
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Hermite Polynomials in Asymptotic Representations of Generalized 
Bernoulli, Euler, Bessel and Buchholz Polynomials

L. López, N.M. Temme

Modelling, Analysis and Simulation (MAS)

MAS-R9927 September 30, 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301651989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Report MAS-R9927
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



1

Hermite Polynomials in Asymptotic Representations

of Generalized Bernoulli, Euler, Bessel, and

Buchholz Polynomials
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ABSTRACT

This is the second paper on finite exact representations of certain polynomials in terms of Hermite

polynomials. The representations have asymptotic properties and include new limits of the poly-

nomials, again in terms of Hermite polynomials. This time we consider the generalized Bernoulli,

Euler, Bessel and Buchholz polynomials. The asymptotic approximations of these polynomials are

valid for large values of a certain parameter. The representations and limits include information on

the zero distribution of the polynomials. Graphs are given that indicate the accuracy of the first

term approximations.
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1. Introduction

Generalized Bernoulli, Euler, Bessel, and Buchholz polynomials of degree n, complex order µ and
complex argument z, denoted respectively by Bµn(z), Eµn(z), Y µn (z) and Pµn (z), can be defined by
their generating functions [ [11], chap. 6],

wµewz

(ew − 1)µ
=
∞∑
n=0

Bµn(z)
n!

wn, |w| < 2π, (1)

2µewz

(ew + 1)µ
=
∞∑
n=0

Eµn(z)
n!

wn, |w| < π, (2)
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[ [4], page 181],

1√
1− 2zw

(
2

1 +
√

1− 2zw

)µ
e2w/(1+

√
1−2zw ) =

∞∑
n=0

Y µn (z)
n!

wn, |2zw| < 1, (3)

and [ [2], sect. 3], in a slightly different notation,

ez(cotw−1/w)/2

(
sinw
w

)µ
=
∞∑
n=0

Pµn (z)wn, |w| < π. (4)

The generalized Bernoulli and Euler polynomials play an important role in the calculus of finite
differences. In fact, the coefficients in all the usual central-difference formulae for interpolation,
numerical differentiation and integration, and differences in terms of derivatives can be expressed
in terms of these polynomials [11]. Many properties of these polynomials can be found in [[3],
chap. 6 ], [[5], vol. 1, chap. 1], [10] and [11]. An explicit formula for the generalized Bernoulli
polynomials can be found in [12]. Asymptotic expansions in terms of elementary functions and in
terms of gamma and polygamma functions are obtained in [16]. Properties and explicit formulas
for the generalized Bernoulli and Euler numbers can be found in [9], [14], [15] and references there
in.

The generalized Bessel polynomials form a set of orthogonal polynomials on the unit circle in
the complex plane. They are important in certain problems of mathematical physics; for example,
they arise in the study of electrical networks and when the wave equation is considered in spherical
coordinates. For a historical survey and discussion of many interesting properties, we refer to [6].
New asymptotic expansions of Y µn (x) (and its zeros) for large values of n are given in [17].

Buchholz polynomials are used for the representation of the Whittaker functions as convergent
series expansions of Bessel functions [2]. They appear also in the convergent expansions of the
Whittaker functions in ascending powers of their order and in the asymptotic expansions of the
Whittaker functions in descending powers of their order [7]. Explicit formulas for obtaining these
polynomials may be found in [1].

In our first paper [8] it has been shown that Jacobi, Gegenbauer, Laguerre and Tricomi-Carlitz
polynomials have asymptotic representations in terms of the Hermite polynomials

Hn(x) = n!
bn/2c∑
k=0

(−1)k

k! (n− 2k)!
(2x)n−2k.

These asymptotic representations include well-known limits of the polynomials in terms of the
Hermite polynomials, and provide a powerful tool for approximating the zeros of these polynomials
in terms of the zeros of the Hermite polynomials in the asymptotic limit [8].

The polynomials of the previous paper are all orthogonal on a set of the real line. The present
group is quite different. Only the Bessel polynomials are orthogonal, but not in the standard
sense: they are orthogonal on the unit circle. In a certain sense the polynomials of the present
group become orthogonal if the parameter µ becomes large. We give similar asymptotic represen-
tations for the new group as in the previous paper for the asymptotic limit |µ| → ∞. From these
representations we can derive

lim
µ→∞

(
24
µ

)n/2
Bµn

(
µ

2
+
√
µ

6
z

)
= Hn(z),
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lim
µ→∞

(
8
µ

)n/2
Eµn

(
µ

2
+
√
µ

2
z

)
= Hn(z),

lim
µ→∞

in (2µ)n/2 Y µn

[
− 2
µ

(
1 + i

√
2
µ
z

)]
= Hn(z),

lim
µ→∞

(
6
µ

)n/2
Pµn

(
−2
√

6µz
)

=
1
n!
Hn(z).

From these limits we can obtain approximations for the zeros of these polynomials in the asymptotic
regime.

In the following section we give the principles of the Hermite-type asymptotic approximations
used in this paper. In later sections we apply the method to obtain expansions for the general-
ized Bernoulli and Euler polynomials, and the Bessel and Buchholz polynomials. We also obtain
estimates of their zeros for large µ.

2. Expansions in terms of Hermite polynomials

The Hermite polynomials have the generating function

e2zw−w2
=
∞∑
n=0

Hn(z)
n!

wn, z, w ∈ C,

which gives the Cauchy-type integral

Hn(z) =
n!

2πi

∫
C
e2zw−w2 dw

wn+1
, (5)

where C is a circle around the origin and the integration is in positive direction.
The polynomials defined in (1)-(4), as well as many other well-known polynomials, may be

defined by a generating function F (z, w) in the form

F (z, w) =
∞∑
n=0

pn(z)wn, (6)

where F : C/ × C/ → C/ is analytic with respect to w in a domain that contains the origin. We
assume that F (z, 0) = p0(z) = 1 and that the polynomials pn(z) are independent of w.

We have the Cauchy-type integral representation

pn(z) =
1

2πi

∫
C
F (z, w)

dw

wn+1
,

where C is a circle around the origin inside the domain where F is analytic (as a function of w).
We write the generating function F (z, w) of pn(z) in the form

F (z, w) = eA(z)w−B(z)w2
f(z, w), (7)

where A(z) and B(z) are independent of w, and it follows that

pn(z) =
1

2πi

∫
C
eA(z)w−B(z)w2

f(z, w)
dw

wn+1
. (8)
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The function f is also analytic around the origin w = 0. Therefore, we can expand

f(z, w) = 1 + [p1(z)−A(z)]w +
[
p2(z)−A(z)p1(z) +B(z) +

1
2
A(z)2

]
w2 + . . .

=
∞∑
k=0

ck(z)wk.
(9)

Substituting this in (8) and using (5), we obtain the finite expansion

pn(z) = (B(z))n/2
n∑
k=0

ck(z)
(B(z))k/2

Hn−k(ζ)
(n− k)!

, ζ =
A(z)

2
√
B(z)

, (10)

because terms with k > n do not contribute to the integral in (8). If B(z) happens to be zero for
a special z−value, say z0, we write

pn(z0) = [A(z0)]n
n∑
k=0

ck(z0)
[A(z0)]k (n− k)!

. (11)

In the examples considered in the following sections, the choice of A(z) and B(z) is based on
our requirement that c1(z) = c2(z) = 0, in order to make the function f(z, w) close to 1 near the
origin (note that f(z, 0) = 1). Then, the generating function F (z, w) is close to the generating
function of the Hermite polynomials. Using c0(z) = 1 and requiring c1(z) = c2(z) = 0, we have,
from (9),

A(z) = p1(z), B(z) =
1
2
p2

1(z)− p2(z). (12)

We can summarize the above discussion in the following
Proposition 2.1. Consider the polynomials pn(z) defined in (6) by a generating function F (z, w)
analytic in w = 0 and normalized in the form F (z, 0) = 1. Then, they may be represented as the
finite sum (10) if p2

1(z) − 2p2(z) 6= 0, and as the finite sum (11) if p2
1(z0) − 2p2(z0) = 0. The

functions ck(z) are the coefficients of the Taylor expansion of

F (z, w)exp
{(

1
2
p1(z)2 − p2(z)

)
w2 − p1(z)w

}
at w = 0, c0 = 1, c1 = c2 = 0 and Hn are the Hermite polynomials.

In the following sections we verify if the finite sum in (10) yields asymptotic representations
for the generalized Bernoulli, Euler, Bessel and Buchholz polynomials. The special choice of A(z)
and B(z) given in (12) is crucial for obtaining asymptotic properties. To prove these properties
we will use the following lemma.
Lemma 2.1. Let φ(w) be analytic at w = 0, with Maclaurin expansion of the form φ(w) =
µwn(a0 + a1w + a2w

2 + . . .) + b1w + b2w
2 + . . ., where n is a positive integer, ak, bk are complex

numbers that do not depend on the complex number µ, a0 6= 0; let ck denote the coefficients of the
power series of eφ(w), that is, eφ(w) =

∑∞
k=0 ckw

k. Then

ck = O
(
|µ|bk/nc

)
, µ→∞.

Proof. The proof follows from expanding eφ(w) =
∑∞
k=0[φ(w)]k/k!, substituting the power series

of φ and collecting equal powers of w.
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3. Generalized Bernoulli polynomials

From (1) we obtain the following Cauchy-type integral for the generalized Bernoulli polynomials

Bµn(z) =
n!

2πi

∫
C

wµewz

(ew − 1)µ
dw

wn+1
,

where C is a circle around the origin with radius less than 2π. We assume that F (z, w) =
wµewz/(ew − 1)µ assumes real values for real values of z, w and µ.

We have

Bµ0 (z) = 1, Bµ1 (z) = z − µ

2
, Bµ2 (z) = z2 − µz +

µ(3µ− 1)
12

.

Hence, by (12) and pn(z) = Bµn(z)/n!,

A(z) = z − µ

2
, B(z) =

µ

24
,

and by (10),

Bµn(z) = n!
( µ

24

)n/2 n∑
k=0

ck(µ)
(n− k)!

(
24
µ

)k/2
Hn−k

(√
6(z − µ/2)
√
µ

)
. (13)

Observe that this representation shows the symmetry of Bµn(z) with respect to the point z = 1
2µ.

The coefficients ck(µ) of the expansion are given in the following lemma.
Lemma 3.1. The odd coefficients cn(µ) in the expansion (13) vanish,

c2n+1(µ) = 0 ∀ n ≥ 0, (14)

and the even ones are independent of z; they are given for n ≥ 2 by the recurrence

c2n(µ) =
µ

12n

n∑
k=2

(2k + 1)(k − 3) + 6
(2k + 1)!

c2(n−k)(µ)− 1
n

n∑
k=1

(n− k)
(2k + 1)!

c2(n−k)(µ), (15)

with c0(µ) = 1, c2(µ) = 0 and satisfy

c2n(µ) = O(µbn/2c), |µ| → ∞. (16)

Proof. Using equation (7), the function f(z, w) of the generalized Bernoulli polynomials reads

f(z, w) =
wµeµ(1+w/12)w/2

(ew − 1)µ
=
∞∑
k=0

ck(µ)wk. (17)

This is an even function in the variable w and (14) follows. It is independent of z and so are the
coefficients ck (which only depend on µ). Moreover, it satisfies the differential equation

µ

[
1 +

(
1
2
− 1
w
− w

12

)
(ew − 1)

]
f(z, w) + (ew − 1)

d

dw
f(z, w) = 0,

and introducing the expansion (17) (with c2n+1(µ) = 0) in this differential equation we obtain
(15). The function f(z, w) can be written in this case in the form

f(z, w) = eµw
4φ1(w), φ1(w) =

1
2880

+O
(
w2
)
, w → 0,

and φ1(w) does not depend on µ and z. Hence, the proof of (16) follows from Lemma 2.1.
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Figure 1. Solid lines represent Bµ10(x) for several values of µ, whereas dashed lines represent the right-hand

side of (20).

Proposition 3.1. The generalized Bernoulli polynomials Bµn(z) have the finite expansion in terms
of Hermite polynomials

Bµn(z) =
( µ

24

)n/2
Hn(ζ) + n!

( µ
24

)n/2 bn/2c∑
k=2

c2k(µ)
(

24
µ

)k
Hn−2k(ζ)
(n− 2k)!

, (18)

where

ζ =
√

6(z − µ/2)
√
µ

(19)

and c2k(µ) are given in (15). This is actually an asymptotic expansion of Bµn(z) for |µ| → ∞ with
respect to the sequence µbk/2c−k, uniformly with respect to ζ.

Proof. (18) follows trivially by using (13) and Lemma 3.1. The asymptotic property of (18) follows
from (16). If |ζ| is bounded, the combination c2k(µ)µ−k in (18) gives the asymptotic nature for
large values of |µ|; if |ζ| is not bounded, then the property Hn(ζ) = O(ζn) gives extra asymptotic
convergence in the sum in (18).
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Figure 1 shows the accuracy of the approximation

Bµn(z) ∼
( µ

24

)n/2
Hn

(√
6(z − µ/2)
√
µ

)
(20)

for n = 10, real z and several values of µ.

3.1. Approximating the zeros

When computing approximations of the zeros of the generalized Bernoulli polynomials for large
values of µ we start with the zeros of the Hermite polynomial Hn(ζ) in (20).

Let bn,m and hn,m be the mth zero of Bµn(z) and Hn(z), respectively, m = 1, 2, . . . , n. Then,
for given µ and n we take the relation for ζ given in (19) to compute a first approximation of bn,m
by writing

bn,m ∼
µ

2
+
√
µ

6
hn,m.

For µ = 10, 20, 30 and n = 10, the best relative accuracy in the zeros is ∼ 10−3 and the worst
result (for the largest zero) is ∼ 10−2. For µ = 40, 50 it oscillates between 10−3 and 10−4, whereas
for µ = 100 it oscillates between 10−4 and 10−5.

4. Generalized Euler polynomials

From (2) we obtain the following Cauchy-type integral for the generalized Euler polynomials

Eµn(z) =
n!

2πi

∫
C

2µewz

(ew + 1)µ
dw

wn+1
,

where C is a circle around the origin with radius less than π. We assume that F (z, w) =
2µewz/(ew + 1)µ assumes real values for real values of z, w and µ.

We have

Eµ0 (z) = 1, Eµ1 (z) = z − µ

2
, Eµ2 (z) = z2 − µz +

µ(µ− 1)
4

.

Hence, by (12) and pn(z) = Eµn(z)/n!,

A(z) = z − µ

2
, B(z) =

µ

8
.

It follows from (10) that

Eµn(z) = n!
(µ

8

)n/2 n∑
k=0

ck(µ)
(n− k)!

(
8
µ

)k/2
Hn−k

(√
2(z − µ/2)
√
µ

)
, (21)

where the coefficients ck(µ) of the expansion are given below. This representation shows the
symmetry of Eµn(z) with respect to the point z = 1

2µ.
We have the following results. The proofs are as in the case of the Bernoulli polynomials.

Lemma 4.1. The odd coefficients cn(µ) in the expansion (21) vanish,

c2n+1(µ) = 0 ∀ n ≥ 0, (22)
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and the even ones are independent of z; they are given for n ≥ 2 by the recurrence

c2n(µ) =
µ

16n

n∑
k=2

2k − 3
(2k − 1)!

c2(n−k)(µ) +
1

2n

n∑
k=2

(k − n− 1)
(2k − 2)!

c2(n−k+1)(µ), (23)

where c0(µ) = 1, c2(µ) = 0, and satisfy

c2n(µ) = O(µbn/2c), |µ| → ∞. (24)

x

1086420

-5e+05

5e+05

1e+06

x

1080

-1e+07

1e+07

2e+07

3e+07

12 146

(a) µ = 10 (b) µ = 20

x

100

-1e+08

1e+08

2e+08

15 20 25

x

30252015100

-2e+08

2e+08

4e+08

6e+08

8e+08

1e+09

-4e+08

(c) µ = 30 (d) µ = 40

Figure 2. Solid lines represent Eµ10(x) for several values of µ, whereas dashed lines represent the right hand

side of (27).

Proposition 4.1. The generalized Euler polynomials Eµn(z) have the finite expansion in terms
of Hermite polynomials

Eµn(z) =
(µ

8

)n/2
Hn(ζ) + n!

(µ
8

)n/2 bn/2c∑
k=2

c2k(µ)
(

8
µ

)k
Hn−2k(ζ)
(n− 2k)!

, (25)

where

ζ =
√

2(z − µ/2)
√
µ

(26)

and ck(µ) are given in (23). This is actually an asymptotic expansion of Eµn(z) for |µ| → ∞ with
respect to the sequence µbk/2c−k, uniformly with respec to ζ.
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Figure 2 shows the accuracy of the approximation

Eµn(z) ∼
(µ

8

)n/2
Hn

(√
2(z − µ/2)
√
µ

)
(27)

for n = 10, real z and several values of µ.

4.1. Approximating the zeros

Let en,m and hn,m be the mth zero of Eµn(z) and Hn(z), respectively, m = 1, 2, . . . , n. Then, for
given µ and n we take the relation for ζ given in (26) to compute a first approximation of en,m by
writing

en,m ∼
µ

2
+
√
µ

2
hn,m.

The accuracy is as in the case of the generalized Bernoulli polynomials.

5. Generalized Bessel polynomials

From (3) we obtain the following Cauchy-type integral for the generalized Bessel polynomials

Y µn (z) =
n!

2πi

∫
C

1√
1− 2zw

(
2

1 +
√

1− 2zw

)µ
e2w/(1+

√
1−2zw ) dw

wn+1
,

where C is a circle around the origin with radius less than |1/(2z)|.
We have

Y µ0 (z) = 1, Y µ1 (z) =
1
2

[2 + (µ+ 2)z], Y µ2 (z) =
1
4

[4 + 4(µ+ 3)z + {µ(µ+ 7) + 12}z2].

Hence, by (12) and pn(z) = Y µn (z)/n!,

A(z) =
1
2

[2 + (µ+ 2)z], B(z) = −z
8

[4 + (3µ+ 8)z].

It follows from (10) that

Y µn (z) = n![B(z)]n/2
n∑
k=0

ck(z, µ)
[B(z)]k/2

Hn−k(ζ)
(n− k)!

, ζ =
A(z)

2
√
B(z)

(28)

where the coefficients ck(z, µ) of the expansion satisfy the properties given in the following lemma.
We introduce the notation

y(w) =
√

1− 2zw = 1−
∞∑
k=1

zkbkw
k, bk =

2k

2k!

(
1
2

)
k−1

.

Lemma 5.1. The coefficients ck(z, µ) in the expansion (28) are given by the recursion relation

16(k + 1)ck+1 = 48kzck − 28(k − 1)z2ck−1 + 4 [6 + (18− k + 5µ) z] z2ck−2−

[32 + (64 + 3(k − 3) + 25µ) z] z3ck−3 + 2
k−4∑
j=0

[(4jbk+1−j−

8jbk−j − µbk−1−j)zk+1−j − 2 (4 + 3µ+ 8z) zk−jbk−2−j
]
cj ,

(29)
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where cj = 0 if j < 0 and empty sums are zero with c0(z, µ) = 1, c1(z, µ) = c2(z, µ) = 0, and they
satisfy the asymptotic estimate

ck(z, µ) = O(µbk/3c), |µ| → ∞. (30)

Proof. The function

f(z, w) =
e−Aw+Bw2+2w/(1+

√
1−2zw)

√
1− 2zw

(
2

1 +
√

1− 2zw

)µ
satisfies the differential equation

y2(1 + y)2f ′ =
[
(2Bw −A)y2(1 + y)2 + 2y2(1 + y) + 2zwy + z(1 + y)2 + µzy(1 + y)

]
f.

Then, writing f(z, w) =
∑∞
k=0 ckw

k we obtain the recursion (29) upon substitution. The
function f(z, w) can be written in the form

f(z, w) = eµφ1(z,w)+φ2(z,w),

where φ1, φ2 do not depend on µ, with

φ1(z, w) = ln
2

1 +
√

1− 2zw
− 1

2
zw− 3

8
z2w2 = w3

[
5
12
z3 +O(w)

]
, w → 0

and

φ2(z, w) = w3

[
1
6

(8z + 3)z2 +O(w)
]
, w→ 0.

Hence, (30) follows from Lemma 2.1.

The first few terms are c0(z, µ) = 1, c1(z, µ) = c2(z, µ) = 0, and

c3(z, µ) =
z2

12
[(5µ+ 16)z + 6],

c4(z, µ) =
z3

64
[(35µ+ 128)z + 40],

c5(z, µ) =
z4

80
[(63µ+ 256)z + 70].

Proposition 5.1. The generalized Bessel polynomials Y µn (z) have the finite expansion in terms
of Hermite polynomials

Y µn (z) = [B(z)]n/2Hn(ζ) + n!
n∑
k=3

ck(z, µ)
[B(z)]k/2

Hn−k(ζ)
(n− k)!

, (31)

where ζ is given in (28). This is actually an asymptotic expansion of Y µn (z) for |µ| → ∞ and holds
for fixed values of z and n.

Proof. (31) follows trivially from (28) and using c0 = 1, c1 = c2 = 0. The asymptotic property
follows from (30) and by using Hn(z) = O(zn).
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5.1. Approximating the zeros

Let yn,m and hn,m be the mth zero of Y µn (z) and Hn(z), respectively, m = 1, 2, . . . , n. Then, for
given µ and n we can compute a first approximation of yn,m. We obtain, inverting the relation for
ζ given in (28),

pz2 + qz + 1 = 0, p =
1
4
[
µ2 + 4µ+ 4 + 2ζ2(3µ+ 8)

]
, q = µ+ 2 + 2ζ2.

This gives the relation

z(ζ) =
−q + iζ

√
2(µ+ 4− 2ζ2)
2p

.

Using this with ζ = hn,m we obtain a first approximation of z = yn,m.

The zeros of Y µn (z) are complex, in contrast with those of the classical orthogonal polynomials,
where the zeros are real and inside the domain of orthogonality. Information on the zeros distri-
bution of Y µn (z) for large values of µ seems not to be available in the literature. In Figure 3 we
show the curves z(ζ) for ζ ∈ [−

√
2n+ 1 ,

√
2n+ 1 ], in which interval the zeros hn,m of the Hermite

polynomial Hn(ζ) occur [13].

0.005

−0.005

0.005−0.025

Figure 3. The curves in the z−plane under the mapping ζ → z(ζ) are the images of the intervals

[−
√

2n+ 1 ,
√

2n+ 1 ] where the zeros of the Hermite polynomial Hn(ζ) occur. We take n = 10 and

show the curves (from left to right) for µ = 100, 200, . . . , 500.

6. Buchholz polynomials

From (4) we obtain the following Cauchy-type integral for the Buchholz polynomials

Pµn (z) =
1

2πi

∫
C
ez(cotw−1/w)/2

(
sinw
w

)µ
dw

wn+1
,

where C is a circle around the origin with radius less than π.

We have
Pµ0 (z) = 1, Pµ1 (z) = −z

6
, Pµ2 (z) = − 1

72
(
12µ− z2

)
.
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Hence, by (12) and pn(z) = Pµn (z),

A(z) = −z
6
, B(z) =

µ

6
.

It follows that

Pµn (z) =
(µ

6

)n/2 n∑
k=0

ck(z, µ)
(n− k)!

(
6
µ

)k/2
Hn−k

(
−z

2
√

6µ

)
, (32)

where the coefficients ck(z, µ) of the expansion satisfy the properties given in the following lemma.
Lemma 6.1. The first six coefficients cn(z, µ) in the expansion (32) are

c0(z, µ) = 1, c1(z, µ) = c2(z, µ) = 0, c3(z, µ) = − z

90
,

c4(z, µ) = − µ

180
, c5(z, µ) = − z

945
, c6(z, µ) =

7z2 − 40µ
113400

, (33)

and the remaining ones satisfy, for k ≥ 1,

ck(z, µ) = O(µbk/4c + zbk/3c), |µ|+ |z| → ∞. (34)

Proof. Using equation (7), the function f(z, w) of the Buchholz polynomials can be written in
the form

f(z, w) = eµφ1(z,w)+φ2(z,w),

where φ1, φ2 do not depend on µ, with

φ1(z, w) = ln
sinw
w

+B(z)w2 = w4

[
− 1

180
+O

(
w2
)]
, w→ 0

and

φ2(z, w) = z(cotw − 1/w)/2−A(z)w = zw3

[
− 1

90
+O

(
w2
)]
, w → 0.

Hence, (34) follows from Lemma 2.1.

Figure 4 shows the accuracy of the approximation

Pµn (z) ∼ 1
n!

(µ
6

)n/2
Hn

(
−z

2
√

6µ

)
(35)

for n = 10, z = x and several values of µ.
Proposition 6.1. The Buchholz polynomials Pµn (z) have the finite expansion in terms of Hermite
polynomials

Pµn (z) =
1
n!

(µ
6

)n/2
Hn(ζ) +

(µ
6

)n/2 n∑
k=3

ck(z, µ)
(

6
µ

)k/2
Hn−k(ζ)
(n− k)!

, (36)

where
ζ = − z

2
√

6µ
, (37)

the first six coefficients ck(z, µ) are given in (33).This is actually an asymptotic expansion of Pµn (z)
for |µ|+ |z| → ∞.
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Proof. (36) follows trivially from (32) and using c0 = 1, c1 = c2 = 0. The asymptotic property
follows from Lemma 6.1 and by using Hn(z) = O(zn).

x

20100

0.2

0.1

-0.1

-10-20

x

60200

500

-20-40

1000

1500

-500

-1000

40 80-60-80

(a) µ = 10 (b) µ = 40

x

1000

4e+04

-50 50

2e+04

-2e+04

-4e+04

-6e+04

-8e+04

-1e+05

-1.2e+05

-100

x

1000-50 50

-4e+06

-100

-3e+06

-2e+06

-1e+06

3e+06

2e+06

1e+06

150-150

(c) µ = 100 (d) µ = 200

Figure 4. Solid lines represent Pµ10(x) for several values of µ, whereas dashed lines represent the right hand

side of (37) with z = x.

6.1. Approximating the zeros

We proceed in a similar way as in the previous cases. Let pn,m and hn,m be the mth zero of Pµn (z)
and Hn(z), respectively, m = 1, 2, . . . , n. Then, for given µ and n we take the relation for ζ given
in (37) to compute a first approximation of pn,m by writing

pn,m ∼ −2
√

6µhn,m.

The accuracy of this approximation increases for increasing µ. For example, for µ = 20 or 40 and
n = 10, the relative accuracy in the zeros is ∼ 10−2. For µ = 100 or 200, the relative accuracy
oscillates between 10−2 and 10−3.
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7. Conclusions

Finite approximations of the generalized Bernoulli, Euler, Bessel and Buchholz polynomials in
terms of Hermite polynomials have been given. These are also asymptotic expansions of these
polynomials with respect to certain sequences of the order parameter µ for |µ| → ∞. For large
|µ|, the nth order polynomials become, up to a factor, the nth Hermite polynomial of a certain
variable. From these approximations in terms of Hermite polynomials we have obtained asymptotic
estimates of the zeros of these polynomials.
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