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Ahstr11ct. l:niform asymptotic expansions are given for the Stirling numbers of the first kind 

for integral arguments and for the second kind as defined for real arguments by Flajolet and 

Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger 

is established for a range including the classical integral domain. 

Subject classification (A.'v!S 1991) 11B73, 4lA60 

1. IntrodtJ,ction 

Recently Flajolet and Prodinger [4] have given a solution to the problem of Graham, Knuth 

and Patashnik [5] which asks for a good generalization of the Stirling numbers of the second 

kind, denoted here by SJ: for complex numbers n and k. They define (equation (2) of [4]) 

Here C is a Hankel contour which starts at -oo, circles the origin and goes back to -oo 

subject to !Im zi < 27r. Flajolet and Prodinger do not consider this problem for Stirling 

numbers of the first kind in the same detail although they do establish the identity SJ: = s:::~, 
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s~ denotes the Stirling number of the first kind using their definition of 8¥. The definition 

of s~ they give is 
y! 1 1 ,, ( 1 ) dw lsYj = -- log -- --, 

x x! 27ri c, 1 - w wY+l 

where C1 is the "raindrop contour'', the image of C under w = ez - 1. It is natural to 

consider the absolute value of the Stirling numbers of the first kind as Moser-Wyman [7] 

and Temme [11] have done since questions of sign are avoided and ls~I is the number of 

permutations on n symbols with k cycles. It is natural for us, following these authors, to 

define for positive real x and y 

Sy= _1 { r(u + y + 1) du . 
x 27ri Jc, r(u + 1) ux+I 

Here C2 is any Jordan curve which circles the origin in the counterclockwise sense. Note 

that r(u + y + l)/f(u + 1) is a polynomial in u for integral y and has no singularities for 

positive nonintegral y for lul < y. We adopt this last definition, however we are primarily 

interested in positive integral values where the definitions agree. 

Flajolet and Prodinger show that S¥ is for fixed y an entire function of x and for fixed x 

a meromorphic function of y with poles at the negative integers. 

In this note we derive asymptotic estimates for these generalized Stirling numbers. Our 

estimates are completely analogous to the estimates stated by Temme [11] for the standard 

Stirling numbers and are uniform in 8 < x S y, 8 a positive constant as y -+ oo for the 

Stirling numbers of the second kind and uniform and for the first kind are uniform for 

integral x and y in the same ranges. One reason for doing this is that certain steps in the 

proof of Temme's results were omitted (see Odlyzko's comments [8] regarding this), another 

is to verify that these results hold for Flajolet and Prodinger's generalization. We derive 

Temme's results using the analysis of Moser and Wyman [6, 7] which turns out to be easily 

adapted to the generalized numbers. We also, using the method of Merlini-Richmond [10] 

(based on work of Gardy [3]) show that S¥ is a logconcave function of x for large y and 

8 < x ~ y. 

We prove three theorems (we let 8 denote a positive constant). 

Let uo be the unique real positive solution of the equation 

m 
-uo = 1 - e-"0 • 
n 

(It is easily seen that u/(l - cu) is an increasing function). Let 

to= (y- x)/x, <fi(u) = -y logu + x log(eu - 1), 
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and 

A= </>(uo) - xto + (y - x) log to. 

Let 

f(to) = (to/(1 + to)(uo - t0)) 112 . 

(We define t0 , A and f (t0) as Temme [11] does). Finally let 

T:tIJ;QREM _1_, The relation 

S~ "'eAXy-x f(to) (~), 
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where (~) = y!/x!(y - x)! holds uniformly as y -+ oo for 8 < x ~ y. Furthermore if 

8 < .r ~ y - y113 then 

y! (e"O - l)X 1 [ ( -1)] 
S~ = x! ----2ug ___ [;~oxHo(~J]i72 1 +CJ y ' 

where the CJ-constant depends only on 8. Finally, if y - y 113 ~ x ~ y then 

1 y2(y-x) 
SY= ------- [i +CJ (y-1/3)] 

X 2Y-X (y - X) ! ' 

where the CJ-constant is independent of x. 

Now let iji(u) = log[(u + l)(u + 2) .. · (u + [y])] - x logu. Let u1 be the unique positive 

solution of iti'(u) = 0 (see Temme [11] for a proof that u 1 is unique). Let t 1 = x/(y- x) and 

B = w(u1) - ylog(l + t1) + xlogt1. Finally, let g(t1) = u\1[x(y - x)/y1/J"(u1 )]112 and let 

H = x - I:~lc/ uif(ui + h) 2 . 

'l'HEQREM 2_, The relation 

s~ r-. e8 g(t 1) (;) 

holds uniformly for 0 < x ~ y as y -+ oo when x and y are integers. Moreover if 0 < x ~ 

(logy) 112 then for integral x and y 

s~ = y!(logy; 'Y)x-1 { 1 + ('.) [(logy)-1/2]}. 
x. 

If (logy) 112 < x ~ y - y1!3 then for real x and y 

r(y + 1 + U1) 
s~ = r(u1)(27rH)1/2uf+1 [1 +CJ (1/x)] 
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where the 0-constant is independent of x. If y - y113 $ x $ y then independently of x for 

integral x and y 

THEOREM 3. The function S~ is a log-concave function of x for 8 < x $ y and y large 

enough. 

REMARK 1. Theorem 3 extends the well-known results that S~ is log-concave as a func­

tion of the discrete variable k. 

REMARK 2. We depend very heavily upon the analysis of Moser- Wyman [6, 7). We 

assume the reader has a copy of these papers in hand. The first statement in Theorem 1 

and in Theorem 2 is found in Temme [11). The subsequent statements in each Theorem are 

derived first following Moser and Wyman. The first statements are then shown to follow. 

In our approach most of the effort comes from showing that Temme's results are equivalent 

to the Moser-Wyman results in the extreme values of x with respect toy. Since the Moser­

Wyman results are very simply expressed this seems of value in its own right however our 

main point is that Temme's formula unifies the results of Moser-Wyman. See Section 3 for 

further discussion. 

REMARK 3. It seems very likely that it is not difficult to establish Theorem 2 for real 

x and y using our definition of s~ and a Theorem 3 for s~ using the Flajolet-Prodinger 

definition of s~. It would be more work to establish both results using only one definition. 

2. Proofs of the theorems 

2.1. Proof of Theorem 1 

Let u0 be defined as in Theorem 1. A significant difference with the Moser-Wyman analysis 

arises here. The points k7ri are just zeros of the integrand when x is an integer and a 

contour can be moved through them with no difficulty. When x is not an integer we avoid 

doing so. We deform the contour C to the following contour:Let C1 be the straight line 

Im(z) = -211" + 8, 0 < 8 however we shall think of 8 as small but fixed and Re(z) $ t:, 

where t: is a small positive number. We let C2 be the straight line Re(z) = t:, going from 
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E + i(<l - 27r) to the circle lzl = u0 , C5 and C4 be the reflections in the real axis of C1 and C2 

respectively. We let C3 be the portion of the circle lzl = u0 , meeting C2 and C4 • The new 

contour is C1 U C2 U C3 U C4 U C5 in the counterclockwise sense. We now observe that in the 

Moser-Wyman analysis [7] n and k can be positive reals. We refer to their analysis leading 

to their equation ( 4.3). Note that Stirling's formula gives an asymptotic expansion for (~) 

provided x, y - x ~ oo. We obtain from their equation (5.1) (an instance of (4.3), letting 

x = m and y = n the result 

yl 1 l yl(e"D 1)"' 
(1) ~-. (e'-l)"'z-Y- 1dz= · - [1+0(1/y)], 

x. 27ri c. x!2ugJ7rxu0H(u0 ) 

where 2H(u) = e"(e" -1)-1 - ue"(e" -1)-2 and u0 is denoted by R by Moser and Wyman. 

This Moser-Wyman result holds uniformly in x if y - x 2': y113 . Let us now check that their 

analysis applies to the generalized Stirling numbers. Note that u0H(u0 ) is bounded away 

from 0 for all u0 , that xu0 2': y - x by the comment just after the Moser-Wyman equation 

(3.4c) in [7], and that C3 (R) and C4 in their equation (5.1) are bounded for all R. They do 

not use the fact that their m, n are integral to derive these facts. 

The integrals over C1, C2 , C4 and C5 are easily seen to be 0((2 + E)"' /(27r - a)Y) since 

le'I = exp[Re(z)] ::;: e• and lzl 2': 271" - 8. This error is exponentially small for 8 < x :S y so 

our equation (1) holds uniformly in x as y ~ oo provided y - x 2': y 113 • We now show that 

the result stated in Theorem 1 agrees with equation (1). Letting t0 = (y - x)/x again and 

using the Stirling approximation we deduce 

~ = (~) (y - x)Y-xe-(y-x)J27r(y - x) [ 1+0 (y- 1)] . 

Thus 

eA e<i>(uo)-xto+(y-:z;) log to 

~uo _ l)xe-(y-x)xY: [l + O (y-I)] 
ug(y - x)y-x ' 

so 

Now 

[ l 1/2 
J(to) = (y - x)/u5<P"(uo) , 

and using y/x = e"0u0/(e"0 - 1) we find that 

u5<P"(uo) = x [~ - (e~o~":)2 ] 
xuo [~1- - ( uoe"a )2 ] = 2xu0H(u0 ), 

e"a- e"o-1 
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so 

eAxy-x !(to) (y) = y!(e"' - l)"' [ 1 + 0 (y- 1)] . 

x x!2ugfo0H(uo) 

Thus if y - x ~ y 113 the first result of Theorem 1 follows from the Moser-Wyman results. 

We turn to the case y-x < y113 and again follow Moser-Wyman starting at their equation 

(2.1) and continuing to equation (2.11). We write with Flajolet-Prodinger 

Y y! 1 (e'-l)y-x -x-1 
Sy-x = ( )'2 . -- z dz. 

y-X.1rZC Z 

If one uses 
e• - 1 z ~ k ((2k) 2k 

log-z- = 2 + {;:,,(-1) k(27r)2kz ' 

and the substitutions z = 2w/(y - x), q = 2/(y - x) one obtains, as do Moser and Wyman, 

( e•z- l)y-x = [ 00 21"(2k)w2k ] 
exp w + ,{;(-l)k+' ~(27r)2k q2k-1 

00 

= ew L Pk(w)q\ 
k=O 

where the Pk(w) are polynomials in w with degree at least k + 1 and at most 2k. Thus 

agreeing with Moser and Wyman we get 

Now unlike Moser and Wyman, we use the classical identity, due to Hankel 

1 ( w -t-1 1 
2ni lee w dw = r(t) 

to obtain 

q x' -+ +---+··· (y) -:r: [ 1 q q2 ] 
x · x! 12(x - 2)! 288(x - 4)! 

( Y) -:r: [i (x)2 (x)4 ((x)5 (x)4) 3 ] 
x q + 6(y - x) + 72(y - x) 2 + 1296 - 180 /(y - x) + · · · · 

For the reasons that Moser and Wyman give, this is not only an asymptotic series it is a 

convergent series for x = o((y - x) 112). We therefore conclude that 

(2) 

if y - x = O(x1f3) = O(y'fa). 
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MMAB.KJ._._ This analysis can be replaced by the general technique known as Watson's 

Lemma for loop integrals see Olver [9]. 

We now show that this completes the proof of Theorem 1. We start with 

<P(uo) = -(y - x) logu0 + x log[(eu0 - 1)/u0] 

and 
e"D - 1 

Uo 

so 

( e"O - 1) 
log ---;;,

0
---- = log(x/y) + u0 . 

Thus 

<P(uo) = -(y - x) loguo + xu0 + x log[l - (y - x)/y]. 

Now 

1- (y- x)/y = x/y = (1 - e-"0 ) /uo = 1 - uo/2 + u~/6 + 0 (u~) 

implies 

(3) 2(y-x){ 4(y-x) 2 [ 3J} 
uo= --:y-- 1+-3Y2 +O (1-x/y) , 

so 

<P(uo) = -(y - x) 1ogu0 + y- x + 0 [(y- x) 2/y]. 

Also 

A= <P(uo) - xto + (y- x) logt0 = (y-x) log(y- x) - (y - x) 1ogu0 - (y - x) 1ogx. 

From (3) 

(y - x) loguo = (y - x) log2 + (y - x) log(y - x) - (y - x) logy + O [(y - x) 3 /y2], 

so 

Thus 

A -(y - x) log2 + (y - x) 1og(y/x) + O [(y - x) 2 /y] 

-(y - x) log2 + 0 [(y - x) 2 /y]. 
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if y - x = O(yll3 ). Now f(t0 ) = [t0/(1 + t0)(u0 - t0)Fl2 and to/(1 +to) = (y - x)/y. 

Furthermore u0 - t 0 = 2(y- x)y- 1 + O[(y- x)2 /y2] - (y-x)/x = (y -x)/y + O[(y- x) 2 /y], 

so f(t 0 ) = 1 + O[(y - x) 2/y]. Thus if y - x = O(y113 ) the first statement of Theorem 1 is 

equivalent to 
y2(y-x) 

2Y-X(y- x)! (1 + Q (y-1/3)], 
which agrees with equation (2); note that the x of equation (2) is y - x here. 

This proves Theorem 1. 

2.2. Proof of Theorem 2 

If h(n) :'.S m ::'.Sn - na, where h(n) is any function tending to infinity with n, and a is a 

positive constant < 1/2 then Moser-Wyman [6] show that (they denote U1 by R) 

where 
n 

H=m- L;ui/(u1 +k)2. 
k=I 

The fact that m and n are integers is not essential in their analysis. We can choose the 

contour of integration as they do. We let 

7/J(u) log r(u + y + 1) - log r(u + 1) - x logu, 

7/!'(u) W(u + y + 1) - w(u + 1) - x/u, 

w(u) :u f(u), (our '11 is Moser - Wyman's 7/J), 

etc., and use the asymptotic estimates for these functions given in Chapter 6 of [l]. One 

then obtains the same asymptotic estimates as if x and y were integers but the discrete sums 

we write should be interpreted in terms of 7jJ and its derivative. With this interpretation we 

get 

e.P(ui) = (uix+ y)I [1 + 0 (l/m)]. 
U1U1! 

Also 

Thus 
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Furthermore 

so, using Stirling's approximation, 

e8g(t1) (y) = ~{¥±~1 ±-_l_)_ [l + 0 (1/x)], 
x v12iHuf+1 

which agrees with the Moser-Wyman result. 

Suppose now that x = O(log1l2 y). Then t 1 = xy- 1 (1 - x/y)- 1 = x/y + O(logy/y2). To 

solve for u 1 note that 

1 1 1 
1/i(u 1) = - - + --- + · · · + ---- = log(u1 + y) + 'Y + 0(1/y) 

1 + U1 2 + U1 Y + U1 

(even when y is not an integer), so 

Now 

Furthermore 

xx xxex r ( )] tf = -(····-) = -- 1 + 0 y- 1 logy , y _ X x yx L 

so, using y!/((y - x)! ~ yx[l + O(y- 1 logy)J, we have 

Finally, if x is bounded away from 0, 

so 

thus 
8 (Y) y!(logy+'YY [ ( _1 )] e g(t1) x = - --;T ____ 1 + 0 log y , 

which agrees with Moser and Wyman if x = O(log1l2 y) when x and y are integral. 
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We now consider the remaining range y - x = O(y"), where 0 < a is a constant < 1/2. 

We note first of all that we can follow Moser-Wyman making only very minor changes to 

get (choosing their a= 1/3) to show that when x and y are integral 

In fact, Moser and Wyman give a convergent series for s;:!i, not only the first term, which 

is a complete asymptotic expansion. 

We now show that the first expression in Theorem 2 (which is Temme's) agrees with this 

formula. We begin by deriving an estimate for u1 . Note that 

?/J'(u1 ) = - 1-- + ~1-- + · · · + - 1 - - x/u1 
1 + U1 2 + U1 y + U1 

and that the above sum can be estimated by Euler-Maclaurin summation in a routine way, 

giving 

or 

Thus 

u1 2(yy~ xj + 0 [ :;;:;(~~ x)] = 'i(yy~ x) + O(y) 

2(yy~ x) [1 + 0 ( Y_~ x)] . 
Now 

and from Stirling's approximation this is 

e.P(ui) (1 + y/uit' (1 + y/u1)Ye-YuY-x[l + 0(1/y)] 
2(y-x) 

ey-y2 /2u1 +0(y3 /u'I) Y {1+0 [(y-x)2/y)]} 
2(y - x)y-x 

2y-2x y-x 

2Y'!J_x(y-ex)Y-x {1+o[(y-x)2/y)j}. 

Furthermore 

so 

e.P(uil(1 + t )-ytx = _e_yy-x ~ y-x ( ) x 

1 I 2Y-X y 
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Since 

we have that 

(:_)x = ( X )x = ex-y {1+0 [(y - x)/y)]}, 
y x+y-x 

nr-x { 1+0 [(y - x)2 /y)]} 

(~y-x { 1+0 [(y - x)2 /y)]}. 

Theorem 2 will now be proved if we show that g(t1 ) "" 1. Note 

ui ui ------- - ... - . -···-- + x 
(u1+1) 2 (u1+y) 2 

1 1 - ----·· ---- - ... - --·---------· + x 
(l+u\1)2 (l+yu\1)2 

y2 
-y+ +o[(y-x)2 /y2]+x 

U1 

-y + 2(y - x) + O((y - x) 3 /y2 ) + x = y - x + 0 [(y - x) 3 /y2]. 

Since 

g(t1) = J~ {t~,,f ~~r y = x [ 1+0(y-113)1 
we have g(t 1) = 1 + O(y- 113 ) and Theorem 2 is proved. 
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We follow the approach of Richmond-Merlini [10], however we use the Moser-Wyman results 

in place of Gardy's results [3]. The notation below is that of Moser- Wyman and Gardy. 

(Gardy's Theorem 3 was designed to hold under as general a class of functions as possible 

not only for the Stirling numbers). Clearly xu0 < y and equation (3.4) of Moser- Wyman [7] 

shows xu0 > y - x so xu0 plays the role of y in Gardy's work and also in that of Richmond­

.\1erlini. Gardy's oh(p) = p/(1-e-P)) is also the coefficient of (} 2 in Moser-Wyman's g(B, R). 

Moser-Wyman show that the coefficients, cki of ()k satisfy ck :S MR, Man absolute constant. 

The significant range of integration in Moser-Wyman is IBI :S (mR)- 318 = (mR) 118(mRJ- 112 , 

so the factor log y in Gardy's work is replaced by (mR) 1/ 3 or y 118 • This does not matter 

since Gardy's h(p) = exp(p) - 1 and 

(}kck = (}kd~l~g~(p~~~)-1 = 0 [(mR)l-3k/8] 
d (} B=D 

and so the terms with k 2'. 3 are negligible. The O(y- 1 log2 y) terms in Merlini-Richmond 

become O(y-3!4 ) using the Moser-Wyman analysis. Thus corresponding to Theorem 3.6 of 

I 
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[10] we have: If y - x 2: y1/ 3 , then 

dS'Y, 
dx 

d2 log Si 
~-;--

Chelluri et al. 

S~[logh(p) - logx], 

y [ 2 1 h' (p) dp] 
Sx - log x - x + h(p) J;; . 

Furthermore, Corollary 3.9 of Richmond-Merlini[lO] holds; it says that the term involving 

dp/ dx is < 0, so s~ is log-concave for y - x 2: y 113 • 

If y - x = O(y113) we can use the exact expression for S~ obtained in the proof of 

Theorem 1. It follows that 

logS~ = log(y + l)! - log(x + l)! - log(y -x)! + (y - x) log(x/2) + · · ·, 

and since the convergent series and the Stirling asymptotic series for the factorial function 

can be differentiated term by term, we get 

So again S~ is log-concave. 

It is clear that while we have derived Temmc's results in the slightly more general context of 

generalized Stirling numbers, the situation is not satisfactory. It would be much preferable 

to show how to choose the contour of integration so that Temme's j(t) (or G(t)) has no 

singularities on or in the contour of integration, indeed to sec how to do this for integrals 

other than those representing the Stirling numbers. The Moser-Wyman technique for the 

extreme ranges can be replaced by Watson's Lemma for loop integrals or other quite general 

methods. 

The log-concavity results show that the generalized Stirling numbers of the second kind 

have a unique maximum for 8 < x ::; y for large y. The problem of showing this for integral 

variables seems to be still open. Erdos [2] has shown that the Stirling numbers of the first 

kind have a unique maximum when the variables are integral. 
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