-mode 
waves in a hot plasma has been based on the so called 
weakly relativistic approximation which uses condition (1) 
with terms of the order of w2 /c2 taken into account, al­
lowing substantial simplification of the general relativistic 
wave dispersion equation. However, even this relatively 
simple weakly relativistic whistler-mode dispersion equation 
is much more complicated than_ the nonrelativistic dispersion 
equation, and its applications have been very limited (e.g. 
Robinson, 1987]. 

In a series of papers reviewed by Sazhin (1993a) [see 
also the most recent publications: Sazhin et al., 1993; 
Sazhin, 1993b) we attempted to develop an asymptotic 
theory of whistler-mode propagation, instability or damping 
in a weakly relativistic plasma. Restricting ourselves to a 
limiting, but practically important case of whistler-mode 
propagation strictly parallel to the magnetic field we ob­
tained some approximate solutions to the weakly relativistic 
dispersion equation. These solutions are rather simple and 
we hope that they will be widely used in the plasma physics 
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community. The main restriction of these solutions is that 
we cannot always be sure of the range of their applicability, 
just a.s we cannot always be sure of the range of applicability 
of solutions to the nonrelativistic dispersion equation. 

In order to specify the range of applicability of different 
approximate solutions to the weakly relativistic dispersion 
equation, as well as those of the nonrelativistic equation, 
we need to compare them with the results of a rigorous 
numerical analysis of the weakly relativistic whistler-mode 
dispersion equation. Such a comparison for parallel whistler­
mode waves was' made by Sazhin et al {1993a). In what 
follows we briefty discuss the main ideas of this paper with 
particular emphasis to magnetospheric applications of the 
obtained results. 

2. BASIC EQUATIONS 

The dispersion equation for parallel whistler-mode waves 
in a weakly relativistic (condition (1) is valid) anisotropic 
plasma can be written as [Sazhin et al., 1992]: 

2 2X [ d:F312,2 2] N = 1 - -;- :F1/2,2 - ~(A., - l)N I (2) 

where: 

100 • ..~ 
:Fq,p := :F9,p(z, a, b) = -i 

0 
eut-r::;r (1-it)-q(l-ibt)-Pdt, 

(3) 
z = 2{1 - Y)Jr; a = N 2 Jr; r = P~11/(m~c2 ); b = Ae; 
X = m/w2 ; Y = Oo/w; A., = P~.1./P~Ui Ila, Oo and 
w are the electron plasma frequency at rest, the electron 
gyrofrequency at rest and the wave frequency (which is 
complex in general) respectively, N ::: ck/w is the wave 
refractive index, me is the electron mass at rest, c is the 
velocity of light, k is the wave number. 

When deriving (2) we assumed an electron distribution 
function of the form: 

( 2 2) 3/2. 2i+2 -1 2j P.J.. Pu 
f(p.J..,P11)=(1r JlPo.1. Po11) P.J..exp --2---2- ' 

Po.J.. Pou 
(4) 

where Po.J..(11) is the electron thermal momentum in the direc­
tion perpendicular (parallel) to the magnetic :field, P.J.. and 
PU are the electron momenta in the corresponding directions. 

In a nonrelativistic limit, c -+ oo, equation (2) can be 
simpiified to: 

N 2 = 1 +(A., - l)X + N~ [A.,+ (1 - A.,)Y] Z(e), (5) 

where 

Z({) = i.J"iexp(-e2)- 21~ exp(-e2 + t2 )dt, (6) 

e = z/2..;a. 
Solutions to equations (2) and (5) are greatly simplified 

if we restrict our analysis to the case of weakly growing or 
weakly damped waves, i.e. 

hi = ISwl < min(!Rw, Oo - !Rw ). (7) 

In view of (7) we can present the complex equation (2) as 
a system of two equations: 

N 2 = 1 - 2X [!R.r"i12 2 - d!R:Fs/2'2 (A., - l)N2] , (8) 
r · dz 

ao = Y + N 2 (1 + Y(A. - 1)) + N._(A.., - 1), 

0:1 =(A.,- l)N2 r - Y -2N2(1 + Y(Ae - l))-3N .. (A., -1), 

a2 =-(A., - l)N2 r + N2 {1 + Y(Ae -1)) + 3N_4 (A., - l}, 

i'ia = -{A., - l)N\ 

.y = J'... 
w 

To simplify t~~ notation we hereafter assume that w ::: 
!Rw. 

In a similar way we can reduce the complex nonrelati vis tic 
dispersion equation (5) to the following system of equations: 

x 
N2 =1+(A.,-l)X+ Ny'T[Ae+(l-Ae)Y]!RZ(eo), {10) 

.y = J'.. = -yf?r(A. - (Ae - l)Y]exp(-e5) (ll) 
w 2<~e:i +Keo+ !RZ(eo) [Ae + x:e5]' 

where 

_ 2 (Ae + Y{l - A.,)] 
x:- Y-1 . 

Equations (8) and (10) describe wave propagation, while 
equations (9) and (11) describe wave growth (.Y > 0) or 
damping (.:Y < 0). .. 

In the cold plasma limit (I eo 1- oo) eq~a.tion (10) reduces 
to: 

N = Noo = J1+y~ 1 , (12) 

while equation (11) gives in the same limit: .Y = 0. This 
means that in a cold plasma whistler-mode waves propagate 
without damping or growth. In the limiting case Y > 1 and 
X > 1 equation (12) reduces to that derived and a.nalized 
by Storey (1953). 

In the limit r -+ 0, but keeping terms of the order of r, we 
can write a.n approximate solution of (8) a.s (Sazhin, 1993a): 

N - Ni (1 fleY3 fle{l + 4A.,)Y2 /J.,A.,Y2 ] 
- 00 + 2{Y -1)s + 4(Y -1)2Nl0 - 2(Y - 1)2 ' 

{13) 
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Fig 1. Plots of Nr versus y-1 := w/Oo, solid, (see equation (8)), 
Nn versus y-1 := w/Oa, - · - · - (see equation (10)), Nra. 
versus y-1 :: w/Oa, - - - -, (see equation (13)), Nao versus 
y-1 := w/Oa, - (see equation {12)} for a plasma 
with the following parameters: r = 0.01, 11 = 0.5 and Ae = 2. 
Plots are shown only for those y-l := w/Oo when .Yr,n,na ;:; 0.2 
(condition (7) is satisfied). 

where /3e = 0.5vr, v = m;n~, Nao is defined by (12). In the 
limit Nla -+ oo this expression reduces to that which could 
be derived from the corresponding nonrelativistic dispersion 
equation (10). At Ae = 1 it reduces to the expression 
derived by it Imre (1962) 

The nonrelativistic expression for °)' can be considerably 
simplified if we neglect the effects of nonzero electron tem­
perature on wave propagation, it is then reduced to: 

_ ./i€oo(Y - l)[Ae - (A .. - l)Y]exp(-€~o) 
i = 2(1-Y)~ + y ' 

where 

x 

1-Y 
€oa = --r.:· 

Noa yr 

(14) 

The values of N which follow from equations (8), (10), 
{12), {13) and the values of .y which follow from equations 
{9), (11) and {13) will be compared in the next section for 
different values of the plasma parameters (v, r and Ae)· 
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3. RESULTS 

In this section we compare numerical values of N and .y, 
obtained from the approximations discussed in section 2 for 
different values of the para.meters typical for conditions in 
the Earth's magnetosphere. Firstly we consider a relatively 
hot (r = 0.01, which corresponds to T :::::: 2.5 keV) and 
rarefied (v = 0.5) plasma with anisotropy A., = 2 {realistic 
conditions outside the plasmasphere). Plots of N versus 
y-1 = w/Oo and .Y versus y-1 = w/Oo for the different 
approximations for this plasma are shown in Figs 1 a.nd 2. 
As can be seen from Fig 1, the values of Nr,., determined 
by (13), a.re closest to those of Nr, determined by (2) at 
w/Oo :5 0.78. In any case approximation Nra is better than 
the nonrela.tivistic approximation Nn, determined by (5) in 
this frequency range. The latter approximation is applicable 
for the qualitative analysis of N only. The curves N versus 
y-1 = w/00 a.re hereafter presented only for those w/fl.0 a.t 
which 11' !;S 0.2. 

The curves .Yn., deterinined by (14), and .Yn, determined 
by (11), shown in Fig 2, coincide within the accuracy of 
plotting, but the deviation between relativisrtic and non­
relativistic curves is quite noticeable. Relativistic theory 
predicts stronger instability but a.t a lower frequency. The 
frequency of marginal stability is approximately equal to 
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Fig 2. Plots of .:Yr versus y-l := w/Oo, solid, (see equation (9)), 
.Yn versus y-l =: w/Oo, - · - · -oe-, {see equation (11)), "rna 
versus y-1 :: w/00 , - -, (see equation {14)) for the 
same plasma parameters as in Fig 1. 
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0.457 0.,, which is consistent with the results of asymptotical 
analysis [ Sazhin et al., 1992). 

Curves similar to those shown in Figs 1 and 2 were pre­
sented by Sazhin et al (1992) for other values of parameters 
(11 = 1, r = 0.01, A., = 2; 11 = 5, r = 0.01, A., = 2; 
11 = 1, r = 0.004, A., = 2; 11 = 1, r = 0.004, A., = 1; 
11 = 1, r = 0.004, A., = 3). We tried to choose values 
of the parameters r, 11 and A.,, used in the computations, 
relevant to the conditions in the Earth's magnetosphere. 
However, thes~ parameters vary there over such a wide range 
that we were bound to restrict ourselves to some illustrative 
examples only. The results of our analysis of these curves 
allowed us to draw the following conclusions. 

1) Expression (13) for N is the best approximation for 
numerical values of N obtained in a weakly relativistic limit 
at relatively low frequencies (roughly y-1 = w/flo ;5 0.6), 
hut it breaks down rapidly as the wave frequency approaches 
the electron gy:rofrequency (toughtly y-1 = w/flo ~ 0.6). 
In a dense plasma, where Noo > 1, the contribution of the 
relativistic term in (13) (the term proportional to N;;;;:~ in 
square brackets) is negligible, while in a rarefied plasma, 
where Noo is close to unity, the contribution of this term 
can he of the same order of magnitude or larger than the 
contribution of other terms. 

2) The nonrelativistic expression for N following from 
equation (10) can be used for qualitative analysis ofwhistler­
mode propagation in a weakly relativistic plasma; this ex­
pression is the best approximation to the corresponding 
weakly relativistic expression when the wave frequency is 
close to the electron gyrofrequency, provided condition (7) 
is satisfied. 

3) Relativistic effects lead to a decrease in the frequency 
range of instability, and the magnitude of this effect in­
creases a.s v decreases. 

4) For moderate values of anisotropy (TJ./Tn :::::: 2) rela­
tivistic effects lead to an increase in the maximum value of 
the increment of instability (l'ma:z:); 'Ymaz increases rapidly 

with increasing electron temperature and aniso 
5) Expression (14) for the increment of w: 

i11,stability (or the decrement of damping) is a. g 
imation to the nonrelativistic expression (11) , 
i.e. when we have instability; expression (14) pre 
damping of whistler-mode waves at frequencies 
electron gyrofrequency, when compared with tli 
of expression (11 ). 
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