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ABSTRACT

Many limits are known for hypergeometric orthogonal polynomials that occur in the Askey scheme. We

show how asymptotic representations can be derived by using the generating functions of the polynomials. For

example, we discuss the asymptotic representation of the Meixner-Pollaczek, Jacobi, Meixner, and Krawtchouk

polynomials in terms of Laguerre polynomials.
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1. Introduction

It is well known that the Hermite polynomials play a crucial role in certain limits of the
classical orthogonal polynomials. For example, the ultraspherical (Gegenbauer) polynomials
Cγn(x), which are defined by the generating function

(1− 2xw + w2)−γ =
∞∑
n=0

Cγn(x)wn, −1 ≤ x ≤ 1, |w| < 1, (1.1)

have the well-known limit

lim
γ→∞

γ−n/2Cγn(x/
√
γ) =

1
n!
Hn(x). (1.2)

For the Laguerre polynomials, which are defined by the generating function

(1− w)−α−1e−wx/(1−w) =
∞∑
n=0

Lαn(x)wn, |w| < 1, (1.3)
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α, x ∈ C, a similar results reads

lim
α→∞

α−n/2Lαn
(
x
√
α+ α

)
=

(−1)n 2−n/2

n!
Hn

(
x/
√

2
)
. (1.4)

These limits give insight in the location of the zeros for large values of the limit parameter,
and the asymptotic relation with the Hermite polynomials if the parameters γ and α become
large and x is properly scaled.

Many methods are available to prove these and other limits. In this paper we concentrate
on asymptotic relations between the polynomials, from which the limits may follow as special
cases.

In [3] many relations are given for hypergeometric orthogonal polynomials and their q−ana-
logues, including limit relations between many polynomials. In Figure 1 we show examples
for which limit relations between neighboring polynomials are available, but many other limit
relations are mentioned in [1], [2], [3] and [7].

In [4], [5] and [6] we have given several asymptotic relations between polynomials and Her-
mite polynomials. In these first papers we considered Gegenbauer polynomials, Laguerre poly-
nomials, Jacobi polynomials, Tricomi-Carlitz polynomials, generalized Bernoulli polynomials,
generalized Euler polynomials, generalized Bessel polynomials and Buchholz polynomials.

The method for all these cases is the same and we observe that the method also works
for polynomials outside the class of hypergeometric polynomials, such as Bernoulli and Euler
polynomials.

Our method is different from the one described in [1] and [2], where also more terms in the
limit relation are constructed in order to obtain more insight in the limiting process. In these
papers expansions of the form

Pn(x;λ) =
∞∑
k=0

Rk(x;n)λ−k

are considered, which generalizes the limit relation

lim
λ→∞

Pn(x;λ) = R0(x;n),

and which gives deeper information on the limiting process. In [2] a method for the recursive
computation of the coefficients Rk(x;n) is designed.

In [7] similar methods are used, now in particular for limits between classical discrete
(Charlier, Meixner, Krawtchouk, Hahn) to classical continuous (Jacobi, Laguerre, Hermite)
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orthogonal polynomials.

             Askey Scheme of Hypergeometric 
                     Orthogonal Polynomials

RacahWilson

Continuous
dual Hahn

Continuous
    Hahn Hahn Dual Hahn

Meixner -
Pollaczek Jacobi Meixner Krawtchouk

Laguerre Charlier
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n, x

F2  0F1  1
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F3  2

F4  3

F2  0

Figure 1. The Askey scheme for hypergeometric orthogonal polynomials, with indicated
limit relations between the polynomials.

In current research we investigate if other limits in the Askey scheme can be replaced by
asymptotic results. Until now we verified all limits from the third level to the fourth (Laguerre
and Charlier) and the fifth level (Hermite). Several limits are new, and all results have full
asymptotic expansions.
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2. Asymptotic representations

Starting point in our method is a generating series

F (x,w) =
∞∑
n=0

pn(x)wn, (2.1)

F is a given function, which is analytic with respect to w at w = 0, and pn is independent of
w.

The relation (2.1) gives for pn the Cauchy-type integral

pn(x) =
1

2πi

∫
C
F (x,w)

dw

wn+1
,

where C is a circle around the origin inside the domain where F is analytic (as a function of
w).

We write
F (x,w) = eAw−Bw

2
f(x,w),

where A and B do not depend on w. This gives

pn(x) =
1

2πi

∫
C
eAw−Bw

2
f(x,w)

dw

wn+1
. (2.2)

Because f is also analytic (as a function of w), we can expand

f(x,w) = e−Aw+Bw2
F (x,w) =

∞∑
k=0

ckw
k, (2.3)

that is,

f(x,w) = 1 + [p1(x)−A]w +
[
p2(x)−Ap1(x) +B +

1
2
A2

]
w2 + . . .

if we assume that p0(x) = 1 (which implies c0 = 1).
We substitute (2.3) in (2.2). The Hermite polynomials have the generating function

e2xw−w2
=
∞∑
n=0

Hn(x)
n!

wn, x, w ∈ C,

which gives the Cauchy-type integral

Hn(x) =
n!

2πi

∫
C
e2xz−z2

z−n−1 dz, (2.4)

where C is a circle around the origin and the integration is in positive direction. The result
is the finite expansion

pn(x) = zn
n∑
k=0

ck
zk

Hn−k(ξ)
(n− k)!

, z =
√
B, ξ =

A

2
√
B
, (2.5)

because terms with k > n do not contribute in the integral in (2.2).
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In order to obtain an asymptotic property of (2.5) we take A and B such that c1 = c2 = 0.
This happens if we take

A = p1(x), B =
1
2
p2

1(x)− p2(x).

As we will show, the asymptotic property follows from the behavior of the coefficients ck if
we take a parameter of the polynomial pk(x) large. We use the following lemma, and explain
what happens by considering a few examples.

Lemma 2.1 Let φ(w) be analytic at w = 0, with Maclaurin expansion of the form

φ(w) = µwn(a0 + a1w + a2w
2 + . . . ),

where n is a positive integer and ak are complex numbers that do not depend on the complex
number µ, a0 6= 0. Let ck denote the coefficients of the power series of f(w) = eφ(w), that is,

f(w) = eφ(w) =
∞∑
k=0

ckw
k.

Then c0 = 1, ck = 0, k = 1, 2 . . . , n− 1 and

ck = O
(
|µ|bk/nc

)
, µ→∞.

Proof. The proof follows from expanding
∞∑
k=0

ckw
k = eφ(w) =

∞∑
k=0

[φ(w)]k

k!

=
∞∑
k=0

µkwkn

k!
(a0 + a1w + a2w

2 + . . . )k,

and comparing equal powers of w.

2.1 Ultraspherical polynomials
The generating function is given in (1.1), and we obtain

A = Cγ1 (x) = 2xγ, B =
1
2

[Cγ1 (x)]2 − Cγ2 (x) = γ(1− 2x2).

The expansion reads

Cγn(x) = zn
n∑
k=0

ck
zk

Hn−k(ξ)
(n− k)!

, (2.6)

where z =
√
γ(1− 2x2), ξ = xγ/z. We have

c0 = 1, c1 = c2 = 0, c3 =
2
3
γx(4x2 − 3).

Higher coefficients follow from a recursion relation.
The function f(x,w) of (2.3) has the form

f(x,w) = eφ(x,w), φ(x,w) = γw3(a0 + a1w + a2w
2 + . . . ).
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By using Lemma 2.1 and ξ = O(
√
γ) we conclude that the sequence {φk} with φk =

ck/z
kHn−k(ξ) has the following asymptotic property:

φk = O
(
γn/2+bk/3c−k

)
, k = 0, 1, 2, . . . .

This explains the asymptotic nature of the representation in (2.6) for large values of γ, with
x and n fixed.

To verify the limit given in (1.2), we first write x in terms of ξ: x = ξ/
√
γ + 2ξ2. With

this value of x we can verify that ck/zk = o(1), γ →∞, and in fact we have the limit

lim
γ→∞

γn

(γ + 2x2)n/2
Cγn

(
x√

γ + 2x2

)
=

1
n!
Hn(x).

2.2 Laguerre polynomials
We take as generating function (see (1.3))

F (x,w) = (1 + w)−α−1ewx/(1+w) =
∞∑
n=0

(−1)nLαn(x)wn.

We have A = x− α− 1, B = x− 1
2(α+ 1), and we obtain

Lαn(x) = (−1)n zn
n∑
k=0

ck
zk

Hn−k(ξ)
(n− k)!

, (2.7)

where z =
√
x− (α+ 1)/2, ξ = (x− α− 1)/(2z). The first coefficients are

c0 = 1, c1 = c2 = 0, c3 =
1
3

(3x− α− 1).

Higher coefficients follow from a recursion relation. The representation in (2.7) has an asymp-
totic character for large values of |α|+ |x|. It is not difficult to verify that the limit given in
(1.4) follows from (2.7).

3. Expansions in terms Laguerre polynomials

We give examples on how to use Laguerre polynomials for approximating other polynomials.
The method for the Hermite polynomials demonstrated in the previous section can be used
in a similar way.

Lemma 3.1 Let the polynomials pn(x) be defined by the generating function

F (x,w) =
∞∑
n=0

pn(x)wn,

where F (x,w) is analytic in w = 0 and F (x, 0) = 1. Let

f(x,w) = e−Aw/(Bw−1)(1−Bw)C+1 F (x,w),

and let the coefficients ck(x) be defined by the expansion

f(x,w) =
∞∑
k=0

ck(x)wk, c0 = 1, (3.1)
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where A,B and C do not depend on w. Then pn(x) can be represented as the finite sum

pn(x) = Bn/2
n∑
k=0

ck(x)
Bk/2

L
(C)
n−k(ξ), ξ =

A

B
, (3.2)

where Lαn(x) are the Laguerre polynomials.

Proof. The polynomials pn(x) can be written as

pn(x) =
1

2πi

∫
C
eAw/(Bw−1)(1−Bw)−C−1 f(x,w)

dw

wn+1
,

where C is a circle around the origin in the domain where F (x,w) is analytic (as a function of
w). By substituting the expansion of f(x,w) and using the generating function (1.3) of the
Laguerre polynomials the proof follows.

This time, A,B and C can be chosen such that c1 = 0, c2 = 0, c3 = 0. These coefficients
are given by

c1 = p1 −BC −B +A,

c2 = p2 − p1BC − p1B + p1A−ABC +
1
2

(B2C2 +B2C +A2),

c3 = p3 − p2BC − p2B + p2A− p1ABC −
1
6

(B3C3 +B3C +A3) +

1
2

(p1B
2C2 + p1B

2C + p1A
2 +AB2C2 −AB2C −BA2C +A2B).

We see that the equations c1 = 0, c2 = 0, c3 = 0 for solving for A,B and C are nonlinear.
However, solving c1 = 0, c2 = 0 for A and C gives

A = B(C + 1)− p1, C =
p2

1 − 2p2 + 2p1B −B2

B2
,

and with these values c3 becomes

c3 = p3 − p2p1 +
1
3

(p1B
2 + p3

1 + 2p2
1B − 4p2B),

and c3 = 0 is a quadratic equation for B.
As follows from the above representation of C, this quantity will depend on x. This gives

an expansion for pn(x) in terms of Laguerre polynomials LCk (ξ) with the order depending on
x. When studying properties of pn(x) (for example investigating the zeros) this may not be
very desirable. In that case we can always take C = α (not depending on x), and concentrate
on two equations c1 = 0, c2 = 0 for solving A and B. This gives

A =
√
p2

1 − (α+ 1)(2p2 − p2
1), B =

p1 +A

α+ 1
. (3.3)

The order α may be chosen conveniently, without requiring c3 = 0.
For large values of certain parameters in pn(x) expansion (3.2) may have an asymptotic

property when taking c1 = c2 = c3 = 0, but also when only c1 = 0 or c1 = c2 = 0. In the
following section we give four examples, for one level of the Askey scheme, namely for the
Meixner-Pollaczek, Jacobi, Meixner, and Krawtchouk polynomials.
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4. Expanding Meixner-Pollaczek into Laguerre polynomials

For the Meixner-Pollaczek polynomials we have the generating function:

F (x,w) =
(

1− eiφw
)−λ+ix (

1− e−iφw
)−λ−ix

=
∞∑
n=0

P (λ)
n (x;φ)wn. (4.1)

The expansion for the Meixner-Pollaczek polynomials reads

P (λ)
n (x;φ) =

n∑
k=0

Bn−kckL
(C)
n−k(ξ), ξ = A/B, (4.2)

where the coefficients ck follow from (3.1) with F (x,w) given in (4.1).
We write x+ iλ = reiθ, θ ∈ [0, π], r ≥ 0, and consider r → ∞; the asymptotic results hold

uniformly with respect to θ.

4.1 One free parameter
First we consider a simple case by taking B = 1 and C = α, and solve c1 = 0 for A. This
gives

A = α+ 1− 2λ cos φ− 2x sinφ.

The first coefficients ck are given by

c0 = 1, c1 = 0, c2 = x sin 2φ+ λ cos 2φ− 2(x sin φ+ λ cosφ) +
1
2
α,

and the remaining ones can be obtained from the recursion

(k + 1)ck+1 = 2(1 + cosφ)kck +
[α+ 1− 2λ+ 4(cosφ− 1)(λ cos φ+ x sinφ) +
2(1− k)(1 + 2 cosφ)]ck−1 + (4.3)
[4λ+ 2(1 + cosφ)(k − 2)− 2(α+ 1) cos φ]ck−2 +
(α+ 4− k − 2λ)ck−3.

The asymptotic property follows from the fact that, as in Lemma 2.1, the function f(x,w) can
be written as f(x,w) = exp[ψ(w)], where ψ(w) = rw2(a0 +a1w+ . . . ). Hence, the coefficients
ck have the asymptotic behaviour ck = O(rbk/2c), as r → ∞. The first term approximation
can be written as

P (λ)
n (x;φ) = L(α)

n (ξ) +O
(
rn−1

)
, ξ = A, r →∞.

In this case a limit for large values of r (or λ or x) cannot obtained from the above
representations. We can obtain a limit by putting λ = (α + 1)/2. Then, as follows from the
recursion relation (4.4), we have ck = O(φ2) as φ→ 0, and we obtain the limit of the Askey
scheme

lim
φ→0

P (α+1)/2
n [(α+ 1)(1 − cosφ)− ξ)/(2 sin φ);φ] = L(α)

n (ξ).

This includes the limit of the Askey scheme (cf. [3])

lim
φ→0

P (α+1)/2
n (−ξ/(2φ);φ) = L(α)

n (ξ).
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4.2 Two free parameters
Next we solve c1 = 0, c2 = 0 for A and B, with C = α. This gives (cf. (3.3))

A =
√

4(λ cos φ+ x sinφ)2 − 2(α+ 1)(λ cos 2φ+ x sin 2φ),

B =
2(λ cosφ+ x sinφ) +A

α+ 1
,

and the first term approximation can be written as

P (λ)
n (x;φ) = L(α)

n (ξ) +O
(
rn−2

)
, ξ = A/B,

as r→∞, uniformly with respect to θ.
As an alternative, we solve c1 = 0, c2 = 0 for A and C, with B = 1. This gives

A = 2[x(sinφ− sin 2φ) + λ(cos φ− cos 2φ)],
C = 2[x(2 sin φ− sin 2φ) + λ(2 cos φ− cos 2φ)]− 1.

and the first term approximation can be written as

P (λ)
n (x;φ) =

[
L(α)
n (ξ) +O

(
rn−2

)]
, ξ = A, α = C.

as r→∞, uniformly with respect to θ.
Solving A = ξ, C = α for x and λ, we obtain

λ = (1− cosφ)ξ +
1
2

(α+ 1)(2 cos φ− 1),

(4.4)

x =
2(ξ − α− 1) cos2 φ+ (α+ 1− 2ξ) cosφ+ α+ 1− ξ

2 sinφ
.

Then c3 = 2
3(α + 1− 2ξ)(1− cosφ) and ck = O(φ2) as φ→ 0, which follows from deriving a

recursion relation for ck.
Using these values of x and λ, we obtain the limit

lim
φ→0

P (λ)
n (x;φ) = L(α)

n (ξ).

4.3 Three free parameters
We solve c1 = 0, c2 = 0, c3 = 0 for A,B and C. This gives

A =
2 sinφ(x sinφ+ λ cosφ)

√
x2 + λ2

x sin 2φ+ λ cos 2φ+ sinφ
√
x2 + λ2

=
2r sinφ sin 1

2(θ + φ)
sin 1

2(θ + 3φ)
,

B =
x sin 2φ+ λ cos 2φ+ sinφ

√
x2 + λ2

x sinφ+ λ cosφ
=

sin 1
2(θ + 3φ)

sin 1
2(θ + φ)

,

C + 1 = 2
x sin 2φ+ λ cos 2φ+ 2 sinφ

√
x2 + λ2

B2
=

2r[sin(θ + 2φ) + 2 sinφ]
B2

.

The first coefficients ck are given by

c0 = 1, c1 = c2 = c3 = 0,

c4 =
r

2
{sin(θ + 4φ) + [sinφ− sin(θ + 2φ)]B2}.

The first term approximation can be written as

P (λ)
n (x;φ) = Bn

[
L(C)
n (ξ) +O

(
rn−3

)]
, ξ =

A

B
=

2r sinφ
B2

,

as r→∞, uniformly with respect to θ.
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5. Jacobi, Meixner and Krawtchouk to Laguerre

We give the results for one free parameter only.

5.1 Jacobi to Laguerre
Let R(w) =

√
1− 2xw +w2. The generating function reads

F (x,w) =
2α+β(1 +R− w)−α(1 +R+ w)−β

R
=
∞∑
n=0

P (α,β)
n (x)wn.

As in Lemma 3.1, we define coefficients ck, and the expansion reads

P (α,β)
n (x) =

n∑
k=0

Bn−kckL
(C)
n−k(ξ), ξ = A/B.

We consider α+ β →∞, and solve c1 = 0 for A, with B = 1 and C = α. This gives

A =
1
2

(α+ β + 2)(1 − x).

The first coefficients ck are given by

c0 = 1, c1 = 0, c2 =
1
8

[−α+ 3β − 2(α+ 3β + 4)x+ (3α+ 3β + 8)x2].

The first term approximation can be written as

P (α,β)
n (x) = L(C)

n (ξ) +O
(
γn−1

)
, γ = α+ β, ξ =

1
2

(α+ β + 2)(1 − x).

A limit can be obtained by writing x = 1 − 2ξ/(α + β + 2) . Then we have ck = O(1/β) as
β →∞ for k ≥ 2, and we obtain

lim
β→∞

P (α,β)
n [1− 2ξ/(2 + α+ β)] = L(α)

n (ξ),

which includes the limit of the Askey scheme (cf. [3])

lim
β→∞

P (α,β)
n (1− 2ξ/β) = L(α)

n (ξ).

5.2 Meixner to Laguerre
The generating function reads

F (w) =
(

1− w

c

)x
(1− w)−β−x =

∞∑
n=0

(β)n
n!

Mn(x;β, c)wn,

and we define ck as in Lemma 3.1. The expansion reads

Mn(x;β, c) =
n∑
k=0

Bn−kckL
(C)
n−k(ξ), ξ = A/B.
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We solve c1 = 0 for A, with B = 1 and C = α. This gives

A =
(α− β + 1)c+ (1− c)x

c
.

The first coefficients ck are given by

c0 = 1, c1 = 0, c2 =
(1 + α− β)c2 + (2c − c2 − 1)x

2c2
.

The first term approximation can be written as

Mn(x;β, c) = L(α)
n (ξ) +O

(
βn−1

)
, ξ =

(α− β + 1)c+ (1− c)x
c

.

A limit can be obtained by putting β = α + 1 and writing x = cξ/(1 − c). Then we have
c2 = (c − 1)ξ/(2c), and ck = O(1 − c) as c → 1 for k ≥ 2. We obtain the limit of the Askey
scheme (cf. [3])

lim
c→1

Mn(cξ/(1 − c);α + 1, c) =
L

(α)
n (ξ)

L
(α)
n (0)

.

5.3 Krawtchouk to Laguerre
Let q := 1−p

p . The generating function reads

F (w) = (1− qw)x (1 + w)N−x =
N∑
n=0

(
N

n

)
Kn(x; p,N)wn,

and we define ck as in Lemma 3.1. The expansion reads(
N

n

)
Kn(x; p,N) =

n∑
k=0

Bn−kckL
(C)
n−k(ξ), ξ = A/B.

We solve c1 = 0 for A, with B = 1 and C = α. This gives A = α + 1 − N + (1 + q)x. The
first coefficients ck are given by

c0 = 1, c1 = 0, c2 =
1
2

[1 + α− 3N + (3 + 2q − q2)x].

The first term approximation can be written as(
N

n

)
Kn(x; p,N) = L(C)

n (ξ) +O
(
Nn−1

)
, ξ = α+ 1−N + (1 + q)x, N →∞.
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