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New estimates are obtained for the remainder of uniform Airy type expansions of integrals
containing a phase function with two coalescing saddle points. These expansions are obtained
by the Bleistein method, in which both saddle points contribute to the expansion. The new
estimates are valid as the asymptotic parameter tends to infinity, uniformly with respect to the
parameter locating the saddle points as this parameter ranges over a connected unbounded set.
Special attention is paid to the case of both the asymptotic parameter and the saddle point
parameter tending to infinity. Two examples are worked out in detail, and in a final section it
is explained how to apply the method to other types of uniform expansions.
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1. Introduction

Many problems in mathematical physics and special functions lead to integral representa-
tions of the form

F(z,a) = /ezf(r'“)g(x)dz, (1.1)
C

where C is a contour, z is a large positive parameter, g(z) is an analytic function on a neighbour-
hood of C, and f(z, ) is an analytic function of 2 and «, with two saddle points, which depend
on o and coalesce with each other as a varies continuously. With the cubic transformation
T — w, given by

f(x,a):%w3—b2w+c, (1.2)

and suggested by CHESTER, FRIEDMAN and URSELL [2], an asymptotic expansion for large 2
in terms of Airy functions can bhe obtained, this expansion being uniformly valid with respect
to a as a ranges over a given connected set. The coefficients b and ¢ are determined explicitly
from the requirement that the transformation (1.2) is analytic on a neighbourhood of the two
saddle points. In FRIEDMAN [5] a nice proof is given on the regularity of transformation (1.2).
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For obtaining the expansion we use the following method. The transformation (1.2) yields

the standard form

1 z(%ws—-bzw)
— 1.
omi ). ho(w)dw, (13)

where J
ho(w) = g(a(w)) 7=

(we removed the factor e*¢); the phase function has two saddle points at w = +b. Consequently,
the integral (1.3) has a turning point character: the behavior changes strongly when b varies
from real to imaginary values. When b = 0 the saddle points coalesce at w = 0.

We write ho(w) = ag + Bow + (w? — b%)go(w), such that both saddle points contribute to
the expansion. Then the first two terms deliver two terms of the asymptotic expansion. We
integrate the remaining integral by parts and it becomes of the form z~! times integral (1.3),
where ho(w) is replaced by

hi(w) = E%go(w).

We refer to this method as being Bleistein’s method. This method is used in the literature, for
instance in WoNG [8, Chap. 7, §5], where an estimate for the remainder of the expansion in
terms of Airy functions is given in terms of the first neglected terms. In OLVER [6, Chap. 9, §12
& §13] an estimate for the remainder of an expansion of the Anger function A_,(av) is given,
which has a turning point at @ = 1, as v — oo. This estimate is also valid as a — oo, but the
expansion is different from the one considered in our paper. (An integral representation of the
form (1.3) is used, and the expansion is obtained by expanding ho(w) at one saddle point.)

The problem at hand is to obtain estimates for the remainder of the expansion that are
valid as z — oo, uniformly with respect to b as b ranges over a given connected set that is not
bounded. We concentrate on the behavior of the remainder for the case of both z and |b| tending
to infinity.

In section 2 and 4 we give estimates for the remainder of an Airy function expansion of
the integral (1.1) with f(z,a) = sinhz — z cosh a. This example is also considered in COPSON
[3, Chap. 10], but there the parameter « is restricted to a bounded interval. Our estimates
are valid as z — oo, uniformly with respect a > 0. For these estimates we use a new class of
rational functions which are given in section 3.

In section 5 the method of §§2 — 4 will be applied to (1.3) with a general function ho(w).
The contour £ is unbounded, z is a large positive parameter and b € [0,00) U [0,700). Again
we concentrate on the fact that the b-domain is unbounded. Estimates for the remainder of
an Airy function expansion of integral (1.3) are obtained by considering the distance from the
singularities of ho(w) to the saddle points +b. In section 5 we assume that this distance is at
least of order b° as |b| — oo, with § > —}, and we prove that in this case, the obtained expansion
has a double asymptotic property.

A boundary case, where § = —}, will be handled in section 6. In that case we give estimates
for the remainder of an Airy type expansion of Laguerre polynomials. We compare these results
with the estimates given in FRENZEN and WoNG [4]. In this case, the double asymptotic
property is lost.

The new method presented here is not restricted to Airy type expansions. In the final
section we consider some other types of uniform expansions, which are generated by the Bleistein
method. In particular, a uniform expansion in terms of Bessel functions is considered.



2. Uniform Airy function expansion of the Bessel function, part 1

We use the following integral representation of the Bessel function.

1 0o+ i 1 )
J(2) = — e*N&Ndy, 2.1
) 271 co—Ti ( )
where
f(z,a) =sinhz — zcosha, (2.2)

and v = zcosha, o > 0. In order to get an Airy function expansion we use the transformation
x — w, given by

f(z,@) = 3w = b*w +c. (2.3)
Define J ) _p
T w* —
ho(w) = dw  coshz — cosha’ (2:4)
We prescribe that the saddle point 2 = « must correspond with w = b, and z = —a with
w = —b. It follows from carlier investigations, see for instance [3], that z(w) is an analytic
function of w on neighbourhoods of w = %b. Calculations give
3 .
b = 5 (acosha —sinh @), c=0. (2.5)

Since a > 0, we choose b to be positive. If we regard « as a complex variable, b is an analytic
function of & on a neighbourhood of the real axis.
With transformation (2.3) we bring (2.1) into the standard form

z wa_ 21.U
Jo(z) = ——l——-/ce (=) w)dw, (2.6)

27

where £ is a suitable contour that begins at ooe—%m and ends at ooe%m. We take £ the steepest
descent contour through b, which is given by

L={w=za+iyeC|y®=32%—3b"}, (2.7)

see Figure 2.1, such that Im(3w® — b?w) = 0, and Jw? — b%w attains its maximum on £ at b.
In [3] it is shown that hg(w) is an analytic function on a neighbourhood of L.

FIGURE 2.1. Steepest descent curve L.




The preceding analysis is given, in more detail, in COPSON [3], where the first term of
expansion (2.9) is obtained as an asymptotic approximation. We use the Bleistein method for
obtaining an asymptotic eXPanSion- SO, we define gn(w)a hn+1(w)v n= Ov 1’ 2’ ey by writing

ha(w) = on + Brw + (w? — 8*)gn(w),
p (2.8)
hn1(w) = —=gn(w),

with ho(w) given in (2.4), and an, B, following from substitution of w = £b. A formula, like
(2.8), is first given and used in BLEISTEIN [1]. If we use (2.8) in (2.6) and integrate n—times by
parts, we obtain

o n—1 ) —pe 2 . n-1 k=2
) = A (DR Y a3 (18 S e, (29)
k=0 k=0

where

271

3_p2y
e, = (—1)%-"—1—/ S Y, (2.10)
L

and where Ai(z) is the Airy function, and Ai'(2) its derivative. The functions h,(w) are, by
inheritance, analytic functions on the same neighbourhood of £ where hg is an analytic function.
Estimates of |¢,,|, for large values of z and for b € [0, 0), given in the literature, are usually
of the form
-A'[n ~ . Nn > .
Fn(@)Ai(=30) + 2 Bo(@li (2 F b)), (2.11)
7n+% zn-l—%

<

len| £

where Al and N,, depend on n, and where @, En are related with the coefficients in (2.9). A
proof of an estimate, like (2.11), is given in [4], with

~ _ 1 if 0 <a<g, = _ 1 if0<acx<g,
OES PN @ ={5  wast

where £ is a fixed positive number.

In our analysis we take into account the singularities of ho(w), in fact the distance from the
singularities to the saddle points at £b. In this way we construct a new bound of the remainder
€n, and we prove that (2.9) holds uniformly with respect to b € [0, ).

The relevant w—singularities Sy of mapping (2.3) come from z = a + 27i. Calculations
give that

b
Vind’

When b = 0 we have |S4| = (67r):l‘. So, we can choose a fixed number § € (0, %/7), such that
ho(w) is analytic on a disc around b with radius

as b — 0.

b~ Se|~ 2y

8(b+1)

p(b) = —m,

(2.12)

for all b € [0, 00).
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In order to obtain the required estimate of |¢,|, we split up contour £ in £’ and £", where
L' ={weL]|w->bl < p(b)}, and where L = £ — L£'. Furthermore, we define corresponding

integrals .
z w3_ 2
Enly = (—1)"z—n-———-./ e (3 b w)hn(w)dw,
27t J o
1 A(Fwd-b?w) (2.13)
Enlpn = (“1)n2-n——:/ e hp(w)dw,

27

For determining the behavior of ho(w) on this disc around b, for large values of b, we write
w = b+ ab, where a = a'//(Inb), 0 < |a'| < 6. Let £ = o+ k correspond, by (2.3), with this
w. Then we have
sinh(a 4+ k) — (a 4 k) cosh(a) = %(b + ab)® — b2(b + ab),
and with (2.5) we obtain

sinh(a + k) — sinh(a) — kcosh(a) = 63(a® + %aS).

It follows that $e@t* ~ 03 (a® + Ja3), as b — oco. Substitution of this result in (2.4) yields
7 (

ab(2b + ab) 5. 2b°
ho(b+ ab) = ~ (2
o(b+ab) 2sinh(%)sinh(2%tE) (2ata )e°'+k
2a + a*
~— = O *Inb
@t ey~ 00V
as b — oo. Using I’'Hépital’s rule, we calculate
ho(d) = _21) ~ 307VInb, as b — oc.
sinh a
So we have proved that
sup  |ho(w)| £ Co(8)|ho(D)], as b — oo, (2.14)

lw=b]< L p(b)

where Cp(6) does not depend on b. For obtaining similar estimates for h,(w), we now introduce
a new class of rational functions.

3. Intermezzo: a new class of rational functions

We introduce a class of rational functions, which fulfil the following theorem.
Theorem 3.1. Let

Ro(u,w,b) = '1':_1—1;,

-1 d

u? = b du

(3.1)

R,p1(u,w,b) = Rp(u,w,b), n=0,1,2,..,
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where u,w,b € €. Let hn(w) be defined by the recursive scheme (2.8), with ho(w) a given
analytic function in a domain G. Then we have

1
hn(w) = -é;z:‘/‘:Rn(u,w,b)ho(u)du,

where C is a simple closed contour in G which encircles the points w and %b.

Proor.
hn(w 27rz/R0 u, w,b)hn(u)du = ——/Rg(u w b) gn 1(u)du
- 2; R (a0, b1 (w)du - -—-—-/Rl(u 0, 8) (@1 + fn_1u)du

1l

* -2-7?;LRI(QL,1L7,b)hn_1(1z)(lu

I

-é-%r—i/CRn(u,w,b)hg(u)(lu

In * we used that the rational function R;(u,w,b)(@n—1 + Bn-1%) is O(u~?) as |u| — oo, and
that C encircles the poles of this function. Thus the transformation u — u~! is well defined at
u = oo and yiclds an integral with no singularities inside the contour of integration. ]

In some sense, these rational functions are related to the rational functions introduced in
Sont & TEMME [7]. By induction with respect to n, it follows that R, has an expansion of the

form
n—1 I\'n i

C,’jui"j
(u,w,b) = ZZ (u — w)FT=i=i(y? — p2)n+i’ n=12,..., (3.2)

=0 j=0

with &, ; = min(i,n — 1 — ¢) and where Cj; do not depend on u, w and b. Now we can give
estimates for R,, which are needed in the next sections for obtaining estimates of the form
(2.14), where, in the left-hand side, ho(w) is replaced by hn(w).

Let w € £ such that |w — b = O(b), as |b] — oo, and let T' be a simple closed contour that
encircles b and w and with —b in its exterior. Because of 0 is not a singularity of R, we can
presume that T' also encircles 0. See Figure 3.1.

I

-b [+] b

Ficure 3.1. Contour T'.



We have for n = 1,2,...,

Rn(-i-,w,b)
o1 / B (u,w,b)d 271'1 22 dz
Z3n—-1

- Z Ci'jﬂ—i/, (1 = zw)n+1-i=3p2nt2i(p=2 _ z2)n+idz
%2

(3.3)
dn+z 1 3n—»1

= ZC BT dzntis 1((1 — zw)nH1-i=gp2nt2i(p-1 z)“‘”) z=—b-1
= @(|b|_3")7

as |b| — oo, where I'"! is a simple closed contour that encircles —b~!. We have used Cauchy’s
integral formula in *. The following two lemma’s are also proved by using (3.2).

Lemma 3.1. Let b € C and Q(b) = {(u,w) € C* | |u —b| = p(b), |w — b] < }p(b)}, such that
p(b) ~ 6]b|%, as |b] — oo, where 8, ¢ are constants, § > 0, —% < ¢ < 1. Then,

sup | Rn(u,w,b)| < An(6)[b|~(1F2)n=¢,
(u,w) €EQ(D)

as |b| — oo, where A,(8) does not depend on b.

Lemma 3.2. Let b > 0 and Q(b) = {(u,w) € C* | |u— b = p(b), |w — b| < }p(b)}, such that
p(b) ~ 8b/\/Inb, as b — oo, where § is a constant, § > 0. Then,

sup | Rn(u,w,b)| < Bn(8)(In b)"+’}b-3n_1’
(uw,w)€N(b)

as b — oo, where B, (6) does not depend on b.
4. Uniform Airy function expansion of the Bessel function, part 2
We return to the problem of finding an upper bound of ¢, defined in (2.10). Let T be a

circle around b with radius p(b), where p(d) is given in (2.12), and let |w — b| < $p(b). In the
following we use (3.3), and we have

hn(w) = 5;[-}—7:</r‘,Ro(’lt,’w,b)hn(u)du
1 1
= 5= ./r Bi(vw,w,b)hpn_q(u)du — 5 /r Ri(u,w,b)(@n-1 + Bn-1u)du

1 -~
—a) §7r_i/rnl(u,w,b)hn_](u)du+hn_10(b-3) (4.1)

1 ~ ~
=(33) 55 /1‘ R, (u,0,b)ho(w)du+ hp1 O™ + ... + hOO(b”B”),
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as b — 0o, where hp, = SUP |44 < } () |hm(w)]. Notice that by (2.14) and by similar estimates

in the neighbourhood of —b, we have hy = |ho(b)]O(1), as b — oo, and notice that (4.1) also
holds for hn(w), where |w + b| < 4p(b). So, by induction and lemma 3.2, we have

sup  |hn(w)] < Cr(8)(Inb)*b73"|ho(d)], as b — oo, (4.2)
b < §(5)

where C,(§) does not depend on w and b. Substituting this relation in (2.13) we obtain

lents| < Co(8)2~"(In B 53" ho(b) / cd g,
nlerl = )2 O Nori Jo (4.3)
< C’n(é)z_n_%(ln b)“b"3”|h0(b)|Ai(z§b2).
In the appendix we shall prove that
—n—& 3 ‘% 2 9
lEnjen | < Clhz " 3=V 000) 0 (5)] A (27 b2), (4.4)
where the positive C] and A do not depend on b and z.
The main result of the preceding analysis is
9
len] < Ca(8)z ™ (In 07037 o (B)| Ai (= 302), (4.5)

with a slightly different C,,(§), due to the influence of the £"”—integral. This estimate is valid
as z — 0o, uniformly with respect to b € [¢c,00), ¢ > 0 fixed. Notice that with the exception of
Cr(8), of which we are unable to give an estimate, all functions in the right-hand side of (4.5)
are known. So this estimate is less complicated than (2.11), where, in generally, a, and 8, are
complicated functions of b. In the next section we will prove a more general result, which is also
valid in a larger b domain.

REMARK 1. In OLVER [6] asymptotic expansions are given of .J,(va) as v — oo, uniformly
with respect to a € [0,0), and also for complex values of the parameters. In the above sections
(andin [3]) z is the large parameter and the expansion holds uniformly with respect to v € [z, 00).

REMARK 2. As remarked earlier, in this analysis we concentrate on b — oco. However, by
replacing in (4.5) (Inb)"b~3" with, say, (In(b + 2))™(b + 1)73", it easily follows that (4.5) holds
uniformly with respect to b € [0, 00).

5. General uniform Airy function expansion

We generalize the analysis by takingin (1.3) a general function ho(w), and we prescribe that
b € [0,00)U[0,700). This includes the oscillatory case, since, when b € [0, ic0), the argument of
the Airy functions is negative.

Let
1

z(%ws—bzw)
F(z,b) = — h d 1
(z,b) 57 £e o(w)dw, (5.1)
where hg(w) is an analytic function on a neighbourhood of £. In the case that b € [0,00) we
take £ as in (2.7), and in the case that b € [0,ic0) we take £ = {w = z + iy € C | 3yz? =
(y £ ib)%(y F 2ib)}, the steepest descent contour through +b. See Figure 5.1.
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REMARK. In fact, it is not needed to restrict our analysis to these contours of integration,
but using these steepest descent contours makes the following calculations less complicated.

-b

FIGURE 5.1. Steepest descent curve £, as b € [0, 700).

Again, if we use (2.8) in (5.1), we obtain

) =AI3 ) S (1)
F(z,0) =Ai(z36%) Y (=1)*ayz
k=0

n—1 2 5.2
“Ai,(z%bz)Z(_l)kﬂkz—k % ( )

k=0
+ En,

where ¢, is as in (2.10). We formulate conditions on hg(w) such that expansion (5.2) (with
z — 00) is uniformly valid with respect to b € [0,00) U [0,700). As before, we want to split up
the contour of integration. In the case that b € [0,00), we take subcontour £' = {w € £ | |w-b| <
$p(b)}. In the other case, where b € [0,i00), we take £’ = {w € L | |w £ b| < $p(b)}; p(b) is
related with the distance from the singularities of hg(w) to the saddle points +b. Consequently,
we define £ = L — L' and €,), , €p|,, similar to (2.13).

In the appendix we formulate conditions on ho(w) such that the estimate of l€n| .|, which is
given in the appendix, is exponentially small, compared with the estimate of |¢,| |, as z — o,
uniformly with respect to b.

We define

po(b) = min{|w % b| | wis a singularity of ho(w)}, (5.3)

and we assume that, for large |b|, we have pg(b) > |b]®, where the constant § > —%. This is the
essential assumption on ho(w) in the neighbourhood of the saddle points.

We take p(b) < po(b) such that p(b) ~ 26|b|¢ as |b] — oo, where the constants § and ¢ satisfy
§>0and —4 < e < 1. We take ¢ as large as possible. Notice that we concentrate on estimates
with |b] — oo, and that we do not give details for b in compacta.

REMARK 1. We assume that ¢ > —4, in order that the estimate of |¢,,,, | is exponentially
small, compared with the estimate of |e,,), |, as 2 — co, uniformly with respect to b.

REMARK 2. We require ¢ < 1 to ensure that, for large |b|, we can draw a circle with center
+b and radius p(b), such that the other saddle point Fb is outside this circle. This is possible
by choosing § appropriately.
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Next we introduce upper bounds for the hp(w), n = 0,1,2,.... Thus let

ha(6)=  sup  |hn(w)]. (5.4)
lwtb| <4 o(b)

Notice that ho(w) is analytic on |w + b| < p(b), thus 710(6) is finite.
Let T be a circle around +b with radius p(b), and let |w Fb| < $p(b). Then, if we use (3.3),
we have

ha(w) /Ro(u w, b)hn(u)du

= 2:” Ry(u,w,0)hn_1(u)du — 5 / Ry(u,w,b)(an-1 + Br-1u)du

=69 5 /F Ra (1,0, Bk (w)du + Frnma ()O(1B ™)

=(33) 35 / (u,w, BYho(w)du + hn_1(8)O([B]%) + ... . + ho(§)O(ID] ™),
as |b] — oo. So, by induction and lemma 3.1 we have

ha(8) < Ca(8)|o|=#29ho (6), as  |b| — o0, (5.5)

where Cp(6) does not depend on b.
Now we shall prove that £,, can be bounded as follows:

len] < C(n,8)(Jb] + 1)~ 297hg(8)z7" 5A1 352) (5.6)
where C(n,8) does not depend on b and z, and where
Ai(u) if u>0,
Al(u { \/Al (u) + Bi*(w) if u<0. (5.7)

When b is bounded then so is (|b] + 1)’(1“5)"}2,0(6), and the proof of (5.6) is much simpler. A
similar bound (without explicit indication of the role of b, in the form of (|b] + 1)~(1+2)7)) can
be found in [4].

The proof for large b is divided into separate cases: (i) b € [0,00), and (ii) b € [0,i00). We
first consider case (i), and with (5.5) we have

3_ 2w
[enle| < Ca(8)z7" 0] 70F297, (5)271rz,/ gy

< Cn(ﬁ)z‘”'?f|b1—“+?f)"'120(5)Ai(z§b'~').

In case (ii) we write w = ¢ + 4y and we define £/, = {y >0 |3z e R : 2z +1y € L'}.
Simple transformations give
1 z(&w3—b2w

1 ; —%26° % zb°
— [ e hp(w)dw =— ‘z(y+’b)2f(y)g(y)(e 5% by (w) — et hn(W))dy
2m Yol 271 C'

‘ 9 2.3
N 5; —z(y+1b)2f(y)(e 5 ha(w) + €75 o () dy,
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where f(y) = 203;;“)” L2 and g(y) = /152 4 24, /34> 0. Thus with (5.5) we

have

1 z w3—- 2w 1 .
gei T el < g [ OO0 ) + @)

21 c,
—(142e)n7% 1 % ~2(y+ib)? £ (y)
<(s.5) Crn(8)]0] ho(6)~ ¢ (1+9(y))dy

< C(H)|b]" O+ () e

V2b/i

~e 7 () b0 (8): R 02),

as z — 00. In * we used the relation ’/G(x) ~ w_%(—a:)_} as r — —oo, which can be found in
[6, p. 395].
In the appendix we shall prove that

2e+1~ —_— & 2
enpon] < Cre =D T8y, 7 375 B2, (5.8)

where the positive Cp,, A and p do not depend on b and z, and where |b| > ¢ > 0. These
estimates show that (5.6) is valid. Thus we have proved the following theorem.

Theorem 5.1. Let F'(z,b) be of the form (5.1), where ho(w) fulfils the conditions mentioned in
the beginning of this section. Then we have (5.2) as a uniform asymptotic expansion for F(z,b),
where (5.6) is an estimate for |e,| as z — oo, uniformly with respect to b € [0, 00) U [0,%00), and
where 710(5) is given in (5.4).

REMARK. With the conditions of this theorem it follows that expansion (5.2) has a double
asymptotic property: the roles of b and z can be interchanged. For an example we refer to
sections 2 and 4.

The double asymptotic property is lost in the example considered in the next section. In
the preceding analysis we had to assume that, for large |b|, po(b), given in (5.3), is at least of
order |b|%, where § > —%. In the next section we have § = —4.

6. A Boundary case

In this section we show that, in certain circumstances, the condition § > —3% of theorem 5.1
can be replaced with § = —4. We demonstrate this feature by considering a recent expansion
for the Laguerre polynomials.

First we summarize the main steps for obtaining an Airy function expansion of the Laguerre
polynomials. More details are given in [4] and [8]. Laguerre polynomials have the following
integral representation.

) 1 09 ac
(~1)Nove==t/2 () (21) = 7 ), e2/(=0(1 - 22)* 7 dz, (6.1)
o0

where the contour of integration begins and ends at +c0 and encircles 1 in the positive direction,
and where

—)- sat, (6.2)
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and z=4N +2a+2,a > —1 and t > 1. Again, we use the transformation
f(z,t) = 30° - Bw. (6.3)
We prescribe that the z—saddle points im must correspond with +b. It follows that
b= %(\/ﬂ_—j — arccoshv/?). (6.4)

With transformation (6.3) we have for (6.1)

z 32w
(-1 2e L) = o [ T hgwya, (65)
21 c
where "
2\ 2 _ g2
e (=) w8
ho(w) = (1 —z*) To " 2 TR , (6.6)

and £ is given in (2.7). Again, using (2.8) in (6.5), we obtain

o n~1
(~D)V2e 2L (o) =Ai(E8) Y (1) e
k=0

o n7l 2 6.7
_ Ai/(zﬁbZ)Z(__l)kﬂkz—k‘-g ( )
k=0

+€n,
where ¢, is as in (2.10). Notice that hg(w) is an even analytic function. Consequently, we have

Qam = h?m(b)y Qoam41 = 0,
Bam =0, Bom+1 = ham41(b)/b.

In order to apply the analysis of the previous section, we locate the relevant singular points of
ho(w). The singularities S, in the w-plane, which are nearest to b, satisfy §53 = +47i as
=0, and
T

Sy —b~ —
+ * R

as b — o0. (6.8)

Thus po(b) of (5.3) is of order b—J!, as b — oo.

As before, we want to split up £ in £’ and L", and we define e,,,, €5, similar to (2.13).
So, define L' = {w € L | |w = b| < b}, where the constants § and ¢ satisfy § > 0 and
—4 < ¢ <1, in order that the estimate of |€n).n | is exponentially small, compared with the
estimate of |, , |, as 2 — oo, uniformly with respect to b. We choose ¢ close to —4% fixed.

Let T'; be a closed contour, which encircles L', such that

length T'. = O(0%), distance(T., L") ~ e} as b— o0,

9
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and such that ho(w) is analytic on I(I',), where I(T',) is the closure of the interior of I';. Then
straight forward calculations give that

sup |ho(w)| < Co(é,s)b(e+’})a|ho(b)|, as b— o0, (6.9)
wel(T,)

where Cy(é,€) does not depend on b. Further calculations, which are similar to those in section
5, yield for n = 1,2, ...

sup [ha(w)] < Co(6, eV 0 ). as b— oo, (6.10)
wel(Tl',)

where, here and below, C,,(8,¢) denotes a generic quantity not depending on b and z. Notice

that, in contrast to (5.5), the power of b is positive, and is not depending on n. These estimates
yield

-n—wn. (e+%)(a+1 . %
lenlcll < Cn(é,s)z ib 1})( )|h0(b)IAl(3§b2)

) (6.11)
= Ca(6,6) AR E D )
In the last equation we used
ho(b) = 1= _ﬁ_f’__.
(t-1¥d

In the appendix we shall prove that

enten] < ChtE )z E A= i), (6.12)
where the positive C], and A do not depend on b and z. Thus we have proved that

el < Calt,e)= " B+ )P i Ege), (6.13)

as z — oo, uniformly with respect to b € [¢, ), where ¢ > 0, ¢ fixed. With some extra work
we can prove that (6.13) holds uniformly with respect to b € [0,00). A similar approach can be

used for b € [0,47], where 0 < 7 < (%n)%, T fixed.

We can compare this estimate with the estimate given in [4] and [8], which is of the form
(2.11). Firstly, we notice that (6.13) is not in terms of the first neglected terms of expansion
(6.7). But with (6.10) it casily follows that the first neglected terms can be estimated by the
right-hand side of (6.13), and in that sense (6.13) clearly shows why expansion (6.7) holds
uniformly with respect to bin an unbounded domain. Secondly, in (6.13), the influence of b is
more transparent than in the right-hand side of (2.11).

7. Some remarks on other uniform expansions generated by the Bleistein method
The techniques used in section 5 for obtaining an estimate for the remainder, are applied

on Airy type expansions. In this scction we show that the method is quite general, and can be
applied to other uniform expansions of integrals of the form

/ e/ @D ho(2)dz (7.1)
¢
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with coinciding saddle points and singularities. By using Bleistein’s method, based on integrating
by parts, rational functions similar to those of section 3 arise, and again the h,-functions can
be represented as in theorem 3.1.

In the remaining part of this section we work out an example of uniform expansions in
terms of Bessel functions. In [4] such an expansion of the Laguerre polynomials is given. Let

(0+) _a2?
Fiz, )= —— [ w=o=lho(w)e?* ™) o, (7.2)

278 J_ o

where the contour of integration begins and ends at —oo and encircles the origin in the positive
direction. We assume that ho(w) is analytic on a neighbourhood of the contour of integration,
and let 2 > 0, ¢4 > 0 and a > —1. Notice that £iA4 are the saddle points of the integral. We
choose the contour of integration through these saddle points, and the steepest descents path
looks like Figure 7.1.

-

FIGURE 7.1. Steepest descent curve for integral (7.2)

The recursion in connection with integral (7.2) is

n A?
ble) = a0+ 224 (14 2 g ),

d (7.3)
hn+1(w) = wa+1;l—{;(w“a_lgn(w))’
and if we integrate n—times by parts, we obtain the expansion
Ja(24) 22 2
F(z, 4) =22 )Za—u‘fak(;)k
k=0
A4)
a+1(~f‘ k (7
Aa-H Z( 1 ’Bk
+éEn,
where
(0+) %z(w—-ﬂz)
1)”( -)" 5= 27rz w* th,(w)e v dw, (7.5)

and where J,(z) and J,41(z) are Bessel functions of the first kind. Since zA4 is purely imaginary,
in fact modified Bessel functions occur in the expansion.
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The class of rational functions generated by (7.3) is

1

QQ(U,QU,A) = ’
—(etl 4 4 .
Qn-l'-l(u,“” A) = ( (ul ++Ad2U)Qn7 n= 0,1727""
uZ

¥ induction with respect to n, it follows that Q, has an expansion of the form

Qn(ua w, A) = nil niz Cij(%;)i n=12,... (77)

3 g (u — w)n iyt (1 4 Sy

‘here C;; do not depend on u, w and A.

Again, we concentrate on the influence of A on the expansion (7.4), especially when |A] is
rge.

If T is a simple closed contour that encircles 714 and w and with —iA in its exterior, then
‘e can prove, just as (3.3), that

——1—-: / Qn(u,w, A)du = O(|A|™"), as |A| — oo. (7.8)
27 Jp

s before, we want to split up £ in £ and £"”. We assume that, for large |4|, the distance
'om the singularities of ho(w) to the saddle points £iA is at least 26| A|®, where the constants
, € satisfy 0 < 6 , 4 < € < 1. Consequently, we take £’ = {w € £ | |w — 14| < §|A|}
nd L" = £ — L', such that the estimate of |e,,,| is exponentially small, compared with the
stimate of |ey,,, |, as 2 — oo, uniformly with respect to iA € [c,0), where ¢ > 0 fixed. In fact,
¢ need a growth condition on ho(w) on a prescribed neighbourhood of £”, which is similar to
1e condition mentioned in the appendix.

If we set Q(A) = {(u,w) € C* | |u—iA| = 36|A[, |w - iA| < 6| A|°}, we can prove

sup  |Qn(u,w, A)| < Cn(6)|A|(l_2€)”"'£, (7.9)
(u,w)€EQ(A)

‘here C,,(8) does not depend on A. Finally we define

ho(6) =  sup  |ho(w)|. (7.10)
[wkid|<8|Al¢

Vith (7.8), (7.9) and straight forward calculations, similar to those leading to (5.5), we obtain
rn=1,2,..

sup  |hn(w)] € Cu(6,6)| A2 ho(8), as  |A| — oo, (7.11)
|[w—iA|<8| Al

‘here C,(6,¢) does not depend on A. With the aid of these estimates we obtain as the main
sult of this section

leal < Cr(8,€)(|A] + 113 (8)2 7 Ja(24)), (7.12)
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as z — 0o, uniformly with respect to i4 € [0,00), where C}(6,¢) does not depend on A and =.
A similar approach is possible for real values of A.

Appendix

We formulate conditions on ho(w) such that the estimate of |e,,,,| is exponentially small,
compared with the estimate of |e,,, |, as 2 — oo, uniformly with respect to b. We take

L, L', L", p(b), 8, €, €n|s €n|,., and Zn(ﬁ) as in section 5. Define

p(§w3~b2w+%b3)

R(w,b,p,q,7r) =rlw e |.

We assume that ho(w) is an analytic function on a neighbourhood Qq(b) of £", such that for
every w € L' a disc with center w and radius R is contained in Qq(b), where r > 0 and p, ¢ > 0
do not depend on b and w. Note that, since w € £, R may be exponentially small, as |w|] — oo.
Furthermore, we assume that there are constants o > 0 and Cy > 0 such that

w?—b?w+ %)

lho(w)| < Coho(6)le "3’ 1 Y € Q(b)U L, b€ [0,00). (A1)

Thus we allow functions ho(w) being exponentially large as |w| — oo.

We define recursively neighbourhoods Q,,(d) of L, for n = 0,1,2,. ... Let Q,41(b) be those
w € Q,(b) such that the disc with center w and radius 2~("*VR is contained in Q,(b).

Next, let w € Q,(b) and let T be the circle with center w and radius 27"R. The following
two weak asymptotic estimates are simply proved with (3.2):

1 . —%1u3+b2w-—-§b3

i ). Ry(u,w,b)u™du = O(|e 1, (A.2)

w" - 2w 3
sup | An(u,0.)| = O RIS 1E S et S (A.3)

as |b| — oo, uniformly with respect to w € Q,(b) and m € {0, 1}.
Now we can estimate h,(w) on Q,(b).

ha(w) = 27”/ Ro(w,w,b)h,(w)du

1
= 3 /r Ry(u,w,b)hy—q(u)du - %/I:Rl(u, w,b) (a1 + Bn_1u)du

1 ~ _1.3,,2, 2,3
=(4.2) 27”_/F]?1(u,?n,b)hn_](n)rlu+h,n_1(5)@(|e uttotu-go D

=(4.2) 5;—/ Ry(w,w,b)ho(u)du + (hn 1+ ...+ h0(5))0( ~dwi4b w—ﬁbal)

(np+1+a)(%w --b2w-i-§b3

=(43) & (5.5) ho(§)O(Je )-
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Thus, with (5.5) we have proved that

[in(w)] < Calo(§)]e”"PHHHG St ged) (44)
for all w € Q,(b) U L and b € [0,00) U [0, i00)
We choose z > np + 2 + o and estimate l€n)en | for b > ¢ > 0.

~ -zb> _ 1 e mp—] — W b2t 253
|€n|£”|s(A_4) Crho(6)e 32, 5—7}_1/ e( np-1-0)(} bw+ b )dw

3 T - y e n o-~2)(6x
<. ;Cnho(é)e §ab z—n/ ((Ptlto=2)(6 b2 +8z%b+§ %) r+b iz

§'p2e—1 ( 3z? + 6zb

2 33
T —-#2zb° _ d —2)p2e+1
< C:lho(é‘)e k3 P 'n666 (np+1+a z)b ¢

< C':L,ZO((S)Ai(;%bQ )Z_n—§665l(np+2+‘7"2)b25+1 .

In * we substituted w = z +b+ iy, and we used (2.7) and the fact that p(b) ~ 26[b|¢ as |b| — co.
The positive constant §' does not depend on b and =z.

With similar estimates for b € [ic,i00), we have proved

|En|L"| < Cn'flo(é)m(szbz)z““‘%esé’(np+2+a—z)]b|2‘“’ (A5)

where the constants é’ and C,, do not depend on b and z.
REMARK 1. For the special case that has been handled in sections 2 and 4 it is not difficult

to prove that p = o = 0 and that in (4.5) [b***" has to be replaced by 4°(In b)ﬂ}. Furthermore,
(2.14) shows that in (A.4) and (.5) ho(é) can be replaced by |ho(b)|.
REMARK 2. For the boundary case that has been handled in section 6 it is also provable

that p = o = 0, and (6.10) shows that in (A4.4) ho(6) can be replaced by (b+ 1)(€+%)(a+])|ho(b)],
and further calculations show that in (A.5) ho(é) can be replaced by |ho(d)]-
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