
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

MAS
Modelling, Analysis and Simulation

 Modelling, Analysis and Simulation

First order approximation of an elliptic 3D singular 
perturbation problem

J.L. López, E. Pérez Sinusía, N.M. Temme

REPORT MAS-E0518 SEPTEMBER 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301651984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3703



First order approximation of an elliptic 3D singular
perturbation problem

ABSTRACT
A three-dimensional elliptic singular perturbation problem with discontinuous boundary values is
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Abstract

A three-dimensional elliptic singular perturbation problem with
discontinuous boundary values is considered. The solution of the prob-
lem is written in terms of a double integral. A saddle point analysis is
used to obtain a first approximation, which is expressed in terms of a
function that can be viewed as a generalization of the complementary
error function.
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35J25, 41A60, 65D20.
Keywords & Phrases: Three-dimensional elliptic singular perturbation prob-
lem, asymptotic analysis, saddle point method, complementary error func-
tion.

1 Introduction

We consider a singularly perturbed convection-diffusion problem defined on
the positive half-space: Ω = (−∞,∞) × (−∞,∞) × (0,∞), with a “square

1



shaped source of contamination” located at the plane z = 0 (see Figure 1):
{

−ε∆U + Uz = 0, if (x, y, z) ∈ Ω,
U(x, y, 0) = χ(−1,1)(x)χ(−1,1)(y), for −∞ ≤ x, y ≤ ∞,

(1.1)

where ε is a small positive parameter and χ(a,b)(x) is the characteristic func-
tion of the interval (a, b):

χ(a,b)(x) ≡
{

1 if x ∈ (a, b),
0 if x /∈ (a, b).

(1.2)

Observe that the Dirichlet data at z = 0 are discontinuous at the boundary
of the unit square in the plane z = 0.
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Figure 1: Domain Ω and Dirichlet conditions of problem (1.1).

The solution of this problem may be derived by using Fourier transforms
with respect to x and y, and solving the resulting equation by separating
the variables. We obtain

U(x, y, z) =
eωz

π2

∫ ∞

−∞

∫ ∞

−∞

sin(ωt)

t

sin(ωs)

s
eiωxt+iωys−zω

√
1+t2+s2

dt ds, (1.3)

where

ω =
1

2ε
. (1.4)

It is easy to check by direct substitution that this function is a solution
of problem (1.1). But this solution may not be unique unless we impose
additional hypotheses on problem (1.1). In §6 we give a more precise for-
mulation of the problem in (1.1) and prove that (1.3) is the unique solution
of problem (1.1).

2



We investigate the behaviour of U when ε is small, in particular for x and
y values near ±1. These values correspond with the discontinuous boundary
values at z = 0, and for z > 0 and near x = ±1, y = ±1 boundary layers
occur. We use saddle point analysis for the double integral in (1.3) to obtain
a first approximation for U(x, y, z). The approximation holds uniformly for
z ≥ z0 > 0, where z0 is a fixed number, and for all −∞ ≤ x, y ≤ ∞; in
particular it is uniformly valid near the values x = ±1 and y = ±1.

This paper is a further step in studying singular perturbation problems
with rather simple differential operators, discontinuous boundary conditions,
and domains. For these problems we are able to solve the boundary-value
problems in terms of an integral, from which detailed information can be
obtained of the asymptotic behavior of the solutions of the problem. For our
earlier recent research on this topic for two-dimensional problems we refer
to [4] and [5]; see also [7] and [8]. In these papers the (complementary) error
function plays an important role for describing the asymptotic behavior of
the solutions as well as inside as outside the boundary layer, because of the
uniform nature of the approximations.

In the present paper, in which we consider a model problem of an elliptic
singular pertubation problem in three space dimensions, the role of the com-
plementary error function is taken over by a generalization of this function.
We give several properties of this function, and describe how the function
U(x, y, z) given by the double integral in (1.3) can be approximated by this
generalization.

The knowledge of the asymptotic behavior of the solutions of model sin-
gular perturbation problems is of interest in the development of suitable
numerical methods for this kind of problems because it gives the possibility
of comparing the values obtained from numerical schemes with those ob-
tained from analytical approximations. Of special interest are boundary- or
initial-value problems with discontinuous boundary or initial values; see, for
example, [2].

2 Asymptotic analysis

We replace the sine functions in (1.3) by exponentials, but first we shift the
paths of integration slightly upwards in the complex s and t planes. In this
way the poles at the origins are avoided. This gives four integrals, and we
can write

U(x, y, z) =
eωz

4π2
(−U1,1 + U−1,1 + U1,−1 − U−1,−1) , (2.1)
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where

Uj,k =

∫ ∞

−∞

∫ ∞

−∞
eiω(j+x)t+iω(k+y)s−zω

√
1+t2+s2 dt ds

t s
, j, k = ±1. (2.2)

All four integrals in (2.2) are of the type

V (ξ, η, z) =

∫ ∞

−∞

∫ ∞

−∞
e−ωφ(s,t) dt ds

t s
(2.3)

where

φ(s, t) = −iξt − iηs + z
√

1 + t2 + s2, (2.4)

where ξ = ±1 + x, η = ±1 + y, and the paths in the t−plane and s−plane
in the integral in (2.3) run slightly above the real axes.

To start, we assume that ξ > 0 , η > 0, and we always assume that
z > 0. In the two-dimensional saddle point analysis we try to find saddle
points by solving the equations ∂φ/∂s = 0 and ∂φ/∂t = 0. That is, we have
to solve the equations

∂φ

∂t
= −iξ +

zt√
1 + t2 + s2

= 0,
∂φ

∂s
= −iη +

zs√
1 + t2 + s2

= 0. (2.5)

Solutions s0 and t0 of these equations satisfy

s2
0 = −η2

ρ2
, t20 = −ξ2

ρ2
, (2.6)

where ρ is the positive number defined by

ρ =
√

ξ2 + η2 + z2. (2.7)

Taking square roots in (2.6) gives several possibilities for s0 and t0, but only
the following solutions satisfy the equations in (2.5):

s0 = i
η

ρ
, t0 = i

ξ

ρ
. (2.8)

We expand φ(s, t) at the saddle points up to and including second order
terms. We obtain, because φ(s0, t0) = ρ and the first-order terms vanish at
the saddle points,

φ(s, t) = ρ+ 1
2

∂2φ

∂s2
(s−s0)

2+
∂2φ

∂s∂t
(s−s0)(t−t0)+

1
2

∂2φ

∂t2
(t−t0)

2+. . . , (2.9)
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where the partial derivatives are evaluated at (s0, t0). That is,

∂2φ

∂s2
=

ρ(η2 + z2)

z2
,

∂2φ

∂s∂t
=

ρξη

z2
,

∂2φ

∂t2
=

ρ(ξ2 + z2)

z2
. (2.10)

For a first approximation we replace φ(s, t) in (2.3) by the first terms in
the Taylor expansion given in (2.9). We also shift the two paths of integra-
tion in (2.3) through the saddle points s0 and t0 on the positive imaginary
axes, and we introduce the new variables of integration

σ = s − s0, τ = t − t0. (2.11)

This gives the approximation

V1(ξ, η, z) = e−ωρ

∫ ∞

−∞

∫ ∞

−∞
e−λ(Aσ2+2Bστ+Cτ2) dτ dσ

(τ + t0) (σ + s0)
(2.12)

where the integration is along the real τ and σ axes, and

λ = 1
2

ρω

z2
, A = η2 + z2, B = ξη, C = ξ2 + z2. (2.13)

3 Reducing to a standard form

When in the saddle point method the saddle point is coinciding with a pole,
the standard methods of asymptotics cannot be used for obtaining a correct
approximation. To obtain a uniform expansion that holds when pole and
saddle point coalesce the complementary error function can be used. See [6]
and [10]. In fact we need in that case

w(z) =
1

πi

∫ ∞

−∞

e−t2

t − z
dt, =z > 0. (3.1)

Putting t = −s in the integral, we obtain

w(z) = − 1

πi

∫ ∞

−∞

e−s2

s + z
ds, =z > 0. (3.2)

The function w(z) is an entire function, and we have (see [9, p. 275])

w(z) = e−z2

erfc(−iz), (3.3)

where the complementary error function is defined by

erfc z =
2√
π

∫ ∞

z
e−t2 dt. (3.4)
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Another integral representation of the complementary error function is (see
[1, Eq. 7.4.11])

erfc z =
2e−z2

π

∫ ∞

0

e−z2t2

t2 + 1
dt. (3.5)

Because of the relation

erfc(−z) = 2 − erfc z, (3.6)

it follows that
w(−z) = 2e−z2 − w(z), z ∈ C. (3.7)

This relation can also be obtained from (3.2) by allowing =z < 0 and at
the same time shifting the contour of integration downwards in the complex
plane. By shifting back the path to the real line, picking up the residue, and
using (3.1) and (3.2), we obtain again the symmetry relation (3.7).

The two-dimensional integral in (2.12) shows also the phenomenon that
poles are near saddle points. When ξ and η are small, both poles at −t0
and −s0 are also small. In the singular perturbation problem (1.1) small
values of ξ or η correspond with small values of ±1 + x or ±1 + y. These
values correspond with the boundaries of the unit square in the x, y−plane,
where we have discontinuous boundary conditions. The poles in (2.12) lie
on imaginary axes in the complex σ and τ planes, and when ξ = 0 and η = 0
the poles coincide with saddle points at the origins of these planes.

In this paper we consider the following double integral as the two-
dimensional analogue of w(z) introduced in (3.1):

W (z, ζ) =

∫ ∞

−∞

∫ ∞

−∞

e−t2−s2

(t + αs − z)(t + βs − ζ)
dt ds, (3.8)

where α and β are real and z and ζ are complex. The integral in (2.12)
cannot simply be written as a product of two integrals, because of the term
2Bστ in the exponential function. Also for (3.8) a simple splitting is not
possible.

In the next section we transform the integral in (2.12) into an integral of
the form (3.8), in which the poles are located on certain lines in the complex
plane, that again will pass through the origins when ξ and η become 0. We
evaluate (3.8) into one-dimensional integrals that can be viewed as standard
forms, and as generalizations as the complementary eror function defined by
(3.4).

In [3] the two-dimensional integral

I(α, β) =

∫ ∞

−∞

∫ ∞

−∞

e−ia cosh x−ib cosh y

sin 1
2(ix + α) sin 1

2(ix − iy + β)
dx dy (3.9)

6



is considered with similar phenomena when α and β tend to zero. Jones
considered his integral as a prototype and he introduced the function

G(z, ζ) = ζeiz2

∫ ∞

z

e−it2

t2 + ζ2
dt (3.10)

that can be used for describing the uniform asymptotic phenomena. This
function cannot be expressed in terms of a known special function, and it
reduces in certain circumstances to a Fresnel integral.

Jones’ function can be viewed as a generalization of the Fresnel integral.
In the present case we have a real phase function (see (2.12) and (3.8)), and
we write the integral (3.8) as a sum of two functions of the form

F (λ, u, v) =

∫ ∞

0

re−λr2

dr√
r2 + u2(r2 + v2)

, (3.11)

where we assume that λ > 0, u ≥ 0, and v > 0. F can be viewed as a
generalization of the error function. For u = 0 it becomes, see (3.5),

F (λ, 0, v) =
π

2v
eλv2

erfc(
√

λv), (3.12)

where the complementary error function erfc z is defined in (3.4). When we
change the variable of integration by writing r2 + u2 = s2, we obtain

F (λ, u, v) = eλu2

∫ ∞

u

e−λs2

ds

s2 + v2 − u2
. (3.13)

Observe that F and G are related by

ζF (i, z, ζ) = G(z, ζ). (3.14)

and that our function F (λ, u, v) can be viewed as a function of two variables,
because

F (λ, u, v) =
√

λF (1, u
√

λ, v
√

λ). (3.15)

When λ is large and v → 0, the saddle point at the origin of the integral
in (3.11) coalesces with poles at r = ±iv. If, in addition, u → 0, the saddle
point coalesces also with two algebraic singularities.

In (3.13) the saddle point is outside the domain of integration, and when
u → 0 the saddle point coalesces with an endpoint. If, in addition, v → 0,
the saddle point coalesces also with two poles.

In §7 some other properties of F are derived.
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4 Evaluating V1(ξ, η, z)

First we evaluate V1(ξ, η, z) of (2.12) for the cases ξ ↓ 0 and η ↓ 0. In these
limits the quantity B defined in (2.13) becomes zero, and the double integral
can be written as two single integrals. When ξ ↓ 0 we have

V1(0, η, z) = e−ωρ

∫ ∞

−∞
e−λAσ2 dσ

σ + s0

∫ ∞

−∞
e−λCτ2 dτ

τ
, (4.1)

where in the τ−integral the path runs above the origin. The τ−integral
equals (see (3.2)) −iπw(0) = −iπ. For the σ−integral we use (3.2) again,
and we obtain

V1(0, η, z) = −π2e−ωρ+λη2

erfc
(
η
√

λ
)

. (4.2)

In a similar way,

V1(ξ, 0, z) = −π2e−ωρ+λξ2

erfc
(
ξ
√

λ
)

. (4.3)

Hence,
V1(0, 0, z) = −π2e−ωz. (4.4)

4.1 Positive values of ξ and η

We can use several transformations for obtaining a pure quadratic form in
the exponential function in (2.12). For example, we can write

Aσ2 + 2Bστ + Cτ 2 = A

(
σ2 +

2Bστ

A

)
+ Cτ2

= A

(
σ +

B

A
τ

)2

+

(
C − B2

A

)
τ2,

(4.5)

and introduce the new variables of integration

p =
√

A

(
σ +

B

A
τ

)
, q =

√
AC − B2

A
τ. (4.6)

The inverted relations read, because AC − B2 = ρ2z2,

σ =
1√

η2 + z2

(
p − ξη

ρz
q

)
, τ =

√
η2 + z2

ρz
q. (4.7)

Performing these relations on (2.12) we obtain

V1(ξ, η, z) = e−ωρ

∫ ∞

−∞

∫ ∞

−∞
e−λ(p2+q2) dq dp

(p − αq + iβ)(q + iγ)
, (4.8)
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where

α =
ξη

ρz
, β =

η

ρ

√
η2 + z2, γ =

ξz√
η2 + z2

. (4.9)

Hence, when ξ > 0, η > 0 the quantities α, β and γ are all positive, and
they become small when ξ and η become small.

The location of the poles in the complex p and q planes resembles that
of the integral in (3.9). Also, we can perform the p−integration in terms
of the error function by using the function w(z) defined in (3.1). However,
then the q−integral is not easy to handle. In addition, the symmetry with
respect to ξ and η, which is obvious in (2.12), is no longer obvious in (4.8).

We obtain a symmetric representation by using the transformation of
variables

σ =
1√

ξ2 + η2
(ηp + ξq), τ =

1√
ξ2 + η2

(ξp − ηq), (4.10)

or in inverted form

p =
1√

ξ2 + η2
(ησ + ξτ), q =

1√
ξ2 + η2

(ξσ − ητ). (4.11)

This gives
Aσ2 + 2Bστ + Cσ2 = ρ2p2 + z2q2, (4.12)

and after scaling ρp → p, zq → q we obtain

V1(ξ, η, z) = ρz(ξ2 + η2)e−ωρ×

∫ ∞

−∞

∫ ∞

−∞

e−λ(p2+q2) dq dp

(ξzp − ηρq + t̃0)(ηzp + ξρq + s̃0)

(4.13)

where
t̃0 = ρzt0

√
ξ2 + η2, s̃0 = ρzs0

√
ξ2 + η2. (4.14)

4.1.1 Writing V1(ξ, η, z) in terms of F (λ, u, v)

Next we verify how to write V1(ξ, η, z) defined in (4.13) in terms of the
integral in (3.11). We introduce polar coordinates

p = r cos θ, q = r sin θ, 0 ≤ θ ≤ 2π. (4.15)

This gives

V1(ξ, η, z) = ρz(ξ2 + η2)e−ωρ

∫ ∞

0
e−λr2

f(r) r dr, (4.16)
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where

f(r) =

∫ 2π

0

dθ

(ξzr cos θ − ηρr sin θ + t̃0)(ηzr cos θ + ξρr sin θ + s̃0)
. (4.17)

We evaluate this integral by putting s = eiθ and integrating around the unit
circle in the complex s−plane. This gives, because ds = isdθ,

f(r) =
−4i

PR

∫

|s|=1

s ds

(s2 + 2t̃0s/P + Q/P )(s2 + 2s̃0s/R + S/R)
, (4.18)

where
P = (ξz + iηρ)r, Q = (ξz − iηρ)r,
R = (ηz − iξρ)r, S = (ηz + iξρ)r.

(4.19)

The zeros of the quadratic factors in (4.18) are

s1 =
i
√

ξ2 + η2

P

(
−ξz +

√
ξ2z2 + (η2 + z2)r2

)
,

s2 =
i
√

ξ2 + η2

P

(
−ξz −

√
ξ2z2 + (η2 + z2)r2

)
,

s3 =
i
√

ξ2 + η2

R

(
−ηz +

√
η2z2 + (ξ2 + z2)r2

)
,

s4 =
i
√

ξ2 + η2

R

(
−ηz −

√
η2z2 + (ξ2 + z2)r2

)
.

(4.20)

Observe that |s1s2| = 1 and |s3s4| = 1. The zeros s1 and s3 are inside the
unit circle, and can be used for evaluating the integral by using residues.

First we write

s

(s2 + 2t̃0s/P + Q/P )(s2 + 2s̃0s/R + S/R)

=
a1s + a2

s2 + 2t̃0s/P + Q/P
+

a3s + a4

s2 + 2s̃0s/R + S/R
.

(4.21)

It is straightforward to verify that

a1 =
−iPRr

T
, a2 =

QR
√

ξ2 + η2

T
, a3 =

iPRr

T
, a4 =

−PS
√

ξ2 + η2

T
,

(4.22)
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where

T = 2rρz(ξ2 + η2)(ξ2 + η2 + r2). (4.23)

Calculating the two residues in the integral in (4.18) gives

f(r) =
8π

PR

(
a1s1 + a2

s1 − s2
+

a3s3 + a4

s3 − s4

)
, (4.24)

which can be evaluated in the form

f(r) = − 2π

z(ξ2 + η2)(r2 + v2)


ξ/

√
ξ2 + z2

√
r2 + u2

1

+
η/
√

η2 + z2

√
r2 + u2

2


 , (4.25)

where v, u1 and u2 are defined by

v =
√

ξ2 + η2, u1 =
ηz√

ξ2 + z2
, u2 =

ξz√
η2 + z2

. (4.26)

It follows that in terms of F of (3.11):

V1(ξ, η, z) = −2πρe−ωρ

[
ξ√

ξ2 + z2
F (λ, u1, v) +

η√
η2 + z2

F (λ, u2, v)

]
.

(4.27)
When we write this in terms of the integral in (3.13) we introduce the
notation

ζ2
1 = v2 − u2

1 =
ρ2ξ2

ξ2 + z2
, ζ2

2 = v2 − u2
2 =

ρ2η2

η2 + z2
. (4.28)

This gives

V1(ξ, η, z) = −2πe−ωρ

[
ξeλu2

1

√
ξ2 + z2

∫ ∞

u1

e−λs2

ds

s2 + ζ2
1

+
ηeλu2

2

√
η2 + z2

∫ ∞

u2

e−λs2

ds

s2 + ζ2
2

]
.

(4.29)

When we let ξ ↓ 0 we have v = η, u1 = η, and ρ =
√

η2 + z2. It follows
that (4.27) becomes

V1(0, η, z) = −π2e−ωρ+λη2

erfc
(
η
√

λ
)

, (4.30)

where we have used (3.12). This confirms (4.2). In a similar way we find
(4.3) and (4.4).
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5 Negative values of ξ and η

When ξ < 0 or η < 0 the saddle points t0 or s0 defined in (2.8) become
negative. With some modifications we can repeat the evaluations of §(4).
Recall that in (2.3) the paths run above the real t−axis and s−axis. To
obtain a representation through the saddle points t0 and s0, of which t0 or
s0 are on the negative imaginary t−axis or s−axis, we now have to pass the
poles at t = 0 or s = 0. This gives one or two residues in the form of a single
integral.

5.1 ξ < 0, η > 0

In this case we obtain from (2.3), by shifting the path in the t−plane down-
wards, across the origin,

V (ξ, η, z) = −2πi

∫ ∞

−∞
e−ω[−iηs+z

√
1+s2] ds

s
+ Ṽ (ξ, η, z), (5.1)

where Ṽ (ξ, η, z) is as in (2.3), now with the path of integration for the
t−integral below the origin in the t−plane. By changing t → −t we see that
Ṽ (ξ, η, z) = −V (−ξ, η, z), and we can write

V (−ξ, η, z) = −2πi

∫ ∞

−∞
e−ω[−iηs+z

√
1+s2] ds

s
− V (ξ, η, z), ξ > 0, η > 0,

(5.2)
where V (ξ, η, z) is as in (2.3) with both paths running above the origins. The
s−integral in (5.2) runs above the origin and has a saddle point at iη/

√
A,

where A is defined in (2.13). By an asymptotic analysis as performed for
the double integral in §2 it follows that the integral can be approximated by
(see (3.2))

−2πie−ω
√

A

∫ ∞

−∞
e−v2 dv

v + i
√

µη
= −2π2e−ω

√
Aw (i

√
µη) , (5.3)

where

µ =
ω
√

A

2z2
. (5.4)

By using (3.3) we obtain

V (−ξ, η, z) ∼ −2π2e−ω
√

Aeµη2

erfc (η
√

µ) − V1(ξ, η, z), ξ > 0, η > 0,
(5.5)

where V1(ξ, η, z) can be written in terms of the F−function; see (4.27) and
(4.29).
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5.2 ξ > 0, η < 0

In a similar way,

V (ξ,−η, z) ∼ −2π2e−ω
√

Ceνξ2

erfc
(
ξ
√

ν
)
− V1(ξ, η, z), ξ > 0, η > 0,

(5.6)
where C is defined in (2.13) and

ν =
ω
√

C

2z2
. (5.7)

5.3 ξ < 0, η < 0

Consider (5.2) with η replaced by −η, with η > 0. Then the function
V (ξ,−η, z) follows from (5.6). After the change η → −η in (5.2), the saddle
point of the integral is now at −iη/

√
A, and for the asymptotic analysis of

this integral we shift it downwards, across the pole at s = 0, giving a residue
−4π2e−ωz. The final result reads for ξ > 0 and η > 0

V (−ξ,−η, z) ∼ V1(ξ, η, z) − 4π2e−ωz

+ 2π2e−ω
√

Aeµη2

erfc (η
√

µ) + 2π2e−ω
√

Ceνξ2

erfc
(
ξ
√

ν
)
.

(5.8)

6 Proof of uniqueness of problem (1.1)

We give a more precise formulation of the problem in (1.1). To prove unique-
ness of the problem in (1.1) we need extra conditions on the problem. A
more precise formulation of problem (1.1) is then




U ∈ C(Ω̃) ∩ D2(Ω) U bounded in bounded subsets of Ω̃,
− ε∆U + Uz = 0 in Ω,
U(x, y, 0) = χ(−1,1)(x)χ(−1,1)(y), for −∞ ≤ x, y ≤ ∞,

U(x, y, z) = o

(
eω(rk+z)

√
ωrk

)
as rk → ∞ in Ω with k = 1, 2, 3,

(6.1)
where ω = 1/(2ε), r1 ≡

√
x2 + z2, r2 ≡

√
y2 + z2 and r3 ≡

√
x2 + y2.

Observe that the Dirichlet datum at z = 0 is discontinuous at the bound-
ary ∂ΩL of a square ΩL located in the plane z = 0:

ΩL ≡ {(x, y, 0) ∈ IR3;−1 ≤ x, y ≤ 1}.
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U(x,y,1)

x

y

U(x,y,4)

y

x

U(x,y,7)

x

y

U(x,y,10)

x

y

Figure 2: Graphs of the first order approximations to the solution of problem (1.1)
for different values of z. The graphs are obtained by using (4.27) for V1(ξ, η, z) and
the relations for negative ξ and η of §5. V1(ξ, η, z) is the first order approximation of
V (ξ, η, z) of (2.3), the function that represents any of the four components in (2.1). We
observe that the solution takes a value close to 1 on the square (x, y) ∈ [−1, 1]× [−1, 1]
and 0 everywhere else. On the sides of this square the solutions takes the value 1

2
and

experiences a fast transition from 0 to 1. We also observe that the larger z is, the
smoother the solution is.

The set Ω̃ in (6.1) is precisely the closed set Ω̄ with that contour removed:

Ω̃ ≡ Ω̄ \ ∂ΩL.

We have the following uniqueness result:

Theorem 1 Problem (6.1) has at most one solution.

Proof. Suppose that U1 and U2 are two solutions of (6.1). Then, the
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function G(x, y, z) ≡ (U1(x, y, z) − U2(x, y, z)) e−ωz verifies:




G ∈ C(Ω̃) ∩ D2(Ω) G bounded on bounded subsets of Ω̃,
∆G − ω2G = 0 in Ω
G(x, y, 0) = 0 for −∞ ≤ x, y ≤ ∞,

G(x, y, z) = o

(
eωrk

√
ωrk

)
as rk → ∞ in Ω with k = 1, 2, 3.

(6.2)

Consider the following auxiliary function defined on Ω̄:

Va(x, y, z) ≡





G(x, y, z)

Ha(x, y, z)
if r±1 6= 0 6= r±2

0 if r±1 = 0 or r±2 = 0,

with

Ha(x, y, z) ≡ K0(ωr+
1 ) + K0(ωr−1 ) + K0(ωr+

2 ) + K0(ωr−2 )
+ I0(ωr1) + I0(ωr2) + I0(ωr3) + a,

r±1 ≡
√

(x ± 1)2 + z2, r±2 ≡
√

(y ± 1)2 + z2, a > 0,

and K0 and I0 being modified Bessel functions of order zero. The function
Ha(x, y, z) is positive in Ω, of the order O(eωrk/

√
ωrk) as ωrk → ∞ for

k = 1, 2, 3 and O(log(ωr±k )) as ωr±k → 0 for k = 1, 2 ([1, Eqs. 9.7.1 and
9.6.13]). Moreover, Ha(x, y, z) ∈ D2(Ω) and satisfies the equation: ∆Ha −
ω2Ha + aω2 = 0 in Ω [1, Eq. 9.6.1]). Therefore, using also that G is
bounded near ∂ΩL, we have that the auxiliary function Va is continuous in
Ω̄ and verifies:





∆Va +
2

Ha

−→∇Ha · −→∇Va =
aω2

Ha
Va in Ω,

Va(x, y, 0) = 0 for −∞ ≤ x, y ≤ ∞,
limrk→∞ Va(x, y, z) = 0 ∀ (x, y, z) ∈ Ω̄, k = 1, 2, 3.

Consider the open finite box of size R: ΩR ≡ (−R,R)×(−R,R)×(0, R). At
points (x, y, z) ∈ ΩR where

−→∇Va = 0 and Va 6= 0, we have that Va ·∆Va > 0.
Therefore, Va has not positive relative maximums neither negative relative
minimums in ΩR. Then SupΩR

|Va| ≤ Sup∂ΩR
|Va|.

Using that Va(x, y, 0) = 0 ∀ (x, y) ∈ R2 and that limrk→∞ Va(x, y, z) = 0
for k = 1, 2, 3 we have that, ∀ δ > 0, there is a R > 0 such that |Va(x, y, z)| ≤
δ ∀ (x, y, z) ∈ ∂ΩR. Therefore, |Va(x, y, z)| ≤ δ ∀ δ > 0 and every (x, y, z) ∈
ΩR. Taking the limit δ → 0 (R → ∞) we have that Va = 0 in Ω̄. Therefore,
G = 0 and U1 = U2 in Ω.
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7 Further properties of F (λ, u, v)

We give a few further properties of the function (see (3.11) – (3.13))

F (λ, u, v) =

∫ ∞

0

re−λr2

dr√
r2 + u2(r2 + v2)

= eλu2

∫ ∞

u

e−λs2

ds

s2 + ζ2

=
π

2w
eλv2

erfc(ζ
√

λ) − eλu2

∫ u

0

e−λs2

ds

s2 + ζ2
,

(7.1)

where ζ2 = v2 − u2.

The function F reduces to a complementary error function when u = v.
We have

F (λ, u, u) = eλu2

∫ ∞

u

e−λs2

s2
ds = 1

2

√
λeλu2

Γ

(
−1

2
, λu2

)
, (7.2)

where we use the incomplete gamma function defined by

Γ(a, z) =

∫ ∞

z
ta−1e−t dt. (7.3)

By using integration by parts, we can write

F (λ, u, u) =
1

u
−

√
πλ eλu2

erfc
(
u
√

λ
)

. (7.4)

A series in powers of λ follows by expanding the exponential function in
the third integral in (7.1). This gives

F (λ, u, v) =
π

2ζ
eλv2

erfc(ζ
√

λ) − eλu2

∞∑

n=0

(−λ)n

n!
Φn(u, v), (7.5)

where

Φn(u, v) =

∫ u

0

s2n

s2 + ζ2
ds, n = 0, 1, 2, . . . . (7.6)

We have

Φ0(u, v) =
1

ζ
arctan

u

ζ
, (7.7)
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and the remaining Φn can be computed through the recursion relation

Φn+1(u, v) =
u2n+1

2n + 1
− ζ2Φn(u, v), n = 0, 1, 2, . . . . (7.8)

To obtain a series with positive terms we expand

F (λ, u, v) =
π

2ζ
eλv2

erfc(ζ
√

λ) −
∞∑

n=0

λn

n!
Ψn(u, v), (7.9)

where

Ψn(u, v) =

∫ u

0

(u2 − s2)n

s2 + ζ2
ds, n = 0, 1, 2, . . . . (7.10)

We have Ψ0(u, v) = Φ0(u, v), and for the other ones we have

Ψn+1(u, v) = v2Ψn(u, v) − u2n+1 Γ(3
2)n!

Γ(n + 3
2)

, n = 0, 1, 2, . . . . (7.11)

The Ψn are in fact hypergeometric functions. We have (see [9, p. 110])

Ψn(u, v) =
u2n+1

ζ2

Γ(3
2)n!

Γ(n + 3
2)

2F1

(
1, 1

2

n + 3
2

; −u2

ζ2

)
, (7.12)

or

Ψn(u, v) =
u2n+1

v2

Γ(3
2)n!

Γ(n + 3
2)

2F1

(
1, n + 1
n + 3

2
;

u2

v2

)
. (7.13)

An asymptotic expansion for large values of λ follows from the first
integral in (7.1) by expanding

uv2r√
r2 + u2(r2 + v2)

=
∞∑

n=0

cnr2n+1. (7.14)

We have

c0 = 1, c1 = −2u2 + v2

2u2v2
, c2 =

8u4 + 4u2v2 + 3v4

8u4v4
. (7.15)

More coefficients can be computed by using the recursion relation

u2v2(n+1)cn+1 = −[(n+1)u2 +(n+ 1
2
)v2]cn−(n+ 1

2
)cn−1, n ≥ 1. (7.16)

By substituting the expansion in (7.14) into (7.1) the following asymptotic
expansion

F (λ, u, v) ∼ 1

2uv2λ

∞∑

n=0

cn
n!

λn
, λ → ∞, (7.17)

is obtained, which holds uniformly for u ≥ u0, v ≥ v0, where u0 and v0 are
fixed positive numbers.
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