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Hermite polynomials are considered as appraximants in asymptotic representa­
tions of certain other polynomials. Examples are given for polynomials from the 
Askey scheme of hypergeometric orthogonal polynomials. We also mention that 
Hermite polynomials can be used as main approximants in uniform asymptotic 
representations of certain types of integrals and differential equations. 

1 Introduction 

Hermite polynomials show up in several problems of asymptotic analysis. We 
consider three different instances where these classical orthogonal polynomials 
can be used as main approximants: 

1. As limits of other polynomials such as Laguerre and Jacobi orthogonal 
polynomials, but also of generalized Bernoulli polynomials. We explain 
that these limits may be derived from asymptotic representations in which 
Hermite polynomials occur. 

2. In turning point problems for second order linear differential equations. 
In particular the Hermite polynomials can be used when two nearby 
turning points are present. 

3. For functions defined as an integral in which the saddle points follow a 
certain pattern for certain values of the parameters 

In all three cases, asymptotic representations of polynomials are considered 
in terms of Hermite polynomials. In the second and third case the Hermite 
polynomials arise as special cases of another set of special functions, the Weber 
parabolic cylinder functions, which can be used in similar and more general 
problems of asymptotic analysis. 
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We concentrate on the first topic; in particular we give examples from 
the Askey scheme of hypergeometric polynomials. We give examples in which 
Hermite polynomials are used in asymptotic approximations, and we also give 
approximations in terms of other polynomials. 

2 Limits between orthogonal polynomials 

It is well known that the Hermite polynomials play a crucial role in certain 
limits of the classical orthogonal polynomials. For example, the ultraspher­
ical (Gegenbauer) polynomials GJ(x), which are defined by the generating 
function 

00 

{1- 2xw + w2)-1' = L G~(x)w'\ -1 :::; x:::; 1, lwl < 1, 
n=O 

have the well-known limits 

lim GJ(x) - xn 
')'-+00 c;r (1) - I 

The first limit shows that the zeros of GJ(x) tend to the origin if the order 
"I tends to infinity. The second limit is more interesting; it gives the relation 
with the Hermite polynomials if the order becomes large and the argument x 
is properly scaled. 

For the Laguerre polynomials, which are defined by the generating func­
tion 

00 

(1-w)-a.-le-w:i:/(l-w) = L L~(x)wn, lwl < 1, (2.1) 
n=O 

a, x E cr:, similar results are 

lim -nL°'( ) = (1 - xr 
Q n QX I ' a.-+oo n. 

( 1r2-n/2 ( ) 
lim a-n/2 L°' (xva + o) = - Hn x/\12 . (2.2) a.-+oo n n! 

This again gives insight in the location of the zeros for large values of the 
order o, and the relation with the Hermite polynomials if the order becomes 
large and x is properly scaled. 

Many methods are available to prove these and other limits. In this paper 
we concentrate on asymptotic relations between the polynomials, from which 
the limits follow as special cases. 
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3 The Askey scheme 

In Koekoek & Swarttouw (1998) many relations are given for hypergeomet­
ric orthogonal polynomials and their q-analogues, including limit relations 
between many polynomials. In Figure 1 we show examples for which limit re­
lations between neighboring polynomials are available, but many other limit 
relations are mentioned in Koekoek & Swarttouw (1998), Godoy et al. (1998) 
and Ronveaux et al. (1998) 

Askey Scheme of Hypergeometric 
Orthogonal Polynomials 

Wilson 
11,X, a, b, t,d 

Continuous 
dual Hahn 

1i,x.a.b.c 

Continuous 
Hahn 

n.x.a,b,c 

I ~::::. I 
~ ~ 
~ DualHahn 
~ n.x.r.11.N 

~ t1 ~ t1 ~ \\ ~ 

1 Fi 

Meixner­
Pollaczek 

11,x,1p. 

.....-J-ac_o_b_i-.., r::::l Krawtchouk 

n,x,a,Jl ~ n,x,p.N 

~ ~ 
Laguerre Charlier 

n..r. a n.x.a 

Figure 1. The Askey scheme for hypergeometric orthogonal polynomials, with indicated 
limit relations between the polynomials. 

In Lopez and Temme (1999a, 1999b) we have given several asymptotic re­
lations between polynomials and Hermite polynomials. In the first paper we 
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considered Gegenbauer polynomials, Laguerre polynomials, Jacobi polynomi­
als and Tricomi-Garlitz polynomials. In the second paper we have considered 
generalized Bernoulli polynomials, generalized Euler polynomials, generalized 
Bessel polynomials and Buchholz polynomials. 

The method for all these cases is the same and we observe that the method 
also works for polynomials outside the class of hypergeometric polynomials. 
The method is different from the one described in Godoy et al. (1998), where 
also more terms in the limit relation are constructed in order to obtain more 
insight in the limiting process. 

In current research we investigate if other limits in the Askey scheme can 
be replaced by asymptotic results. Until now we verified all limits from the 
third level to the fourth (Laguerre and Charlier) and the fifth level (Hermite). 
Several limits are new, and all results have full asymptotic expansions. 

4 Asymptotic representations 

Starting point is a generating series 

00 

F(x, w) = LPn(x) w'\ (4.1) 
n=O 

F is a given function, which is analytic with respect to w at w = 0, and Pn is 
independent of w. 

The relation (4.1) gives for Pn the Cauchy-type integral 

1 1 dw Pn(x) = 2--:- F(x, w) n+l, 
7ri c w 

where C is a circle around the· origin inside the domain where F is analytic 
(as a function of w). 

We write 

F(x, w) = eAtu-Btu2 f(x, w), 

where A and B do not depend on w. This gives 

Pn(x) = -. e tu- tu f(x, w) --. 1 1 A B 2 dw 
27ri C wn+l 

Because f is also analytic (as a function of w), we can expand 

00 

f(x, w) = e-Atu+Btu2 F(x, w) = L CkWk, 

k=O 

(4.2) 

(4.3) 
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that is, 

1 
f(x, w) = 1 + lP1(x) -A]w + [p2(x) -Api(x) + B + 2A2]w2 + ... 

if we assume that Po(x) = 1 (which implies ea = 1). 
We substitute (4.3) in (4.2). The Hermite polynomials have the generating 

function 

2xw-w2 Loo Hn(x) n e = --w 
n! ' 

n=O 

x,w E <C, 

which gives the Cauchy-type integral 

H (x) = ~ 1 e2xz-z2 z-n-l dz 
n 2wi c ' 

(4.4) 

where C is a circle around the origin and the integration is in positive direction. 
The result is the finite expansion 

( ) _ n ~Ck Hn-k(~) z = .JB 
Pn x - z ~ zk ( n - k) ! ' ' 

k=O 

A 
~ = 2/B' (4.5) 

because terms with k > n do not contribute in the integral in (4.2). 
In order to obtain an asymptotic property of (4.5) we take A and B such 

that c 1 = c2 = 0. This happens if we take 

A= P1(x), B = ~PI(x) - p2(x). 

As we will show, the asymptotic property follows from the behavior of the 
coefficients Ck if we take a parameter of the polynomialpk(x) large. We use the 
following lemma, and explain what happens by considering a few examples. 

Lemma 4.1 Let <f>(w) be analytic at w = 0, with Maclaurin expansion of the 

form 

<f>(w) = µwn(ao + a1w + a2w2 + ... ), 
where n is a positive integer and ak are complex numbers that do not depend 

on the complex number µ, ao =/= 0. Let Ck denote the coefficients of the power 
series off (w) = e4>Cw>, that is, 

co 

f(w) = e4>(w) = L ckwk. 

k=O 

Then Co = 1, Ck = 0, k = 1, 2 ... , n - 1 and 

Ck= Q (Jµjlk/nJ)' µ -t 00. 
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Proof The proof follows from expanding 

~00 Ckef = e<f>(w) = ~ [<J>(w)Jk 
L...k=O L kl 

k=O . 
00 µ.kwkn 

= L ~(ao+a1w+a2w2 + ... )k, 
k=O 

and comparing equal powers of w. 

4.1 Ultraspherical polynomials 

The generating function is 

00 

F(x,w) = (l-2xw+w2)--Y = LCJ(x)wn, 
n=O 

with 

CJ(x) = 1, Cl(x) = 2-yx, CJ(x) = 2-y('r + l)x2 - 'Y· 

Hence, 

A= C{(x) = 2x-y, B = ~ [Ci(x)]2 - CJ(x) = -y(l - 2x2), 

and we can write 

where 

We have 

,...,...,( ) = n ~ Ck Hn-k(€) 
vfi x z L k ( - k)! ' 

k=O Z n 

z = J-y(l - 2x2), € = x-y. 
z 

Co = 1, C1 = C2 = 0, 

Higher coefficients follow from a recursion relation. 

• 

(4.6) 

The function f(x,w) of (4.3) has the form f(x,w) = e<f>(x,w), where 
<J>(x, w) = -yw3(ao+a1w+a2w2+ .. . ). By using Lemma 4.1 and€= O(...fY) we 
conclude that the sequence {</>k} with <l>k = ck/zkHn-k(€) has the following 
asymptotic structure: 

</>k = 0 ( 'Yn/2+ Lk/3J-k) ' k = 0, 1, 2, .... 
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This explains the asymptotic nature of the representation in (4.6) for large 
values of/, with x and n fixed. 

To verify the limits given in Section 2, we first write x in terms of.;: 

x = .; 
J'Y+2e· 

With this value of x we can verify that 

ck/zk = o(l), ., _.... oo, k > 0, 

and in fact we have the limit 

Ii In 0-r ( x ) - 1 H ( ) 
"f-+n;;., (! + 2x2)n/2 n V'Y + 2x2 - n! n x . 

4.2 Laguerre polynomials 

We take as generating function (see (2.1)) 
00 

F(x,w) = (1 +w)-a-lewx/(l+w) = L(-ltL~(x)wn. 

We have 

which gives 

and we obtain 

where 

We have 

n=O 

Lg(x) = 1, Lf (x) =a+ 1 - x, 
1 

L~(x) = 2[(a+l)(a+2)-2(a+2)x+x2 ], 

A= x-a-1, 

L a( ) = (-l)n n ~ Ck Hn-k(.;) 
n x z ~ zk ( n - k) ! ' 

k=O 

x-a-1 .; = . 
2z 

(4.7) 

(4.8) 

Higher coefficients follow from a recursion relation. The representation in ( 4. 7) 
has an asymptotic character for large values of !al + Ix!. It is not difficult to 
verify that the limits given in (2.2) follow from (4.7). 
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5 Meixner-Pollaczek polynomials into Laguerre polynomials 

We give an example on how to use Laguerre polynomials for approximating 
other polynomials. 
Lemma 5.1 Let the polynomial,s p,..(x) be defined by the generating function 

00 

F(x,w) = LPn(x)wn, 
n=O 

where F(x, w) is analytic in w = 0 and F(x, 0) = 1. Let the coefficients ck(x) 
be defined by the expansion 

00 

e-Aw/(Bw-l)(l - Bw)0 +1 F(x, w) = 2.>k(x)wk, Co = 1, 
k=O 

where A, B and C do not depend on w. Then Pn(x) can be represented as the 
finite sum 

where L~(x) are the Laguerre polynomials. Moreover, A, B and C can be 
chosen such that c1 = 0, c2 = 0, c3 = 0. 

Proof Use the Cauchy integral of Pn(x) and of the Laguerre polynomials. • 

For the Meixner-Pollaczek polynomials we have the generating function: 
00 

( 
·,i. )->.+ix ( ·,;, )->.-ix ~ (>.) F(w)= 1-e'"'w l-e-•"'w =LPn (x;rp)wn. 

n=O 

From (2.1) it follows that 

00 

G(w) = eAw/(Bw-1) (1- Bw)-C-1 = L L~C)(()Bnwn, 

n=O 

where~= A/B. We define Ck by f(w) = F(w)/G(w) = L:~ockwk. Then 
the expansion for the Meixner-Pollaczek polynomials reads 

n 

P~"\x; rp) = L Bn-kckL~~k(~), (=A/ B. 
k=O 

We write x + i).. = reifJ, 8 E [O, 7l'], r 2: 0, and consider r --+ oo; the asymptotic 
results hold uniformly with respect to e. 
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First we consider a simple case by taking B = 1 and C = a, and solve 
c1 = 0 for A. This gives 

A= a+ 1 - 2A.cos</>- 2xsin</>. 

The first coefficients Ck are given by 

Co = 1, c1 = 0, c2 = x sin 24> + >.cos 24> - 2(x sin</>+>. cos <P) + ~a. 

The first term approximation can be written as 

p~>.)(x;cp)= [L~"'l(.;)+O(rn-l)], .;=A. 

In this case a limit can be obtained by putting>.= (a+ 1)/2. Then we have 
Ck = 0( <P2 ) as </> --> 0 for k 2: 2, and we obtain 

lim p~a+l)/3 [(a+1)(1 - cos</>) - .;)/(2sin<P); </>] = L~"'l(.;). 
</>->O 

This includes the limit of the Askey scheme 

lim p~a+i)/2 (-E/(2</>); 4>) = L~"'l(.;). 
<P->0 

Next we solve c1 = 0, c2 = 0 for A and C, with B = 1. This gives 

A= 2[x(sin <P- sin2</>) +A.( cos</>- cos24>)], 

C = 2[x(2 sin<P - sin2</>) + A.(2cos<f> - cos 2</>)] - 1. 

and the first term approximation can be written as 

as r--> oo, uniformly with respect to B. 
Solving A = .;, C = a for x and >., we obtain 

1 
>. = (1 - cos</>).;+ 2(a + 1)(2cos</J- 1), 

2(.; - a - 1) cos2 </> + (a + 1 - 2€) cos</> + a + 1 - .; 
x= 

2sin</> 

Then c3 =~(a+1 - 2€)(1- cos</>) and Ck= 0(</>2 ) as</> -t 0 fork 2: 3. We 
obtain the limit 
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6 Methods based on differential equations 

The function 

satisfies the differential equation 

U" = p(x)U, p(x) = x2 - (2n + 1). (6.1) 

The function p(x) has two real zeros ±v'2n + 1, and all n zeros of Hn(x) are 
in the interval (-v'2n + 1, v'2n + 1 ). 

Scaling parameters, we see that Vn(t) := Un( ../2n + 1 t) satisfies 

d2 
dt2 V=(2n+1)2 (t2 -1) V. 

The question now is, can we approximate the solutions of the equation 

d2 
dt2 W = v2 (t2 - a 2 ) W + j(t)W, v ~ oo, 

in terms of Hermite polynomials or related functions? 
For more details on this method we refer to Olver (1980) and Temme 

(1990). 

7 Hermite-type approximations for integrals 

The Hermite polynomials can be represented in the form 

~H ((v'2n+l) = 2n/2 le(n+frp(t).!!:!._ (7.1) 
n! n (n + ~)n/22ni c Vt' 

where 

) 1 2 1/J(t = 2.;t - ln t - 2t . 

and the contour C runs from t = -oo, ph t = -n, encircles the origin in 
positive direction, and terminates at -oo, now with ph t = +n. 

The saddle points of the integral are defined by the equation 1f;'(t) = 
2.; - l/t - t = 0 and are given by 

ti,2 = .; ± v0-=l. (7.2) 

When .; = ±1 the saddle points coalesce, and when .; ,..., 1 uniform Airy-type 
expansions can be derived. When -1 < ( < 1 the saddle points are complex 
(on the unit circle); for these values of.;, that is, if -.,/2n + 1 < x < .,/2n + 1, 
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zeros occur. When e > 1 or e < -1 the saddle points are real, and the Hermite 
polynomials are non-oscillating. See Figure 2 for the location of the saddle 
points. 

-1 

Figure 2. The location of the two saddle points ti,2 defined in (7.2). 

7.1 An expansion in terms of Hermite polynomials 

We consider integrals of the form 

F"({) = 2~i fc e"w(t) f(t) ~t' 
where 

w(t) = 2et- p2 1nt- ~t2 • 

(7.3) 

We assume that "' is a positive large parameter and that p is positive. The 
contour C is as in (7.1). 

The saddle points ti,2 are now given by 

ti,2 = {± Jt;,2 -p2 . 

For large values of x: the function F,.(e) defined in (7.3) can be expanded 
in terms of parabolic cylinder functions. This asymptotic expansion holds 
uniformly with respect toe E IR and p E [O, oo). For certain values of /t and 
p the parabolic cylinder functions reduce to Hermite polynomials. 

For more details we refer to Temme (1986), Bo Rui & Wong (1994), Jin 
& Wong (1996), and Li & Wong (1999). 
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