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ABSTRACT

The paper discusses asymptotic methods for integrals, in particular uniform approx-

imations. We discuss several examples, where we apply the results to Tricomi's

	�function, in particular we consider an expansion of Tricomi-Carlitz polynomials

in terms of Hermite polynomials. We mention other recent expansions for orthogonal

polynomials that do not satisfy a di�erential equation, and for which methods based

on integral representations produce powerful uniform asymptotic expansions.
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1. Tricomi's 	�function
Tricomi (1954a, page 56) introduced the 	�function as the second solution of the

conuent hypergeometric di�erential equation (also called Kummer's equation)

z
d
2
y

dz2
+ (c� z)

dy

dz
� a y = 0: (1:1)

Tricomi denoted the �rst solution by �(a; c; z), which in fact is a hypergeometric func-

tion, given by

1F1(a; c; z) =
1X
n=0

(a)n
(c)n

z
n

n!
; (1:2)



2

with the usual condition c 6= 0;�1;�2; : : :. 1F1(a; c; z) is an entire function of z. The

symbol (a)n is the shifted factorial (Pochhammer's symbol)

(a)n = �(a+ n)=�(a) = a(a+ 1)(a+ 2) � � � (a+ n� 1); (a)0 = 1: (1:3)

It is not di�cult to verify that z1�c1F1(a� c+ 1; 2 � c; z) is also a solution of (1.1).

Tricomi denoted the second solution of the Kummer equation (1.1) by 	(a; c; z) �),

and it is de�ned as a linear combination of the two 1F1�solutions:

	(a; c; z) =
�(1� c)

�(a� c+ 1)
1F1(a; c; z) +

�(c� 1)

�(a)
z
1�c

1F1(a� c+ 1; 2� c; z): (1:4)

The Kummer equation (1.1) arises in many problems of mathematical physics. The

conuent hypergeometric functions 1F1(a; c; z);	(a; c; z) are also called Kummer func-

tions.

A di�erent introduction of equation (1.1) is based on a limiting method applied to

the Gauss hypergeometric function 2F1(a; b; c; z), which is a solution of the di�erential

equation

z(1� z) y00 + [c� (a+ b+ 1)z] y0 � ab y = 0; (1:5)

and which has the series representation

2F1(a; b; c; z) =

1X
n=0

(a)n (b)n
(c)n n!

z
n
; jzj < 1: (1:6)

This equation has three regular singular points z = 0; z = 1; z = 1. The Kummer

functions arise when two of the regular singular points are allowed to merge into one

singular point. Formally this process runs as follows. The function 2F1(a; b; c; z=b) has

a regular singular point at z = b. Using the series in (1.6) it can be veri�ed that the

limit

lim
b!1

2F1(a; b; c; z=b)

exists, and equals the series in (1.2). It can also be veri�ed that in the same limiting

process the Gauss hypergeometric di�erential equation (1.5) transforms into (1.1). This

explains the name conuent hypergeometric functions for the Kummer functions.

The basic integral representation reads

1F1(a; c; z) =
�(c)

�(a)�(c� a)

Z 1

0

e
zt
t
a�1(1� t)c�a�1 dt; <a > 0; <(c� a) > 0: (1:7)

The second solution can also be de�ned by an integral

	(a; c; z) =
1

�(a)

Z 1

0

e
�zt

t
a�1 (1 + t)c�a�1 dt; <a > 0; <z > 0: (1:8)

�) Several notations for the Kummer functions are used in the literature; we prefer the no-

tation 1F1(a; c; z) for the �rst solution; in honor of Tricomi, we use 	(a; c; z) for the second

solution.
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This function is, in general, not analytic at the origin z = 0. The integral can be used

for analytic continuation with respect to z into the domain fjph zj < �; z 6= 0g, by
turning the path of integration. If a = 0;�1;�2; : : :, 	(a; c; z) is a polynomial in z, if

c � a � 1 = n (non-negative integer), 	(a; c; z) can be expressed as a polynomial in z

multiplied with z�a�n.

There are a remarkable functional relations:

1F1(a; c; z) = e
z
1F1(c� a; c;�z);

	(a; c; z) = z
1�c	(a� c+ 1; 2� c; z):

(1:9)

Contour integrals are given by

1F1(a; c; z) =
�(c)

2�i

Z
F

e
s
s
a�c (s� z)�a ds;

	(a; c; z) =
�(c� a)

2�i

Z
L	

e
s
s
a�c (z � s)�a ds;

(1:10)

where, if z > 0, LF is a vertical line in the half plane <s > z, and L	 is a vertical line

that cuts the real axis between the origin and z. When z is complex, the contours need

to be modi�ed appropriately. In order to speed up convergence, the contours may be

deformed into parabola shaped contours that terminate at �1. The contour integrals

are more exible in asymptotic analysis than the standard integrals given in (1.4) and

(1.7).

1.1. Special cases of the Kummer functions

There are many special cases. We mention the most important ones, not only to demon-

strate the importance of the Kummer function, but also for easy reference in later

sections.

[1] Error functions. The de�nitions are

erf z =
2p
�

Z z

0

e
�t2

dt; erfc z = 1� erfz =
2p
�

Z 1

z

e
�t2

dt: (1:11)

The relations with the Kummer functions are

erf z = z1F1

�
1

2
;
3

2
;�z2

�
; erfc z = e

�z2 	
�
1

2
;
1

2
; z2
�
:

In physics the plasma dispersion function is used. The de�nition is

w(z) =
1

i�

Z 1

�1

e
�t2

t� z
dt; =z > 0: (1:12)

In asymptotics this function is important because of the pole at t = z and the

Gaussian function with the saddle point at the origin. It is not di�cult to verify

that

w(z) = e
�z2erfc(�iz): (1:13)
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and that we have the symmetry relations

erf(�z) = �erf z; erfc(�z) = 2� erfc z; w(�z) = 2e�z
2 � w(z): (1:14)

[2] Exponential integrals. For � 2 C we have

E�(z) =

Z 1

1

e
�zt

t�
dt; <z > 0: (1:15)

The relation with the 	�function is

E�(z) = e
�z	(1; 2� �; z) = z

��1
e
�z	(�; �; z): (1:16)

The latter gives

E�(z) =
z
��1

e
�z

�(�)

Z 1

0

e
�zt

t
��1

t+ 1
dt; <z > 0:

[3] Fresnel integrals. These are

C(z) =

r
2

�

Z z

0

cos t2 dt; S(z) =

r
2

�

Z z

0

sin t2 dt: (1:17)

The t2 in the circular functions suggests a relation with the error functions.

Indeed we have:

C(z) + iS(z) =
1 + i

2
erf

(1� i)zp
2

:

[4] Incomplete gamma functions. The de�nitions are

(a; z) =

Z z

0

t
a�1

e
�t
dt; �(a; z) =

Z 1

z

t
a�1

e
�t
dt: (1:18)

For (a; z) we assume the condition <a > 0; with respect to z we assume jph zj <
�. In probability theory these functions show up in connection with the gamma

distribution. In this area of applications the normalizations

P (a; z) =
(a; z)

�(a)
; Q(a; z) =

�(a; z)

�(a)
(1:19)

are frequently used, which satisfy P (a; z) +Q(a; z) = 1.

The relations with the Kummer functions are as follows:

(a; z) = a
�1
z
a
e
�z

1F1(1; a+ 1; z)

= a
�1
z
a
1F1(a; a+ 1;�z);

�(a; z) = z
a
e
�z	(1; a+ 1; z)

= e
�z	(1� a; 1 � a; z):
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[5] Bessel functions. These functions arise when in 1F1(a; c; z) and 	(a; c; z) the

parameters satisfy c = 2a. Two important relations are

J�(z) =
(z=2)�

�(� + 1)
e
�iz

1F1

�
� +

1

2
; 2� + 1; 2iz

�
;

K�(z) =
p
� e

�z (2z)� 	
�
� +

1

2
; 2� + 1; 2z

�
:

(1:20)

The latter is a modi�ed Bessel function.

[6] Orthogonal polynomials. The Hermite and Laguerre polynomials are special

cases of the conuent hypergeometric functions. For these polynomials we have

L
(�)
n (x) =

(�1)n
n!

	(�n; �+ 1;x) =

�
n+ �

n

�
1F1(�n; �+ 1;x)

=

nX
k=0

(�1)k
�
n+ �

n� k

�
x
k

k!
;

Hn(x) = x 2n	
�
1

2
� 1

2
n;

3

2
;x2
�

= n!

bn=2cX
k=0

(�1)k
k! (n� 2k)!

(2x)n�2k:

(1:21)

[7] Parabolic cylinder functions. The solutions of the di�erential equation

y
00 +

�
z
2 + pz + q

�
y = 0

are called parabolic cylinder functions or Weber parabolic cylinder functions.

Another standard form is

y
00 �

�
a+

1

4
z
2
�
y = 0: (1:22)

All solutions are entire functions of z. The following even and odd solutions

exist:

y1 = e
�z2=4

1F1

�
1

2
a+ 1

4
;
1

2
; 1
2
z
2
�
= e

z2=4
1F1

�
� 1

2
a+ 1

4
;
1

2
;� 1

2
z
2
�
;

y2 = ze
�z2=4

1F1

�
1

2
a+

3

4
;
3

2
;
1

2
z
2
�
= ze

z2=4
1F1

�
� 1

2
a+

3

4
;
3

2
;� 1

2
z
2
�
:

The following pair is usually found in the literature:

U(a; z) =
p
� 2�1=4�a=2

"
y1

�
�
3
4
+ a

2

� �
p
2 y2

�
�
1
4
+ a

2

�
#

= 2�3=4�a=2e�
1

4
z2
z U

�
3

4
+

a

2
;
3

2
;
1

2
z
2
�
;

V (a; z) =
1

�
�
�
1

2
+ a

�
[sin�aU(a; z) + U(a;�z)] :

(1:23)
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In the notation of Whittaker we have D�(z) = U
��� � 1

2
; z
�
. When a =

�1=2;�3=2;�5=2; : : : the Hermite polynomials arise:

Hn(z) = 2
1

2
n
e
1

2
z2
U

�
�n� 1

2
; z

p
2
�
= 2

1

2
n
e
1

2
z2
Dn(z

p
2 ): (1:24)

[8] Coulomb Wave Functions. The di�erential equation

w
00 +

�
1� 2�

�
� �(�+ 1)

�2

�
w = 0 (1:25)

is a special form of Kummer's equation. It plays an important part in physics,

in particular in quantum mechanics as a form of the Schr�odinger equation in a

central Coulomb �eld. The solutions of (1.25) are called Coulomb wave functions,

and are usually denoted by F�(�; �); G�(�; �). We give the relations with the

Kummer functions:

F�(�; �) = A 1F1(�+ 1� i�; 2� + 2; 2i�);

G�(�; �) = iF�(�; �) + iB	(�+ 1� i�; 2� + 2; 2i�);

A =
j�(�+ 1 + i�)je���=2�i�(2�)�+1

2�(2�+ 2)
;

B = e
��=2+��i�i���i�(2�)�+1;

�� = phf�(�+ 1 + i�)g (the Coulomb phase shift):

The functions F�(�; �) and G�(�; �) are real for real values of �, � > 0; � � 0.

[9] Whittaker functions. Finally we mention a di�erent notation. In the literature

an alternative pair for the conuent hypergeometric functions is given, called the

Whittaker functions. The de�nitions are

M�;�(z) = e
� 1

2
z
z
1

2
+�

1F1

�
1

2
+ �� �; 1 + 2�; z

�
;

W�;�(z) = e
� 1

2
z
z
1

2
+�	

�
1

2
+ �� �; 1 + 2�; z

�
:

(1:26)

M�;�(z);W�;�(z) satisfy the Whittaker equation

w
00 +

�
� 1

4
+
�

z
+

1
4
� �2
z2

�
w = 0: (1:27)

There is a vast literature on Kummer functions. The books of Buchholz (1969),

Slater (1960) and Tricomi (1954a) are exclusively devoted to the class of conuent

hypergeometric functions or Whittaker functions. Especially in the �rst book many

references are given to physical applications.

2. Asymptotic expansions of Laplace-type integrals

We mention a very useful result from the theory of asymptotics for Laplace integrals,

known as Watson's Lemma. First we give a de�nition of an asymptotic expansion.
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2.1. De�nition and example

De�nition 1. Let F be function of a real or complex variable z; let
P1
n=0 anz

�n

denote a (convergent or divergent) formal power series, of which the sum of the �rst n

terms is denoted by Sn(z); let

Rn(z) = F (z) � Sn(z):

That is,

F (z) = a0 +
a1

z
+
a2

z2
+ � � �+ an�1

zn�1
+Rn(z); n = 0; 1; 2 : : : ; (2:1)

where we assume that when n = 0 we have F (z) = R0(z). Next, assume that for each

n = 0; 1; 2; : : : the following relation holds

Rn(z) = O
�
z
�n
�
; as z !1 (2:2)

in some unbounded domain �. Then
P1

n=0 anz
�n is called an asymptotic expansion of

the function F (z) and we denote this by

F (z) �
1X
n=0

anz
�n
; z !1; z 2 �: (2:3)

This de�nition is due to Poincar�e (1886). Analogous de�nitions can be given for

z ! 0, and so on.

Observe that we do not assume that the in�nite series
P1
n=0 anz

�n converges for

certain z�values. This is not relevant in asymptotics; in the de�nition only a property

of Rn(z) is requested, with n �xed.

2.2. Watson's Lemma

Watson's lemma is usually the �rst step in asymptotics of integrals.

Theorem 2.1. (Watson's lemma). Assume that:

(i) f(t) is a real or complex function of the positive real variable t with a �nite

number of discontinuities and in�nities.

(ii) As t! 0+

f(t) � t
��1

1X
n=0

ant
n
; <� > 0: (2:4)

(iii) The integral

F (z) =

Z 1

0

f(t)e�zt dt (2:5)

is convergent for su�ciently large values of <z.

Then

F (z) �
1X
n=0

�(n+ �)
an

zn+�
; z !1 (2:6)
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in the sector

jph zj � 1

2
� � �(<

1

2
�);

where zn+� has its principal value.

A larger z�sector can be obtained when we know that f is analytic in a certain

domain of the complex plane. For example, when f is analytic in the sector jph tj <
�=2 and f(t) = O[exp(�jtj)] in that sector, for some number �, then the asymptotic

expansion in Watson's lemma holds in the sector

jph zj � � � �(< �):

For a proof we refer to Olver (1974, page 113), where a more general condition

(ii) is assumed.

When applying Watson's lemma in the theory of special functions, condition (i)

often holds, since the function f(t) is, up to the factor t��1, usually an analytic function

in a domain containing [0;1). Compare the de�nition of the 	�function in (1.8), where
f(t) = t

a�1(1 + t)c�a�1. In that case f(t) is analytic in the sector jph tj < �.

Next we formulate a second theorem in which a much larger domain than in the

previous theorem for the phase of the large parameter z is possible. For a proof we refer

to Olver (1974, page 114).

Theorem 2.2. Assume that:

(i) f(t) is analytic inside a sector 
:�1 < ph t < �2, where �1 < 0 and �2 > 0.

(ii) For each � 2 (0; 1
2
�2 � 1

2
�1) (2.4) holds as t! 0 in the sector


� : �1 + � < ph t < �2 � �;

for � we again assume that <� > 0.

(iii) There is a real number � such that f(t) = O(e�jtj) as t!1 in 
�.

Then the integral (2.5), or its analytic continuation, has the asymptotic expansion (2.6)

in the sector

��2 � 1

2
� + � � ph z � ��1 + 1

2
� � �: (2:7)

Using Theorem 2.2 for the 	�function, we obtain

	(a; c; z) � z
�a

1X
n=0

(a)n(a� c+ 1)n
n!

(�z)�n; z !1: (2:8)

which holds for jph zj < 3�=2. By using the integral in (1.7) with a change of variable

t! 1� t, that is,

1F1(a; c; z) =
�(c) ez

�(a)�(c� a)

Z 1

0

e
zt
t
c�a�1(1� t)a�1 dt; (2:9)
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we obtain for the 1F1�function the result

1F1(a; c; z) �
�(c)ez za�c

�(a)

1X
n=0

(c� a)n(1� a)n
n!

z
�n
; z !1; (2:10)

which is valid in the sector jph zj < 1
2
�. The limited domain of validity is due to the

singularity of the integrand in (2.9) at t = 1. To extend the domain we need a di�erent

integral. For example, we can replace the interval (0; 1) in (2.9) with two intervals

(0;1) and (1;1), where the point at in�nity can be chosen above the the branch line

(1;+1) or below, depending on the phase of z. The result is

1

�(c)
1F1(a; c; z) �

e
z
z
a�c

�(a)

1X
n=0

(c� a)n(1� a)n
n!

z
�n

+
e
��ia

z
�a

�(c� a)

1X
n=0

(a)n(1 + a� c)n
n!

(�z)�n;
(2:11)

where the upper sign is taken if � 1
2
� < ph z < 3

2
� and the lower sign if � 3

2
� < ph z <

1
2
�. The �rst part is dominant when <z > 0 and corresponds with (2.10); the second

part becomes dominant when z enters the half plane <z < 0.

2.3. A class of polynomials introduced by Tricomi

In Tricomi (1951) a class of polynomials has been introduced. Tricomi used the poly-

nomials in convergent and asymptotic expansions. The de�nition can be given by using

Laguerre polynomials (see (1.21)):

ln(x) = (�1)n L(x�n)n (x) =
nX
k=0

(�1)k
�
x

k

�
x
n�k

(n� k)!
; (2:12)

which, although closely related to the Laguerre polynomials, are essentially di�erent

from them. For instance, the degree of ln(x) is not n but the greatest integer in 1
2
n.

The �rst few polynomials are

l0(x) = 1; l1(x) = 0; l2(x) = � 1

2
x; l3(x) = � 1

3
x; l4(x) =

1

8
x
2 � 1

4
x:

The polynomials show up in the generating function

e
xz (1� z)x =

1X
n=0

ln(x) z
n
; jzj < 1: (2:13)

This relation is easily veri�ed by expanding both the exponential and binomial function

in the left-hand side, and by comparing the coe�cients in the product with (2.12).

There is a simple recursion relation:

(n+ 1)ln+1(x) = nln(x)� xln�1(x); n = 1; 2; : : : ; (2:14)
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which can be derived from the generating function.

Tricomi mentions two applications. First, for the 1F1�function there is

1

�(c)
1F1(a; c;x) =

1X
n=0

ln(�a)xn J�c+n�1(�ax);

where

J
�
� (z) = z

��=2
J�

�
2
p
z
�
=

1X
n=0

(�z)n
�(n+ � + 1) n!

;

which is an entire function of z. For the incomplete gamma function there is an asymp-

totic expansion:

�(�+ 1; x) � �e�x x�+1
1X
n=0

n! ln(�) (� � x)�n�1;

as � =
p
x� � =(�)!1, within the sector �3�=4 < ph(�) < 3�=4.

Also Berg (1959, 1962 and 1977) and Riekstins (1982) used the polynomials in

asymptotic problems. In Temme (1983 and 1985) we used the polynomials for obtain-

ing uniform asymptotic expansions of Laplace integrals. In Section 4 we consider a

generalization of the Tricomi polynomials.

We explain how the polynomials de�ned in (2.12) can be used in uniform expan-

sions of Laplace integrals and apply the method to the Tricomi 	�function and the

1F1�function.

2.4. Uniform expansions of Laplace-type integrals

We consider the Laplace integral

F�(z) =
1

�(�)

Z 1

0

t
��1

e
�zt

f(t) dt; (2:15)

where <z > 0;<� > 0 and z is a large parameter. We are interested in the case that �

is large as well.

When � is restricted to a bounded set in the complex plane, an expansion of F�(z)

can be obtained by using Watson's lemma. When we assume that f is analytic at t = 0

we obtain by Theorem 1:

f(t) =
1X
n=0

ant
n =) F�(z) �

1X
n=0

(�)n anz
�n��

; (2:16)

as z !1 in the sector jph zj � 1
2� � � < 1

2�.

The expansion (2.16) loses its asymptotic character when � is large. For instance,

if � = O(z), then the ratio of consecutive terms in the asymptotic expansion satisfy

an+1

an

n+ �

z
= O(1) if an 6= 0:
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t - µ ln t

t = µ

Figure 2.1. The function exp[�z(t�� ln t)] has a saddle point at t = �.

In Temme (1983) we have modi�ed Watson's lemma to obtain an expansion in which

large as well small values of � are allowed. This expansion is obtained by expanding

f at t = � := �=z, at which point the dominant part of the integrand of (2.15), that

is, t� e�zt, attains its maximal value (considering real parameters at the moment). We

write

f(t) =

1X
n=0

an(�)(t� �)n;

and obtain by substituting this into (2.15) the formal result

F�(z) �
1X
n=0

an(�)Pn(�)z
�n��

; z !1; (2:17)

where

Pn(�) =
z
n+�

�(�)

Z 1

0

t
��1

e
�zt (t� �)n dt; � = �=z: (2:18)

The functions Pn(�) are polynomials in �. From (2.18) the recursion Pn+1(�) =

n[Pn(�) + �Pn�1(�)] follows with initial values P0(�) = 1; P1(�) = 0. An explicit

formula follows from expanding (t� �)n in (2.18), which gives

Pn(�) =

nX
k=0

�
n

k

�
(�)k (��)n�k:

Comparing these properties with those of the Tricomi polynomials ln(x), we �nd that

Pn(�) = n! ln(��); n = 0; 1; 2; : : : :

The nature of the expansion (2.17) is discussed in Temme (1983 and 1985). Under

rather mild conditions on f it follows that the expansion (2.17) holds uniformly with

respect to � 2 [0;1), and in domains of the complex plane.
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We can apply this method to Tricomi's 	�function for the case that z ! 1, to

obtain an alternative of (2.8). For the new expansion we write

f(t) = (1 + t)c�a�1 =
1X
n=0

an(�)(t� �)n; an(�) =

�
c� a� 1

n

�
(1 + �)c�a�1�n;

where � = a=z. This gives

	(a; c; z) �
1X
n=0

an(�)Pn(a) z
�n�a

; z !1; (2:19)

uniformly with respect to a 2 [0;1); c should be of comparable size of a. We need the

condition c� a = O(1).
We see that for � ! 0 the expansion reduces to (2.8); if � becomes large the

asymptotic convergence improves. If c = a the expansion becomes rather simple:

	(a; a; z) � z
1�a

1X
n=0

(�1)n Pn(a)

(z + a)n+1
; z !1; (2:20)

which is an expansion for the exponential integral (cf. (1.16)). This example and (2.19)

show quite well why large values of � = a are allowed: the degree of Pn(a) equals [n=2],

and the e�ect of Pn(a) is amply absorbed by the term (z + a)�n�1. Another feature is

that (2.17) holds for �!1, uniformly with respect to z, say z � z0 > 0.

A similar method is available for 1F1(a; c; z) if we use the contour integral in (1.10).

We have

1F1(a+ 1; c; z) =
z
1�c

e
z �(c)

2�i

Z
L

e
zw (1 + w)a+1�c w�a�1 dw:

Expanding

(1 + w)a+1�c =
1X
n=0

bn(�)(w � �)n; bn(�) =

�
a+ 1� c

n

�
(1 + �)a+1�c�n; � = a=z;

we obtain

1F1(a+ 1; c; z) � z
a+1�c

e
z �(c)

�(a+ 1)

1X
n=0

bn(�)Qn(a) z
�n
; (2:21)

where

Qn(a) =
z
n�a�(a+ 1)

2�

Z
L

e
zw (w � �)nw�a�1 dw:

By expanding (w � �)n it easily follows that Qn(a) = (�1)nPn(�a). The expansion in

(2.21) can be viewed as an alternative for (2.10), and holds for z !1, uniformly with

respect to a 2 [0;1), with c� a = O(1).
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3. Uniform asymptotic expansions in terms of Bessel functions

Tricomi has derived several convergent expansions of the 1F1�function in terms of Bessel
functions that are useful for evaluating the function when the parameters are large. For

example, we have

1F1(a; c; z) = e
1

2
z�(c)(�z)(1�c)=2

1X
n=0

An(�; c=2)
�
z

4�

�n=2
Jc�1+n

�
2
p
�z
�
; (3:1)

where � = c=2 � a and the An(�; �) are coe�cients in the generating function

e
2�z (1 � z)��� (1 + z)���� =

1X
n=0

An(�; �) z
n
:

The series in (3.1) is convergent in the entire z�plane. Moreover, it can be used for the

evaluation of 1F1(a; c; z) for large �. For further details on these expansions we refer to

Tricomi (1954a).

The expansion in (3.1) may be compared with an asymptotic expansion of the

Whittaker function M�;�(x) (cf. (1.26)) as given in Olver (1974 & 1997, page 446).

Olver used the di�erential equation to derive an expansion in terms of J�Bessel func-
tions, with the same argument 2

p
�z as in (3.1), which is provided with error bounds

for the remainder in the expansion. Several other expansions are given by Olver, also

for the function W�;�(x). In Olver (1980) an expansion for the Whittaker functions is

given in terms of parabolic cylinder functions (cf. (1.23)). Dunster (1989) has devel-

oped uniform expansions for the Whittaker functions in terms of Bessel functions and

Airy functions. All these approaches are based on di�erential equations; they are valid

for large domains of the complex parameters, and supplied with error bounds.

In Temme (1990a) we have given an approach based on integral representations

for obtaining a uniform asymptotic expansion in terms of the modi�ed Bessel function

K�(z), with an application to the 	�function. The standard form for deriving the

expansion is the integral

F�(z; �) =

Z 1

0

t
��1

e
�zt��=t

f(t) dt; (3:2)

which reduces to a modi�ed Bessel function in the case that f is a constant. We have

2(�=z)�=2K�(2
p
�z ) =

Z 1

0

t
��1

e
�zt��=t

dt: (3:3)

The integral in (3.2) is considered with �; � � 0 and large positive values of z. We aim

to derive asymptotic expansions for F�(z; �) that hold uniformly with respect to both

� and � in the interval [0;1). To handle the transition of the case � = 0 to � > 0,

the modi�ed Bessel function (3.3) is needed. Observe that when � = 0 the essential

singularity in the integrand of (3.2) disappears and that (3.2) becomes a more familiar

Laplace integral, that can be expanded by using Watson's lemma.



14

3.1. Construction of the formal series

The �rst step in constructing a uniform asymptotic expansion of (3.2) is the substitution

f(t) = a0 + b0(t� �) + (t� �2=t)g(t); (3:4)

where a0; b0 follow from substitution of t = ��. We have

a0 = f(�); b0 =
1

2�
[f(�)� f(��)]:

Inserting (3.4) into (3.2) we obtain

F�(z; �) = a0A�(z; �) + b0B�(z; �) + F
(1)

� (z; �);

where A�; B� are combinations of the modi�ed Bessel functions introduced in (3.3). It

is straightforward to verify that

A�(z; �) = 2��K�(2�z); B�(z; �) = 2��+1[K�+1(2�z) �K�(2�z)]: (3:5)

An integration by parts gives

F
(1)

� (z; �) = �1

z

Z 1

0

t
�
g(t) d e�z(t+�

2=t)

=
1

z

Z 1

0

t
��1

e
�z(t+�2=t)

f1(t) dt

with

f1(t) = t
1�� d

dt
[t�g(t)] = �g(t) + tg

0(t):

We see that zF
(1)

� (z; �) is of the same form as F�(z; �). The above procedure can now

be applied to zF
(1)

� (z; �) and we obtain for (3.2) the formal expansion

F�(z; �) � A�(z; �)

1X
s=0

asz
�s +B�(z; �)

1X
s=0

bsz
�s
; as z !1; (3:6)

where we de�ne inductively f0 = f; g0 = g and for s = 1; 2; : : :

fs(t) = t
1�� d

dt
[t�gs�1(t)] = as + bs(t� �) + (t� �2=t)gs(t);

as = fs(�); bs =
1

2�
[fs(�)� fs(��)]:

(3:7)

For this procedure we need function values of f and derivatives at negative values,

although the integral(3.2)is de�ned only for t�values in [0;1). When we consider

analytic functions f , as we do when dealing with special functions, we assume that f is

analytic in a domain 
 in the complex plane that contains the real line.
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3.2. Application to Tricomi's 	�function
We start the de�nition given in (3.7):

�(a)	(a; c;x) =

Z 1

0

u
a�1(1 + u)c�a�1e�xu du: (3:8)

We consider a as the large parameter and x as a uniformity parameter in [0;1); c is a

�xed real parameter. We take c � 1; the relation (3.8) can be used when c > 1.

First we give a preliminary transformation. The function [u=(u + 1)]a assumes its

maximal value (on [0;1)) at u = 1. This function controls the asymptotic behavior

of the integrand and, hence, we transform it to an exponential function by writing

u=(u+ 1) = exp(�w). Then (3.8) becomes

�(a)	(a; 1 � �; x) =

Z 1

0

w
��1

e
�aw�x=(ew�1) ef(w) dw; (3:9)

where

ef(w) = �1� e
�w

w

���1
: (3:10)

We transform (3.9) into (3.2) with the help of the transformation

w +
�

ew � 1
= t+

�
2

t
+A; (3:11)

where � = x=a and �;A are to be determined. We compute them on the following con-

dition on the mapping: the critical points of the w�function in (3.11) must correspond

with the critical values of the t�function. Critical w� and t�values are �w0; �t0,
where

t0 = �; w0 = cosh�1(1 + �=2) = ln

�
1 +

� +W0

2

�
; W0 =

p
�2 + 4� : (3:12)

It follows that

A = ��
2
; � =

w0 + sinhw0

2
=

1

2
ln

�
1 +

� +W0

2

�
+
1

4
W0: (3:13)

With these values of A; � the mapping w 7! t is regular at w = �w0 and at w = 0.

In fact it is regular in (�1;1) and as a conformal mapping in a large domain 
 of the

complex plane. We have the correspondences

t(�1) = �1; t(�w0) = ��; t(0) = 0: (3:14)

Using transformation (3.11) in (3.9), we obtain

F�(z; �) = �(a)e�x=2	(a; c;x) =

Z 1

0

t
��1

e
�at��=t

f(t) dt;

� 2�1�cK1�c(2�a)
1X
s=0

as a
�s+

2�2�c [K2�c(2�a) �K1�c(2�a)]
1X
s=0

bs a
�s
;

(3:15)



16

where � = z�
2
; � = 1 � c and � is de�ned in (3.13) with � = x=a. Furthermore, the

coe�cients as; bs follow from the scheme given in (3.7) with

f(t) =

�
1� e

�w

t

���1
dw

dt
;

dw

dt
=

�
e
w � 1

t

�2
t
2 � �

2

(ew � 1)2 � �ew
: (3:16)

The expansion in (3.15) holds for a ! 1, uniformly with respect to x 2 [0;1).

The asymptotic nature of the expansion is discussed in Temme (1990a), where also an

expansion is considered in which c is no longer a �xed parameter.

We give the �rst coe�cient a0(�) of the expansion in (3.15). A few calculations

based on (3.16) and l'Hôpital's rule yield

dw

dt
jt=�� =

q
2 tanh(

1

2

w0)=� :

So we obtain

a0(�) =
q
2 tanh(

1

2

w0)=�

�
�

1� e�w0

�c
; b0 = a0

1� e
�cw0

2�
:

4. The Tricomi-Carlitz polynomials

The Tricomi-Carlitz polynomials are de�ned by

t
(�)
n (x) =

nX
k=0

(�1)k
�
x� �

k

�
x
n�k

(n� k)!
: (4:1)

We obtain from (1.21) the relation with the Laguerre polynomials:

t
(�)
n (x) = (�1)n L(x���n)n (x); (4:2)

and we observe that the class of polynomials fln(x)g introduced in Section 2 follows

from the present set by putting � = 0. The new polynomials satisfy the recurrence

(n+ 1)t
(�)
n+1(x)� (n+ �) t(�)n (x) + x t

(�)
n�1(x) = 0; n � 1; (4:3)

with initial values t
(�)
0 (x) = 1; t

(�)
1 (x) = �. A few other values are

t
(�)
2 (x) =

1

2

�
�+ �

2 � x
�
; t

(�)
3 (x) =

1

6

�
2�+ 3�2 + �

3 � 2x� 3x�
�
: (4:4)

Tricomi (1948) introduced the polynomials. He observed that ft(�)n (x)g is not a system
of orthogonal polynomials, the recurrence relations failing to have the required form (cf.

Szeg�o (1975, page 43)). However, Carlitz (1958) discovered that if one sets

f
(�)
n (x) = x

n
t
(�)
n (x)(x�2); (4:5)



17

then ff (�)n (x)g satis�es

(n+ 1)f
(�)
n+1(x)� (n+ �)x f (�)n (x) + f

(�)
n�1(x) = 0; n � 1; (4:6)

with initial values f
(�)
0 (x) = 1; f

(�)
1 (x) = �x. A few other values are

f
(�)
2 (x) = 1

2

�
�(1 + �)x2 � 1

�
f
(�)
3 (x) = 1

6
x
��2 + 2�x2 � 3�+ 3�2x2 + �

3
x
2
�
:

There is a generating function for f
(�)
n (x):

e
w=x+(1��x2)=x2 ln(1�xw) =

1X
n=0

f
(�)
n (x)wn: jwxj < 1: (4:7)

If x = 0 this reduces to

e
� 1

2
w2

=

1X
n=0

f
(�)
2n (0)w2n

;

giving

f
(�)
2n (0) = (�1)n 2�n=n!; f

(�)
2n+1(0) = 0; n = 0; 1; 2; : : : :

Carlitz proved that for � > 0, ff (�)n (x)g satis�es the orthogonality relationZ 1

�1

f
(�)
m (x) f (�)n (x) d (�)(x) =

2 e�

(n+ �)n!
�mn; (4:8)

where  (�)(x) is the step function whose jumps are

d 
(�)(x) =

(k + �)k�1 e�k

k!
at x = xk = �

1p
k + �

; k = 0; 1; 2; : : : : (4:9)

The values xk play a special role in the generating function because for these x�values
we have

e
w=xk (1� xkw)

k =

1X
n=0

f
(�)
n (xk)w

n
;

and now the series converges for all values of w.

For further generalizations of the Tricomi-Carlitz polynomials the reader is referred

to Askey & Ismail (1984) and Chihara & Ismail (1982); Chihara (1978) gives a

brief treatment of the polynomials t
(�)
n (x). Goh & Wimp (1994 and 1997) establish

the asymptotic behavior of the Tricomi-Carlitz polynomials and discuss their zero dis-

tribution. They observe that the polynomials fn(x=
p
� ) have all zeros in the interval

[�1; 1]. They use in their second paper a probabilistic approach for improving their

earlier results concerning the asymptotic distribution of the zeros of the polynomials

f
(�)
n (x). Saddle point methods are used to study the asymptotics for f

(�)
n (x) in the

complex plane.

In this section we describe a method how to obtain an asymptotic representation

of the Tricomi polynomials in terms of the Hermite polynomial. We concentrate on
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large values of the parameter � and n = O(�); for x we assume �1=p� < x < 1=
p
� ,

the interval of the zeros. The distribution of the zeros of f
(�)
n (x) can be obtained by

using the zeros of the Hermite polynomials. The role of the Hermite polynomials can

be shown by observing that

lim
�!1

f
(�)
n

 
x
p
2

�

!
=

2�n=2

n!
Hn(x): (4:10)

This follows from the generating function given in (4.7). Replacing x in the left-hand

side with x
p
2 =� yields, if �!1, exp(x

p
2 w+ 1

2
w
2). This is, up to some scaling, the

generating function of the Hermite polynomials, which reads

e
2xz�z2 =

1X
n=0

Hn(x)
z
n

n!
: (4:11):

Although the Tricomi-Carlitz polynomials can be expressed in terms of the Laguerre

polynomials (see (4.2) and (4.5)) it is not possible to use existing results on Laguerre

polynomials from the literature to describe the asymptotics of f
(�)
n (x); this is due to

the peculiar role and position of the parameters n and x in (4.2).

Before treating the Tricomi-Carlitz polynomials we give a few details on the La-

guerre polynomials. Tricomi has given several results; see Tricomi (1949) and (1954b),

with a summary of the results in Tricomi (1954a) and in Buchholz (1969). Tricomi

set � = 4n+ �+ 2 and derived asymptotic formulas for x in each of the four regions:

(i) x = O(�1=3,
(ii) a� � x � bx,

(iii) x� � = O(�1=3,
(iv) x � c�,

where a; b; c are �xed and 0 < a < b < 1 < c. Tricomi's results were later considerably

improved by Erd�elyi (1960). More precisely, Erd�elyi gave two asymptotic formulas for

L
(�)
n (�t), as n!1, where t is real. One formula holds uniformly for �1 < t � a and

the other for b � t < 1, where a and b are two �xed numbers, 0 < b < a < 1. These

two intervals overlap and between them cover the entire x�axis. Erd�elyi's method is

based on the di�erential equation satis�ed by the Laguerre polynomials. In Frenzen

& Wong (1988) it has been shown that the same results can be from their integral

representations. Frenzen and Wong used the generating function to write the Laguerre

polynomial as a Cauchy integral, and then applied the saddle point method to obtain

expansions in terms of Airy and Bessel functions. In Temme (1990b) we have mentioned

several asymptotic forms of the Laguerre polynomials that are available in the literature

for Whittaker functions, and which have been obtained by Olver (1974) and (1980),

and Dunster (1989) and (1990) by using di�erential equations. The Tricomi-Carlitz

polynomials f
(�)
n (x) do not satisfy a di�erential equation. Hence, the powerful results

obtained by Olver and Dunster for the Whittaker function cannot be used in the present

case.
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4.1. Hermite-type expansions of the Tricomi-Carlitz polynomials

We take the generating function (4.7) as starting point, and use the Cauchy-type inte-

gral:

f
(�)
n (x) =

1

2�i

Z
C

e
w=x+(1��x2)=x2 ln(1�xw) dw

wn+1
: (4:12)

The contour C is a circle around the origin with radius less than 1=jxj; x 6= 0.

Our approach for the Tricomi-Carlitz polynomials is earlier discussed in Temme

(1986). We summarize the main steps of this publication. In Jin & Wong (1996)

a similar approach is used for Meixner polynomials; also in this case a di�erential

equation is not available. The same problem occurs for the Charlier and Pollaczek

polynomials, which are considered in Bo Rui & Wong (1994) and Bo Rui & Wong

(1996), respectively, and for which Airy functions and Bessel functions are used as main

approximants. For more details on these publication we refer to Section 5.

Rescaling the parameters in (4.12) by writing

x = �=
p
� ; n = ��; w = s

p
�

we obtain

f
(�)
n (x) =

�
�n=2

2�i

Z
C

e
��(s) ds

s
; (4:13)

where

�(s) =
s

�
+
1� �

2

�2
ln(1� �s)� � ln s: (4:14)

The saddle points are given by

s1;2 =
�(� + 1)�

p
�2(� + 1)2 � 4�

2
: (4:15)

If

� 2�p
� + 1

< � <
2�p
� + 1

the saddle points are complex, and for these values of � the zeros of f
(�)
n (x) occur. In

that case the saddle point are located on the circle with radius
p
� .

Comparing the behavior of the saddle points of the integral in (4.13) we observe

that the situation is quite analogous to the behavior of the saddle points for various

values of x and n of the Cauchy-type integral that de�nes the Hermite polynomials, viz.

Hn(x) =
n!

2�i

Z
C

e
2xz�z2 dw

wn+1
; (4:16)

which follows from (4.11). Due to this analogy, the integral in (4.13) can be approxi-

mated in terms of Hermite polynomials.

Before giving a few details on the saddle point analysis we give a �rst result. If

n� � the complex saddle points given in (4.15) are close to the origin. For small values

of s the phase function �(s) can be approximated by

�0(s) = �s� 1

2
(1� �

2) s2 � � ln s:



20

Substituting this into (4.13) and using (4.16) we obtain for j�=p� j < 1 the approxima-

tion

f
(�)
n (x) =

�
1� �x

2

2

�n=2
1

n!

"
Hn

 
�xp

2(1 � �x2)

!
+ "

(�)
n (x)

#
; (4:17)

where we expect that j"(�)n (x)j is small if �� n. Observe that the limit in (4.14) follows

from (4.17) if indeed lim�!1 "
(�)
n (x) = 0.

Computing the zeros of f
(�)
n (x) for n = 10; � = 50 with the help of (4.17) and the

zeros of H10(x) gives a maximal absolute error of 0:0054 for the zeros of f
(50)

10 (x) and a

relative error of about 5%.

To obtain an optimal approximation we �rst use a di�erent scaling of the parameters

for (4.12). This time we introduce the parameters �; �; s by writing

x = �=

q
�� 1

2

; n+
1

2
= �(�� 1

2
); w = s

q
�� 1

2

; (4:18)

which yields

f
(�)
n (x) =

(�� 1
2
)�n=2

2�i

Z
C

e
(�� 1

2
)�(s) dsp

s(1� �s)
; (4:19)

where �(s) is given in (4.14) and the saddle points in (4.15) (now with di�erent � and

� as given in (4.18)) �). Next we substitute

�(s) =  (t) +A; (4:20)

which in fact is a conformal mapping of the s�plane to the t�plane, where

 (t) = 2�t� � ln t� 1

2
t
2
:

The quantities A and � follow from the condition that the saddle points in the s�plane
correspond to the saddle points

t1;2 = � �
p
�2 � � (4:21)

in the t�plane. Using the transformation (4.20), we obtain from (4.19) the representa-

tion

f
(�)
n (x) =

(�� 1
2
)�n=2 e(��

1

2
)A

2�i

Z
C

e
(�� 1

2
) (t)

f(t)
dtp
t
; (4:22)

where

f(t) =

p
tp

s(1� �s)

ds

dt
: (4:23)

�) This choice of the phase function, which leaves the term 1=
p

s(1� �s) as part of the inte-

grand, is not very obvious; also, the role of the large parameter �� 1

2
instead of � is not obvious.

We refer to Temme (1997) for more details on this point.
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Evaluating the equation  (t1)�  (t2) = �(s1)� �(s2), which de�nes the quantity

�, we obtain

2� arccosh
�p
�
� 2�

p
�2 � � =

�
p
W

�
+ 2

1� �
2

�2
arcsinh

�
p
W

2
p
1� �2

+ 2� arccosh
�(� + 1)

2
p
�

;

(4:24)

where W = �
2(� + 1)2 � 4�. The relation in (4.24) holds for 2

p
� =(� + 1) � � < 1,

which correspond with ��values in [
p
� ; �0), where �0 is the value that corresponds

with � = 1. For �2p� =(�+1) � � � 2
p
� =(�+1), the ��interval becomes [�p� ;p� ].

In that case W is negative, and it is better to write

s1 =
1

2

h
�(� + 1)� i

p
�W

i
; s2 =

1

2

h
�(� + 1) + i

p
�W

i
;

and

t1 = � � i

p
� � �2 ; t2 = � + i

p
� � �2 :

In this case the equation  (t1)�  (t2) = �(s1)� �(s2) gives

2�
p
� � �2 + 2� arcsin

�p
�
=

p�W
�

� 2
1� �

2

�2
arcsin

�
p�W

2
p
1� �2

+ 2� arcsin
�(� + 1)

2
p
�

:

(4:25)

The function � is an odd function of �. The �rst few coe�cients in the Maclaurin

expansion are given:

� =
� + 3

6
� +

8�2 + 45� + 135

1620
�
3 +

166�3 + 1302�2 + 4977� + 14175

408240
�
5 + : : : :

When � is available, A follows by straightforward calculations from

A = �(s1)�  (t1) = �(s2)�  (t2): (4:26)

Replacing this time the function f(t) in (4.22) with a constant c0, we obtain,

f
(�)
n (x) = c0 e

(�� 1

2
)A 2�n=2

n!

h
Hn

�
�
p
2�� 1

�
+ "

(�)
n (x)

i
: (4:27)

In Table 4.1 we give the zeros xk of f
(�)
n (x) for n = 10; � = 50 and compare the

zeros with approximations xak obtained from this asymptotic formula. That is, let (for

k = 1; 2; : : : ; 10) hk be the zeros of H10(x). De�ne �k = hk=
p
2�� 1 , and invert the

relation in (4.25) to obtain �k. Then the approximations of the zeros are given by
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Table 4.1. Comparing the zeros of f
(�)
n (x) for n = 10; � = 50 with approximations

based on the zeros of Hn(x). We show xk; k = 1; 2; : : : ; 10 (the zeros of f
(50)

10 (x))

with their approximations xak, and the absolute and relative errors.

k xk x
a
k abs: error rel: error

1 �0:0855233907 �0:0855230252 0:36� 10�6 0:42� 10�5

2 �0:0650754635 �0:0650753259 0:13� 10�6 0:21� 10�5

3 �0:0460298897 �0:0460298453 0:44� 10�7 0:96� 10�6

4 �0:0274857009 �0:0274856920 0:89� 10�8 0:32� 10�6

5 �0:0091433976 �0:0091433973 0:32� 10�9 0:35� 10�7

6 0:0091433976 0:0091433973 0:32� 10�9 0:35� 10�7

7 0:0274857009 0:0274856920 0:89� 10�8 0:32� 10�6

8 0:0460298897 0:0460298454 0:44� 10�7 0:96� 10�6

9 0:0650754635 0:0650753259 0:13� 10�6 0:21� 10�5

10 0:0855233907 0:0855230252 0:36� 10�6 0:42� 10�5

x
a
k = �k=

q
�� 1

2
. We observe that the approximations for these values of n and � are

quite satisfactory; at least 5 signi�cant decimal digits can be obtained in this way.

4.2. Hermite-type expansions

We give a few details on how to obtain a complete asymptotic expansion for Hermite-

type expansions. More details on this method, and on the results of the previous

subsection, can be found in a future publication Temme (1997).

We consider integrals of the form

F�(�) =
1

2�i

Z
C

e
�	(t)

f(t)
dt

t
; (4:28)

where

	(t) = 2�t� �2 ln t� 1

2
t
2
:

We assume that � is a positive large parameter and that � is positive. The logarithmic

function in 	 assumes its principal value, which is real for positive values of t. The

contour runs from t = �1;ph t = ��, encircles the origin in positive direction, and

terminates at �1, now with ph t = +�.

The saddle points t1;2 are given by

t1;2 = � �
p
�2 � �2 :

For large values of � the function F�(�) de�ned in (4.28) can be expanded in terms

of parabolic cylinder functions. This asymptotic expansion holds uniformly with respect

to � 2 IR and � 2 [0;1). For certain values of � and � the parabolic cylinder functions

reduce to Hermite polynomials.
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The procedure of obtaining the Hermite-type expansions runs as follows. We as-

sume for constructing the expansion that f is an analytic function in a domain 
 of the

complex plane that contains the saddle points and the contour C.
We write

f(t) = �0 + �0t+ (t� t1)(t� t2)g0(t); (4:29)

where �0; �0 follow from substituting t = t1;2. That is,

�0 =
t2f(t1)� t1f(t2)

t2 � t1
; �0 =

f(t2)� f(t1)
t2 � t1

: (4:30)

We obtain, on substituting (4.29) into (4.28) and integrating by parts the integral con-

taining g0(t),

F�(�) = �0H(�; �; �) +
�0

2�
H0(�; �; �) +

1

�

1

2�i

Z
C

e
�	(t)

f1(t)
dt

t
;

where

f1(t) = t g
0
0(t);

and H(�; �; �) equals F�(�) with f(t) replaced by unity, that is,

H(�; �; �) = 1

2�i

Z
C

e
�	(t) dt

t
;

and the prime in H0 denotes the derivative with respect to � �). Repeating this proce-

dure, we obtain for N = 0; 1; 2; : : :

F�(�) = H(�; �; �)
N�1X
s=0

�s

�s
+
H0(�; �; �)

2�

N�1X
s=0

�s

�s
+

1

�N
RN (�; �); (4:31)

where

RN (�; �) =
1

2�i

Z
C

e
�	(t)

fN (t)
dt

t
;

and �s; �s; fs(t) follow from the recursive scheme

fs(t) = �s + �st+ (t� t1)(t� t2)gs(t);
fs+1(t) = t g

0
s(t);

�s =
t2fs(t1)� t1fs(t2)

t2 � t1
;

�s =
fs(t2)� fs(t1)

t2 � t1
;

for s = 0; 1; 2; : : : ; with f0(t) = f(t).

�) For convenience, we indicate three variables in H(�; �; �), although it is a function of two

variables.
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The function H(�; �; �) is a parabolic cylinder function. From Abramowitz &

Stegun (1964, page 687, formula 19.5.1) we obtain

H(�; �; �) = �
1

2
��2

e
��2

�(��2 + 1)
U(� 1

2
� ��

2
; 2�
p
� ):

If ��2 = n (non-negative integer) then H(�; �; �) becomes a Hermite polynomial as in

the previous subsection (cf. also formula 19.13.1 in Abramowitz & Stegun):

H(�; �; �) = 1

n!

�
n

2�2

�n=2
Hn

�
�

p
2n=�

�
:

The above integration-by-parts technique is a variant of one given in Bleistein

(1966), and can be used in several other cases for obtaining uniform expansions of

integrals (cf. Wong (1989)).

All coe�cients �s; �s are well-de�ned and the functions fs are analytic in the

domain where f0 = f is analytic. In order to show that (4.30) has a meaning as an

asymptotic representation, an estimate of the remainder RN (�; �) has to be given.

Remark 4.1. Under certain conditions on f(t) in (4.28) the expansion in (4.31) be-

comes an expansion in negative powers of �2. That is, it may happen that �2s = �2s+1 =

0; s = 0; 1; 2; : : : . The choice we made for the starting point (4.19), which produced a

function f of the form as in (4.23), resulted in an expansion in which �0 = 0, and in

fact in highly accurate approximations of the zeros of f
(�)
n (x) as shown in Table 4.1.

5. Other recent results on uniform expansions of integrals

In this paper we have concentrated on results for functions related to the Tricomi

	�function. This function is also an important topic in the recent interest in the Stokes
phenomenon. In this section we mention a few aspects of the Stokes phenomenon; in

particular we discuss shortly Olver's work on the 	�function in connection with this

topic. There are several other recent publications in which uniform asymptotic ex-

pansions are derived by using integrals; we mention a series of papers by Wong and

co-workers on certain orthogonal polynomials.

In Temme (1996) incomplete gamma functions are considered for negative values of

the parameters; the results can be used for complex values also, and complement earlier

results that concentrate on positive values of the parameters, again with extension to

complex values.

Temme (1995) gives a selection of recent problems in connection with uniform

asymptotic methods for integrals.

5.1. Expansions in connection with the Stokes phenomenon

In Berry (1989) the Stokes phenomenon has been given a new interpretation. This

phenomenon is related with the di�erent asymptotic expansions a function may have

in certain sectors in the complex plane, and with the changing of constants multiplying

asymptotic series when the complex variable crosses certain lines (also called Stokes
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lines). Berry explained that the constants are in fact rapidly changing smooth functions,

which can be approximated in terms of the error function. His approach was followed by

a series of papers by himself and other writers. At the same time interest arose in earlier

work by Stieltjes, Airey and Dingle to re-expand remainders in asymptotic expansions

and to improve the accuracy obtainable from asymptotic expansions by considering

exponentially small terms.

The Stokes phenomenon and the topic of exponentially asymptotics are connected

with uniform expansions of integrals, in particular, with approximations which are uni-

formly valid with respect to variations in the phase of the large parameter. We mention

the contributions on a better understanding of the asymptotics of the gamma func-

tion by Berry (1991), Paris & Wood (1992) and Boyd (1994). More general pa-

pers are Howls (1992), Berry & Howls (1991) and (1994). For applications to the

	�function we mention Olde Daalhuis (1992) and (1993). In Boyd (1990) new re-

sults for the modi�ed K�Bessel function have been given. In Jones (1990) a method

has been devised for estimating the optimal remainder in an asymptotic approximation

which is uniform with respect to variations in the phase of the large parameter. An

introductory paper on the Stokes phenomenon and exponential asymptotics is Paris &

Wood (1995).

In Olver (1991a) and (1991b) Berry's approach is rigorously treated for integrals

representing the 	�function (see also Olver (1994)). Olver showed that the exponen-

tial integral

Ep(z) = z
p�1

Z 1

z

e
�t

tp
dt = z

p�1�(1� p; z); (5:1)

where �(a; z) is the incomplete gamma function, plays an important role in Berry's

smooth interpretation of the Stokes phenomena for certain integrals and special func-

tions. Olver (1991a) investigates Ep(z) in particular at the Stokes lines phz = �� and

the results are used in Olver (1991b) for the 	�function. We give a few details of

Olver's results.

Let

Fp(z) =
�(p)

2�

Ep(z)

zp�1
(5:2)

and z = �e
i�
; � = n� �+ p with � a large parameter, p �xed. Then

Fn+p(z) � (�1)nie���i
�
1

2
erfc

�
c(�)

r
1

2
�

�

� i
e
� 1

2
�fc(�)g2

p
2��

1X
s=0

�
1

2

�
s
g2s(�; �)

�
2

�

�s�
;

(5:3)

uniformly with respect to � 2 [�� + �; 3� � �] and bounded values of j�j; � denotes an
arbitrarily small positive constant. Furthermore,

c(�) =
q
2 fei� + i(� � �) + 1g ;

with the choice of branch of the square root that implies c(�) � (� � �) as � ! �;

the coe�cients g2s(�; �) are continuous functions of � and �. A similar expansion for
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Fn+p(z) is given when � 2 [�3�+ �; �� �]. As Olver remarks, this expansion quanti�es

the Stokes phenomenon, that is, the rapid but smooth change in form of other expansions

as � passes through the common interval of validity of the other expansions.

By using these resultsOlver (1991b) gives a detailed treatment of the 	�function.
De�ne Rn(a; b; z) by

	(a; a� b+ 1; z) = z
�a

n�1X
s=0

(�1)s (a)s(b))s
s! zs

+Rn(a; b; z); (5:4)

where

n = jzj � a� b+ 1 + �;

jzj being large, a and b being �xed real or complex parameters, and j�j being bounded.
Then

Rn(a; b; z) = (�1)n2� z
b�1

e
z

�(a)�(b)

�m�1X
s=0

(�1)s (1� a)s(1� b)s
s!

Fn�s+a+b�1(z)

zs

+ (1� a)m(1� b)mRm;n(a; b; z)

�
;

where m is an arbitrary �xed integer, and

Rm;n(a; b; z) =

�O �e�z�jzjz�m� ; if jph zj � �,
O (z�m) ; if � � jph zj � 5

2� � �.

Furthermore, these sectors of validity are maximal. Observe that the expansion in (5.4)

starts with the Poincar�e-type expansion as given in (2.4). For other details on the

expansion we refer to Olver's paper.

In later papers by Olver, Olde Daalhuis, etc., many results for the 	�function and
other special functions are obtained by methods based on di�erential equations.

5.2. Orthogonal polynomials

In a series of papers, Wong and his co-workers have derived uniform asymptotic approx-

imations for orthogonal polynomials that do not satisfy a di�erential equation, and for

which integral methods are used. In these papers conformal mappings have been used

that are of the same kind as the given in (4.20) and in Temme (1986).

[1] In Jin & Wong (1996) the Meixner polynomials have been considered, which

can be de�ned by the generating function

�
1� !

c

�x
(1� !)

�x��
=

1X
n=0

mn(x;�; c)
!
n

n!
: (5:5)

There is a relation with the Gauss hypergeometric function:

mn(x;�; c) = (�)n 2F1(�n;�x;�; 1 � 1=c):
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Two in�nite asymptotic expansions are derived for mn(n�;�; c). One holds uni-

formly for 0 < " � � � 1+a, and the other holds uniformly for 1�b � � �M <

1, where a and b are two small positive quantities. The main approximants are

parabolic cylinder functions, which are in fact Hermite polynomials.

[2] Bo Rui & Wong (1994) gives expansions for Charlier polynomials, which follow

from the generating function

e
�aw (1 + w)x =

1X
n=0

C
(a)
n (x)

w
n

n!
; jwj < 1: (5:6)

There is a relation with the Laguerre polynomials and the Tricomi-Carlitz poly-

nomials, because the Charlier polynomials can be written as

C
(a)
n (x) = n!L(x�n)n (a): (5:7)

(cf. (4.2) and (4.5)). An in�nite asymptotic expansion is derived for C
(a)
n (n�),

as n ! 1, which holds uniformly for 0 < " � � � M < 1. The results are in

terms of the J�Bessel function. Considering a as the large parameter gives an

asymptotic problem as treated in the previous section, with approximations in

terms of Hermite polynomials.

[3] Bo Rui & Wong (1996) treats the Pollaczek polynomials, which are de�ned by

the generating function

�
1� we

i�
��1=2+ih(�) �

1� we
�i�
��1=2�ih(�)

=

1X
n=0

Pn(x; a; b)w
n
;

where

h(�) =
a cos � + b

2 sin �
; a > �b:

An asymptotic expansion is derived for Pn(cos(t=
p
n ); a; b), as n ! 1, which

holds uniformly for 0 < " � t � M < 1. The results are in terms of Airy

functions. A discussion on approximations of the zeros of Pn(cos(t=
p
n ); a; b) is

included.
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