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New estimates are obtained for the remainder of uniform Airy type expansions of integrals 
containing a phase function with two coalescing saddle points. These expansions are obtained 
by the Bleistein method, in which both saddle points contribute to the expansion. The new 
estimates are valid as the asymptotic parameter tends to infinity, uniformly with respect to the 
parameter locating the saddle points as this parameter ranges over a connected unbounded set. 
Special attention is paid to the case of both the asymptotic parameter and the saddle point 
parameter tending to infinity. Two examples are worked out in detail, and in a final section it 
is explained how to apply the method to other types of uniform expansions. 
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1. Introduction 
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Many problems in mathematical physics and special functions lead to integral representa­
tions of the form 

F(z,a) = 1 ezf(x,a)g(x)dx, (1.1) 

where C is a contour, z is a large positive parameter, g(x) is an analytic function on a neighbour­
hood of C, and f(x,a) is an analytic function of x and a, with two saddle points, which depend 
on a and coalesce with ea.eh other a.s a varies continuously. With the cubic transformation 
x ~ w, given by 

f(x,a) = ~w3 - b2w + c, (1.2) 

and suggested by CHESTER, FRIEDMAN and URSELL [2], an asymptotic expansion for large z 
in terms of Airy functions can he obtained, this expansion being uniformly valid with respect 
to a as a ranges over a given connected set. The coefficients b and c are determined explicitly 
from the requirement that the transformation (1.2) is analytic on a neighbourhood of the two 
saddle points. In FRrnDMAN [5] a nice proof is given on the regularity of transformation (1.2). 
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For obtaining the expansion we use the following method. The transformation (1.2) yields 
the standard form 

where 

_1 1 z(!w3-b2w)h ( )d 
2 . e o w w, 

7rt £ 

dx 
ho(w) = g(x(w)) dw 

(1.3) 

(we removed the factor ezc); the phase function has two saddle points at w = ±b. Consequently, 
the integral (1.3) has a turning point chara.cter: the behavior changes strongly when b varies 
from real to imaginary values. When b = 0 the saddle points coalesce at w = 0. 

We write h0 (w) = a 0 + (30w + (w2 - b2 )g0 (w), such that both saddle points contribute to 
the expansion. Then the first two terms deliver two terms of the asymptotic expansion. We 
integrate the remaining integral by parts and it becomes of the form z-1 times integral (1.3), 
where ho( w) is replaced by 

d 
h1(w) = dwgo(w). 

We refer to this method as being Bleistein 's method. This method is used in the literature, for 
instance in WONG [8, Chap. 7, §5], where an estimate for the remainder of the expansion in 
terms of Airy functions is given in terms of the first neglected terms. In OLVER (6, Chap. 9, §12 
& §13] an estimate for the remainder of an expansion of the Anger function A_v(a.z1) is given, 
which has a turning point at a= 1, as v--+ oo. This estimate is also valid as a --+ oo, but the 
expansion is different from the one considered in our paper. (An integral representation of the 
form (1.3) is used, and the expansion is obtained by expanding ho(w) at one saddle point.) 

The problem at hand is to obtain estimates for the remainder of the expansion that are 
valid as z --+ oo, uniformly with respect to b as b ranges over a given connected set that is not 
bounded. We concentrate on the behavior of the remainder for the case of both z and !bi tending 
to infinity. 

In section 2 and 4 we give estimates for the remainder of an Airy function expansion of 
the integral (1.1) with f(x,a) = sinhx -xcosha. This example is also considered in CoPSON 
[3, Chap. 10], but there the para.meter a is restricted to a bounded interval. Our estimates 
are valid as z --+ oo, uniformly with respect a ;?: 0. For these estimates we use a new class of 
rational functions which a.re givc>n in section 3. 

In section 5 the method of §§2 - 4 will be applied to (1.3) with a general function ho( w ). 
The contour £ is unbounded, z is a large positive parameter and b E [O, oo) U (0, ioo ). Again 
we concentrate on the fact that the b-domain is unbounded. Estimates for the remainder of 
an Airy function expansion of integral (1.3) are obtained by considering the distance from the 
singularities of h0(w) to the saddle points ±b. In section 5 we assume that this distance is at 
least of order b8 as !bi--+ oo, with 8 > -!, and we prove that in this case, the obtained expansion 
has a double asymptotic property. 

A boundary case, where 8 = -!, will be handled in section 6. In that case we give estimates 
for the remainder of an Airy type expansion of Laguerre polynomials. We compare these results 
with the estimates given in FRENZEN a.nd WONG [4]. In this case, the double asymptotic 
property is lost. 

The new method presented here is not restricted to Airy type expansions. In the final 
section we consider some other types of uniform expansions, which are generated by the Bleistein 
method. In particular, a uniform expansion in terms of Bessel functions is considered. 
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2. Uniform Airy function expansion of the Bessel function, part 1 

We use the following integral representation of the Bessel function. 

(2.1) 

where 
f(x,a) = sinhx - xcosha, (2.2) 

and v = zcosh a, a 2:: 0. In order to get an Airy function expansion we use the transformation 
x 1-+ w, given by 

f(x,a) = ~w3 - b2 w +c. (2.3) 

Define 
dx w 2 - b2 

ho( w) = dw = cosh x - cosh a· (2.4) 

We prescribe that the saddle point x = a must correspond with w = b, and x = -a with 

w = -b. It follows from earlier investigations, see for instance [3], that x(w) is an analytic 
function of w on neighbourhoods of w = ±b. Calculations give 

b3 = %(acosha - sinha), c = 0. (2.5) 

Since a 2:: 0, we choose b to be positive. If we regard a as a complex variable, bis an a.nalytic 
function of a on a neighbourhood of the rC'al axis. 

With transformation (2.3) we bring (2.1) into the standard form 

(2.6) 

where£ is a suitable contom that begins at ooe -~rri and ends at ooe~rri. We take[, the steepest 

descent contom through b, which is givf'n by 

[, = {w = x + iy E <8 I y2 = 3x2 - 3b2}, (2.7) 

see Figure 2.1, such that Im(j-w3 - b2w) = 0, and j-w3 - b2w attains its maximum on[, at b. 

In [3] it is shown that h0 (w) is an analytic function on a neighbourhood of£. 

FIGURE 2.1. Ste0pcst descent curve[,. 
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The preceding analysis is given, in more detail, in CoPSON [3], where the first term of 
expansion (2.9) is obtained as an asymptotic approximation. \Ve use the Bleistein method for 
obtaining an asymptotic expansion. So, we define Dn(w), hn+i(w), n = 0, 1, 2, ... ,by writing 

hn(w) =an+ f3nw + (w2 - b2 )gn(w), 
d 

hn+1(w) = dwgn(w), 
(2.8) 

with ho(w) given in (2.4), and an, /3n following from substitution of w = ±b. A formula, like 
(2.8), is first given and used in BLEISTEIN [1]. If we use (2.8) in (2.6) and integrate n-times by 
parts, we obtain 

where 
(2.10) 

and where Ai(z) is the Airy function, and Ai'(z) its derivative. The functions hn( w) are, by 
inheritance, analytic functions on the same neighbourhood of£ where ho is an analytic function. 

Estimates of lcnl, for large values of z and for b E [O, oo ), given in the literature, are usually 
of the form 

(2.11) 

where Mn and Nn depend on n, and where O:n, /3n are related with the coefficients in (2.9). A 
proof of an estimate, like (2.11 ), is given in [4], with 

if 0 <a<~. 
if 0: > ~. 

where~ is a fixed positive number. 

- { 1 /3n{a) = l/3nl 
if 0 <a < ~' 
if a>~' 

In our analysis we take into account the singularities of h0 (w), in fact the distance from the 
singularities to the saddle points at ±b. In this way we construct a new bound of the remainder 
En, and we prove that (2.9) holds uniformly with respect to b E (0, oo ). 

The rdevant w-singulariti<'s S± of mapping (2.3) come from x = a± 27l"i. Calculations 
give that 

lb- S±i "'!Ji_b_ 
3 v'ii11i' as b--+ oo. 

When b = 0 we have IS±I = (611")!. So, we can choose a fixed number 8 E (0, ift), such that 
ho(w) is analytic on a disc around b with radius 

b - 8(b + 1) 
p( ) - Jln( b + 2)' 

(2.12) 

for all b E [O, oo ). 
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In order to obtain the required estimate of l.:nl, we split up contour£ in .C' and£", where 
£' = {w E [,I lw - bi~ p(b)}, and where£"=£-£'. Furthermore, we define corresponding 
integrals 

(2.13) 

For determining the behavior of ho(w) on this disc around b, for large values of b, we write 
w = b + ab, where a == a'/ J(I!ib), 0 < la'I ~ 8. Let x =a+ k correspond, by (2.3), with this 
w. Then we have 

sinh(O' + k) - (a+ k) cosh(a) = ~(b + ab)3 - b2(b + ab), 

and with (2 .. 5) we obtain 

sinh(O' + k)- sinh(a)- kcosh(a) = b3 (a2 + ~a3 ). 

It follows that tea+k...., b3(a2 + !a3 ), a.s b - oo. Substitution of this result in (2..1) yields 

h (b b) ab(2b + ab) (2 2 ) 2b2 
o +a = " ...., a+a --

2sinh(i)sinh(·atk) ea+k 

2a + a2 ") _ 1 r,--;-
...., (a2 + ~a3)b = ( (b vlnb), 

as b - oo. Using l'HopitaJ's rule, we calculate 

ho(b) = 

So we have proved that 

2b 
-. -1- ...., 3b-l y'i;b, 
SI ll 1 Cl' 

sup lho( w)I ~Co( <5)1ho(b)I, 
Jw-bl$tp(b) 

as b-+ oo. 

as b-+ oo, (2.14) 

where Co(b') does not depend on b. For obtaining similar estimates for hn(w), we now introduce 
a new class of rational functions. 

3. Intermezzo: a new class of rational functions 

We introduce a class of rational functions, which fulfil the following theorem. 

Theorem 3.1. Let 

1 
Ro(u,w,b) = --, 

u-w 
-1 d 

Rn+1(u,w,b) = ·) b" -d Rn(u,w,b), 
u· - - u 

n=0,1,2, ... , 
(3.1) 
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where u,w,b E <C. Let hn(w) be defined by the recursive scheme (2.8), with ho(w) a given 
analytic function in a domain G. Then we have 

hn(w) = ~ [ Rn(u, w,b)ho(u)du, 
271'1 le 

wl1ere C is a simple closed contour in G which encircles the points w and ±b. 

PROOF. 

1 l 1 l d hn(w) = -. Ro(u,w,b)hn(u)du = -2 . Ro(u,w,b)-d 9n-1(u)du 
271'1 e 11'1 e U 

= ~ { R1(u,w,b)hn-1(u)du- ~ f Ri(u,w,b)(an-1 +.6n-1u)du 
211'1le 27ri le 

= .. ~ [ R1(u,w,b)hn-1(u)du 
2n le 

= ~ { Rn(u,w,b)ho(u)du 
271'1 le 

In* we used that the rational function R1(u,w,b)(an-1 +,Bn-1tt) is O(u-2) as lul - oo, and 
that C encircles the poles of this function. Thus the transformation u 1--4 u- 1 is well defined at 
u = oo and yields an integral with no singularities inside the contour of integration. • 

In some sense, these rational functions are rdated to the rational functions introduced in 
SONI & TEMME [7]. By induction with respect ton, it follows that Rn has an expansion of the 
form 

n-1 kn i · · . c 1-J 
_ ~ ijU 

Rn(u, w,b) - ~ ?= (u- wr+1-i-i(u2 _ b2)n+i' 
i=O ;=0 

n = 1,2, ... , (3.2) 

with kn,i = min(i, n - 1 - i) and where Cij do not depend on u, w and b. Now we can give 
estimates for Rn, which are needed in t11e next sections for obtaining estimates of the form 
(2.14), where, in the left-hand side, ho(w) is replaced by hn(w). 

Let w E £,such that jw - bi= O(b), as lbl - oo, and let r be a simple dosed contour that 
encircles band w and with -bin its exterior. Because of 0 is not a singularity of Rn we can 
presume that r also encircles O. See Figure 3.1. 

FIGURE 3.1. Contour f. 
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We have for n = 1, 2, ... , 

as lbl --t oo, where r- 1 is a simple closed contour that encircles -b-1 . We have used Cauchy's 

integral formula in *. The following two lemma's are also proved by using (3.2). 

Lemma 3.1. Let b E <I: and D(b) = {(u,w) E <8 2 1 lu - bi= p(b), lw- bi S tP(b)}, such that 

p(b),....., 8lble, as lbl --too, whf're 8, £are const1111ts, 8 > 0, -! < £ S l. Then, 

sup IRn(u, W, b)I S An(8)1bl-(1+ 2i:)n-e, 
(11.,w)EO(b) 

as lbl --too, where An(8) does not depend on b. 

Lemma 3.2. Let b > 0 and rl(b) = {(u,w) E <82 I lu - bi= p(b), lw - bi S !p(b)}, such that 

p(b),....., 8b/.,/filii, a.5 b --too, whl're f, is a constant, 8 > 0. Then, 

sup IRn(n,w,b)I S B11 (8)(lnb)n+.Zb-3n-l, 
( u,w)EO(b) 

as b --too, ·where Bn( 8) docs not depend on b. 

4. Uniform Airy function expansion of the Bessel function, part 2 

We return to the problem of finding an uppN bound of £ 11 defined in (2.10). Let r be a 

circle around b with radius p(b), wlwr<> p(b) is given in (2.12), and let lw - bJ s ,Zp(b). In the 

following W<' use (3.:3), and we have 

hn( w) = ~ { Ro( u, w, b)hn( n )du 
27!"1 Jr 

= ~ r R1(u,w,b)hn-1(u)du-:2-: f R1(u,w,b)(an-1 +/3n-11L)du 
27ri Jr 27r·z Jr 

1 1 - -3 =(3.3) -2 . R1(u,w,b)hn-1(u)rfo + h11 _10(b ) 
7l"Z r 

l j - .-3 - -3n 
=(3.3) -. Rn(u,w,b)ho(1L)du + hn-10(b ) + ... + hoO(b ), 

2n r 

( 4.1) 
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as b - oo, where hm = supJw±bJ::;!p(b) lhm(w)J. Notice that by (2.14) and by similar estimates 

in the neighbourhood of -b, we have ho = lho(b)IO(l), as b - oo, and notice that (4.1) also 
holds for hn(w), where Jw +bi~ !p(b). So, by induction and lemma 3.2, we have 

sup Jhn(w)I ~ Cn(6)(1nbtb-3nlho(b)I, as b - oo, 
Jw±bJ::;!p(b) 

where Cn(6) does not depend on wand b. Substituting this relation in (2.13) we obtain 

lcnlc•I ~ Cn(6)z-n(lnbrb-3nlho(b)l21. r ez(!w3-b2w)dw 
?'l"i 1.c· 

~ Cn( 6)z -n-! (In b )nb-3nlho(b )JAi( zi b2 ). 

In the appendix we shall prove that 

where the positive c~ and >. do not depend on band z. 
The ma.in result of the preceding analysis is 

( 4.2) 

( 4.3) 

( 4.4) 

(4.5) 

with a. slightly different Cn(6), due to tl1e influence of the £"-integral. This estimate is valid 
as z - oo, uniformly with respect to b E [c,oo ), c > 0 fixed. Notice that with the exception of 
Cn( 6), of which we are unable to give an estimate, all functions in the right-hand side of ( 4.5) 
are known. So this estimate is less complicated than (2.11), where, in generally, Gn and /3n are 
complicated functions of b. Jn the next section we will prove a more general result, which is also 
valid in a larger b domain. 

REMARK 1. In OLVER [6] asymptotic expansions are given of J 11 (va) as v - oo, uniformly 
with respect to a E [O, oo ), and also for complex values of the parameters. Jn the above sections 
(and in [3]) z is the large parameter and the expansion holds uniformly with respect to 11 E [z, oo ). 

REMARK 2. As remarked earlier, in this analysis we concentrate on b - oo. However, by 
replacing in ( 4 .. 5) (In b tb-3n with, say, (In( b + 2)r( b + 1 )-3 n, it easily follows that ( 4.5) holds 
uniformly with respect to b E [O, oo). 

5. General uniform Airy function expansion 

We generalize the analysis hy taking in (1.3) a general function h0 (w), and we prescribe that 
b E [O, oo) U [O, ioo ). This includes the oscillatory case, since, when b E [O, ioo ), the argument of 
the Airy functions is negative. 

Let 
1 1 z(j.w3 -b2 w) F(z,b) = -2 . e h0 (w)dw, 
1l"t c 

(5.1) 

where ho(w) is an analytic function on a. neighbourhood of .C. Jn the case that b E [O,oo) we 
take .C as in (2.7), and in the case that b E [O,ioo) we take .C = {w = x + iy E <C I 3yx2 = 
(y ± ib)2 (y =i= 2ib)}, the steepest descent contour through ±b. See Figure 5.1. 
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REMARK. In fact, it is not needed to restrict our analysis to these contours of integration, 
but using these steepest descent contours mak<'s the following calculations less complicated. 

FIGURE 5.1. Steepest descent curve£, as b E [O,ioo). 

Again, if we use (2.8) in ( 5.1 ), we obtain 

n-1 

F(z,b) =Ai(zib2) I)-l)ka1cz -k-! 
k=O 

n-1 

-Ai'(zib2 ) :Lc-1l,B1cz -k-i (5.2) 

k=O 

where en is as in (2.10). 'vVe formulate conditions on h0 (w) such that expansion (.5.2) (with 
z - oo) is uniformly valid with respect to b E [O, oo) U [O, ioo ). As before, we want to split up 
the contour of integration. In the case that b E (O,oo), we take subcontour £' = {w E .C I lw-bl :S: 
!p(b)}. In the other case, where b E (0, ioo ), we take £' = { w E .C I lw ±bi :S: !p(b)}; p(b) is 
related with the distance from th<' singularities of h0 (w) to the saddle points ±b. Consequently, 
we define£"= .C - .C' and cnl.c•, cnl.c" similar to (2.13). 

In th<' appendix we formulate conditions on ho(w) such that the estimate of lcnl.c" I, which is 
given in the appendix, is exponentially small, compared with the estimate of lcnl.c• I, as z--+ oo, 
uniformly with respect to b. 

We define 

po(b) = min{lw ±bi I w is a singularity of ho(w)}, (5.3) 

and we assume that, for large lbl, we ha.ve po(b) > lbl 8 , where the constant()>-!. This is the 
essential assumption on h0 (w) in the neighbourhood of the saddle points. 

We take p(b) :S: Po(b) such that p(b),...., 28lble as lbl--+ oo, where the constants 8 and c satisfy 
8 > 0 and -! < c :S: 1. We take E as large as possible. Notice tha.t we concentrate on estimates 
with lbl--+ oo, and that we do not give details for bin compacta. 

REMARK 1. \Ve assume that c >-!,in ord<'r that the estimate of lcnl.c" I is exponentially 
small, compared with the estimate of lcnl.c• I, as z-+ oo, uniformly with respect to b. 

REMARK 2. We require c :S: 1 to ensure that, for large lbl, we can draw a circle with center 
±b and radius p(b), such that the other saddle point =t=b is outside this circle. This is possible 
by choosing 8 appropriately. 
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Next we introduce upper bounds for the hn(w), n = 0, 1,2, .... Thus let 

hn(8) = sup lhn(w)I· 
lw±blstp(b) 

( 5.4) 

Notice that h0 (w) is analytic on lw ±bi< p(b), thus ho(8) is finite. 

Let r be a circle around ±b with radius p(b), and let lw =i= bi::; tp(b). Then, if we use (3.3), 

we have 

=(3.3) 2
1 . ( Rn(1t,w,b)ho(11)du + hn-1(8)0(lbl- 3 ) + ... + ho(8)0(1bl-3n), 
7rZ Jr 

as !bi-+ oo. So, by induct.ion and lemma 3.1 we have 

hn(8)::; Cn(8)lbl-(1+2e)nho(8), 

where Cn(8) docs not depend on b. 
Now we shall prove that En can be bounded as follows: 

as lbl -+ oo, 

lcnl::; C(n,8)(lbl + l)-(1+ 2•)nho(i5)z-n-! Ai(zib2 ), 

where C( n, 8) does not drpend on b and z, and where 

Ai u = ~ { Ai(u) 
() jAi2 (u)+Ili2(u) 

if u 2: 0, 

if 11 < 0. 

(5.5) 

(5.6) 

(5.7) 

When bis bounded then so is (lb!+ 1)-(l+Ze)nh.0(8), and the proof of (5.6) is much simpler. A 

similar bound (without explicit indication of the role of b, in the form of (lbl + 1)-(l+Ze)n)) can 

be found in [4]. 

The proof for large bis divi<IC'd into separat<' cases: (i) b E [O, oo ), and (ii) b E [O, ioo ). We 

first consider case (i), and with (.5 .. 5) we have 

lcnl.c'I::; Cn(8)z-nlbl-(1+2e)nho(8)21' r ez(!w3-b2w)dw 
7l'Z ).c,1 

::; Cn ( 8)z -n-!- lbl-( 1 +2.:)n ho ( 8)Ai ( z ~ b2 ). 

In case (ii) we write w = x + iy and we define £'.i- = {y > 0 I 3x E IR : x + iy E £'}. 
Simple transformations give 

1 l z(!w3 -b2 w) . 1 1 ( 'b)2 ( ) -1zb3 +~zb3 
-. e hn(w)dw =-. -. e-z y+• f Y g(y)(e hn(w) - e hn(w))dy 
27rZ £' 27rz £' 

+ 

1 1 · 2 - ? zb3 + ? zb3 + 2 e-z(y+ib) f(y)(e 1 hn(w) + e 1 hn(w))dy, 
7r .c.~ 
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where f(y) = 2<2y-ib) 2 r;;::2ib and g(y) = ~ + ib(y+ib) ~ > 0. Thus with (5.5) we 
9y v 3Y v 3Y 3y2 v !i=hl -

have 

j~ 1 /(1"w3
-b

2
w) hn(w)dwj::::; -2

1 1 e-z(y+ib)2 J(y)(l + g(y))(lhn(w)I + lhn(w)J)dy 
21n £' 7r C' 

+ 

:S:(5.5) Cn(8)jbj-(1+2e:)nho(8)!_ { 00 
e-z(y+ib) 2 f(y)(l + g(y))dy 

7r Jo 
< C' (fi)jbj-<1+2e:)nJ; (8)-1-
- n 0 ~ 

"'* 71"! C~(8)jbj-(I+Ze:)n/;o(8)z -!M(z!b2 ), 

as z----+ oo. In* we used the relation Ai(x),...., 7r -1-(-xft as x----+ -oo, which can be found in 
[6, p. 395]. 

In the appendix we shall prove that 

lcnl.c11 I ;:; Cne'\(i,-z)lbl 2 '+ 1ho( b)z -n-1 Ai(z1' b2 ), (5.8) 

where the positive Cn, >.. and Jl do not depend on b and z, and where ibl ;:::: c > 0. These 
estimates show that (5.6) is valid. Thus we have proved the following theorem. 

Theorem 5.1. Let F(z,b) be of the form (5.1), where h0 (w) fulfils the conditions mentioned in 
the beginning of this section. Then we have (.5.2) as a uniform asymptotic expansion for F(z,b), 
wliere ~5.6) is an estimate for !en I as z ----+ oo, uniformly with respect to b E [O, oo) U [O, ioo ), and 
where h0 (8) is given in (5.4). 

REMARK. With the conditions of this theorem it follows that expansion (.5.2) has a double 
asymptotic property: the roles of b and z can be interchanged. For an example we refer to 
sections 2 and 4. 

The double asymptotic property is lost in the example considered in the next section. In 
the preceding analysis we had to assume that, for large jbJ, po(b), given in (.5.3), is at least of 
order jbj 8 , where e > -1. In the n<'xt section we have(}= -!. 

6. A Boundary case 

In this section we show that, in certain circumstances, the condition 8 > -! of theorem 5.1 
can be replaced with e = -!. \VC' dC'monstrate this feature by considering a recent expansion 
for the Laguerre polynomials. 

First we summarize the main steps for obtaining an Airy function expansion of the Laguerre 
polynomia]s. More details arc given in [4] and [8]. Laguerre polynomials have the following 
integral represC'ntation. 

1 1(1+) l 
(-l)N2ae-zt/2 L<;J)(zt) = -. ezf(x,t)(l - x2)T dx, 

27ri +oo 
(6.1) 

where the contour of integration hC'gins and ends at +oo and encircles 1 in the positive direction, 
and where 

1 1 + x 1 J(x,t) =-In(--)- -2 xt, 
4 1- x 

(6.2) 
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and z = 4N + 2a + 2, a > -1 and t 2 1. Again, we use the transformation 

f(x,t) = ~w3 - b2w. (6.3) 

We prescribe that the x-saddle points ±JI - l/t must correspond with ±b. It follows that 

b3 = ~( ~ - arccoshVt). (6.4) 

With transformation (6.3) we have for (6.1) 

(6.5) 

where 
I . ?·"+1(? b2) 

? a-I ( X ( 1 - r )--r W~ -

h0 (w) = (1 - x·)-r-l_ = 2 ?) , 
cw 1-t(I-x~ 

(6.6) 

and[, is given in (2.7). Again, using (2.8) in (6 .. 5), we obtain 

n-1 

(-1)N2cxe-ztf2 L~) (zt) =Ai(J b2 ) I)-1 lo·kz -k-! 

k=O 

? n-1 ? 

-Ai'(z1b2 ) 2:(-l)k/hz-k-1 
(6.7) 

k=O 

where En is as in (2.10). Notice that ho(w) is an evC'n analytic function. Consequently, we have 

0'2m = h2rn(b), 

fhm = 0, 

0'2m+l = 0, 

,82m+l = h2m+1(b)/b. 

In ordN to apply the analysis of the previous section, we locate the relevant singular points of 

ho( w). The singularities 8±, in the w-plane, which are nearest to b, satisfy j-Sl = ±17ri as 

b = 0, and 

as b-+ oo. (6.8) 

_,,. 
Thus po(b) of (5.3) is of ordN b - , as b-+ oo. 

As ht'fore, we want to split up£ in £' and£", and we ddine Enl.c', Enl.c" similar to (2.13). 

So, define £' = { w E £ / j w - b/ :::; obe}, where the constants 8 and c satisfy 8 > 0 and 

-! < E :::; 1, in order that the estimate of /cnl.c,, / is exponentially small, compared with the 

estimate of lcnl..c' I, as z-+ oo, uniformly with respect to b. \Ve choose E close to--! fixed. 

Let re be a closed contour, wllich encircles£', such that 

length re = 0( be), as b-+ oo, 
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and such that ho(w) is analytic on J(fe), where /(fe) is the closure of the interior of fe. Then 
straight forward calculations give that 

as b-+ oo, (6.9) 

where Co(o,c) does not dC'pend on b. Further calculations, which are similar to those in section 
5, yield for n = 1, 2, ... 

(e+ ,\-)(a-+ 1) 
sup lhn(w)I ~ Cn(o,c:)b - lho(b)!, as b-+ oo, (6.10) 

wE/(I',) 

where, here and below, Cn(o,c) denotes a generic quantity not depending on band z. Notice 
that, in contrast to (5.5), the power of bis positive, and is not depending on n. These estimates 
yield 

(6.11) 

In the last equation we used 

In the appendix we shall prove that 

lcnlc11 I ~ c~ ( o, c )z -n-! e·\< 2-z)b:ic+l lho(b )!Ai(z1 b2 ), (6.12) 

where the positive C~ and >. do not depend on band z. Thus we have proved that 

(6.13) 

as z -+ oo, uniformly with resp<'ct to b E (c, oo ), where c > 0, c fixed. With some extra work 
we can prove that (6.13) holds uniformly with respect to b E (0, oo ). A similar approach can be 

used for b E (0, ir], where 0 < T < (irr)!, T fixed. 
We can compare this estimate with the estimate given in (4] and (8], which is of the form 

(2.11). Firstly, we notice that (6.13) is not in terms of the first neglected terms of expansion 
(6.7). But with (6.10) it cw:;ily follows that the first neglected terms can be estimated by the 
right-hand side of (6.13), and in tha.t sense (6.13) clearly shows why expansion (6.7) holds 
uniformly with respect to bin an unhounded domain. Secondly, in (6.13), the influence of bis 
more transparent than in the right-hand side of (2.11). 

7. Some remarks on other uniform expansions generated by the Bleistein method 

The techniques used in section ,5 for ohta.ining an estimate for the remainder, are applied 
on Airy type expansions. In this s0ction we show that the method is quite general, and can be 
applied to other uniform expansions of integrals of t11e form 

f ezf(x,b) h.0(x )dx 
le (7.1) 
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with coinciding saddle points and singularities. By using Bleistein 's method, based on integrating 
by parts, rational functions similar to those of section 3 arise, and again the hn-functions can 
be represented as in theorem 3.1. 

In the remaining part of this section we work out an example of uniform expansions in 
terms of Bessel functions. In [4] such an expansion of the Laguerre polynomials is given. Let 

1 j(O+) !z(w-A2) 
F(z,A) = -. w- 0 - 1ho(w)e .. dw, 

27ri -oo 
(7.2) 

wllC're the contour of integration begins and ends at -oo and encircles the origin in the positive 
direction. We assume that ho( w) is analytic on a neighbourhood of the contour of integration, 
and let z > 0, iA > 0 and a > -1. Notice that ±iA are the saddle points of the integral. We 
choose the contour of integration through these saddle points, and the steepest descents path 
looks like Figure 7.1. 

i.A 

FIG u RE 7 .1. Steepest descent curve for integral (7 .2) 

The recursion in connection with integral (7.2) is 

(7.3) 

and if we integrate n-times by parts, we obtain the expansion 

(7.4) 

where 

(7.5) 

and where Ja(z) and Ja+1(z) are Ressel functions of the first kind. Since zA is purely imaginary, 
in fact modified Bessel functions occur in the expansion. 



The class of rational functions generated by (7.3) is 

1 
Qo(u,w, A)=--, 

u-w 
-(e>!l + d~)Qn 

Qn+1(u, w, A)= A 2 , 

(1 + u;r) 
n = 0, 1, 2, .... 

Y induction with respect ton, it follows that Qn has an expansion of the form 

n = 1,2, ... , 

'here Cii do not dep<'nd on u, w and A. 
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(7.6) 

(7.7) 

Again, we concentrate on the influence of A on the expansion (7.4), especially when IAI is 
Lrge. 

If r is a simple closed contom that encircles iA and w and with -iA in its exterior, then 
'C can prove, just as (3.3), that 

as IAI _,. oo. (7.8) 

.s before, we want to split up £ in £' and £". \Ve assume that, for large IAI, the distance 

'Orn the singularities of ho(w) to the saddle points ±iA is at least 28IAI'\ where the constants 

, E satisfy 0 < 8 , ! < E ::;: 1. Consequ0ntly, we take £' = { w E £ I lw - iAI ::;: 8JAie} 
nd £" = £ - £', such that the estimate of lcnJ.c" I is exponentially small, compared with the 
;timatC' of lcnl.c' I, as z _,. oo, uniformly with respect to iA E [c,oo), where c > 0 fixed. In fact, 
'C neNl a growth condition on ho(w) on a prescribed neighbourhood of£", which is similar to 
1e condition mentioned in the appendix. 

If we set n(A) = {(u,w) E <C 2 I lu - iAI = ~fJIAle, lw - iAI::;: 81An, we can prove 

sup IQ11(1l, w, A)I::;: Cn( 8)IAl(l-2e)n-e' 
(u,w)Ell(A) 

'here Cn(8) does not depend on A. Finally we define 

ho(8) = sup lho(w)I. 
tw±iAl~oJAI' 

(7.9) 

(7.10) 

\Tith (7.8), (7.9) and straight forward calculations, similar to those leading to (.5 .. 5), we obtain 
>r n = 1,2, ... 

sup lhn(w)I::;: Cn(t5,c)IAl(l- 2eln/io(8), 
tw-iAJSSIAI' 

as IAI _,. oo, (7.11) 

·here Cn(8,c) does not depend on A. With the a.id of these estimates we obtain as the ma.in 
~sul t of this section 

(7.12) 
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as z-+- oo, uniformly with respect to iA E [O,oo), where C~(6,c) does not depend on A and z. 
A similar approach is possible for real values of A. 

Appendix 

We formulate conditions on ho(w) such tha.t the estimate of lcnl.c" I is exponentially small, 
compared with the estimate of lcnl.c' I, as z - oo, uniformly with respect to b. We take 

£, £', £", p(b), 8, £, Enl.c'' C'nl.c" and hn(8) a.sin sE>ction 5. Define 

_ p(!w3 -b2 w+1b3 ) 
R(w,b,p,q,r) = rlw qe I· 

We assume that ho(w) is an analytic function on a neighbourhood f2o(b) of£", such that for 
every w E £"a disc with center wand radius R is contained in f2 0 (b), where r > 0 and p, q ~ 0 
do not depend on band w. Note that, since w E £", R may be exponentially small, as lwl - oo. 
Furthermore, we assume that there are constants CJ ~ 0 and C0 > 0 such that 

V w E f2o ( b) U £, b E [ 0, oo). (A.1) 

Thus we allow functions ho ( w) being exponentially large as I wj - oo. 
We define recursively neighbourhoods nn(b) of £ 11 , for n = 0, 1, 2, .... Let f2n+i (b) be those 

w E f2n(b) such that the disc with center u• and radius 2-(n+1ln is contained in f2n(b). 
Next, let w E f2n(b) and let f be the circle with center w and radius 2-nn. The following 

two weak asymptotic estimates are simply proved with (3.2): 

1 r -!w3+b2w-ib3 
27r-i Jr Rn(u,w,b)umdu = O(le j), 

IR ( b)I - l"(I -((n+l)p+!H!w3 -b2 w+~b3 )I) sup n u, 111, - v e , 
uer 

as lbl - oo, uniformly with respect tow E f2n(b) and m E {O, l}. 
Now we can estimate h11 (w) on f2n(b). 

hn(w) = 2
1 . f Ro(u,w,b)h 11 (u)dn n lr 

= 2
1 . { R1(u,w,b)hn-1(11)du- 2

1 . { R1(u,w,b)(an-1 + /3n-1u)rfo n lr n lr 
1 l - _lw3+b2w-? b3 

=(A.2) -2 . R1(u,w,b)hn-1(11.)du + hn-1(8)0(Je 3 !]' I) 
1ri r 

(A.2) 

(A.3) 

1 fr - - !w3+b2w 1b3 
=(A.2) -2 . Rn(u,w,b)ho(tt)du + (hn-1(<5) + ... + ho(b))O(Je - - I) 

n r 

_ -h ( C)l'J(I -(np+t+a)( !w3 -b2 w+~b3)!.) 
-(A.3) & (5.5) 0 <1 \.. e . 
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Thus, with (5.5) we have proved that 

(A.4) 

for all w E Dn(b) UC and b E (0, oo) U (0, ioo) 
We choose z > np + 2 + <T and estimate lcnl.c" I for b ?'.: c > 0. 

In* we substituted w = x + b + iy, and we used (2.7) and the fact that p(b),..., 26lble as lbl --+ oo. 
The positive constant 6' does not depend on b and z. 

With similar estimates for b E [ic,ioo), we have proved 

(A.5) 

where the constants 61 and Cn do not depend on band z. 
REMARK 1. For the special rase that has been handled in sections 2 and 4 it is not difficult 

to prove that p =a= 0 and that in (".!_ .. 5) lbl 2e+l has to be replaced by b3 (ln bf!. Furthermore, 
(2.14) shows that in (A.4) and (A.5) ho( 6) can be replaced by lho(b)I. 

REMARK 2. For the boundary case that has been handled in section 6 it is also provable 
. - (e+!)(a+l) 

that p = u = 0, and (6.10) shows that 111 (A.II) ho(6) can be replaced by (b+ 1) lho(b)I, 
and further calculations show that in (A.5) ho(b) can be replaced by lho(b)I· 
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